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ABSTRACT 

In this paper, we prove a common fixed point theorem for a pair of weakly compatible mappings in fuzzy metric space 
using the joint common limit in the range property of mappings called (JCLR) property. An example is also furnished 
which demonstrates the validity of main result. We also extend our main result to two finite families of self mappings. 
Our results improve and generalize results of Cho et al. [Y. J. Cho, S. Sedghi and N. Shobe, “Generalized fixed point 
theorems for compatible mappings with some types in fuzzy metric spaces,” Chaos, Solitons & Fractals, Vol. 39, No. 5, 
2009, pp. 2233-2244.] and several known results existing in the literature. 
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1. Introduction 

In 1965, Zadeh [1] investigated the concept of a fuzzy set 
in his seminal paper. In the last two decades there has 
been a tremendous development and growth in fuzzy 
mathematics. The concept of fuzzy metric space was 
introduced by Kramosil and Michalek [2] in 1975, which 
opened an avenue for further development of analysis in 
such spaces. Further, George and Veeramani [3] modi-
fied the concept of fuzzy metric space introduced by 
Kramosil and Michalek [2] with a view to obtain a 
Hausdoroff topology which has very important applica-
tions in quantum particle physics, particularly in connec-
tion with both string and    theory (see, [4] and refer-
ences mentioned therein). Fuzzy set theory also has ap-
plications in applied sciences such as neural network 
theory, stability theory, mathematical programming, 
modeling theory, engineering sciences, medical sciences 
(medical genetics, nervous system), image processing, 
control theory, communication etc. 

In 2002, Aamri and El-Moutawakil [5] defined the no-
tion of (E.A) property for self mappings which contained 
the class of non-compatible mappings in metric spaces. It 
was pointed out that (E.A) property allows replacing the 

completeness requirement of the space with a more  
natural condition of closedness of the range as well as 
relaxes the complexness of the whole space, continuity of 
one or more mappings and containment of the range of 
one mapping into the range of other which is utilized to 
construct the sequence of joint iterates. Subsequently, 
there are a number of results proved for contraction 
mappings satisfying (E.A) property in fuzzy metric 
spaces (see [6-11]). Most recently, Sintunavarat and 
Kumam [12] defined the notion of “common limit in the 
range” property (or (CLR) property) in fuzzy metric 
spaces and improved the results of Mihet [10]. In [12], it 
is observed that the notion of (CLR) property never re-
quires the condition of the closedness of the subspace 
while (E.A) property requires this condition for the exis-
tence of the fixed point (also see [13]). Many authors 
have proved common fixed point theorems in fuzzy met-
ric spaces for different contractive conditions. For details, 
we refer to [14-25].  

The aim of this paper is to introduce the notion of the 
joint common limit in the range of mappings property 
called (JCLR) property and prove a common fixed point 
theorem for a pair of weakly compatible mappings using 
(JCLR) property in fuzzy metric space. As an application 
to our main result, we present a common fixed point theo-
rem for two finite families of self mappings in fuzzy met-
ric space using the notion of pairwise commuting due to 
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Imdad et al. [15]. Our results improve and generalize the 
results of Cho et al. [26], Abbas et al. [7] and Kumar [8]. 

2. Preliminaries 

Definition 2.1 [27] A binary operation  
     : 0,1 0,1 0,1    is a continuous t-norm if it satis- 

fies the following conditions:   
1)  is associative and commutative,  
2)  is continuous,  
3)  for all 1a  a  0,1a

a
,  

4)  whenever  and  for all a b c  d


c b d
, ,a b c, 0,1d  .  

Examples of continuous t-norms are a b  and 
. 

ab



 
 min ,a b a b 

Definition 2.2 [3] A 3-tuple  is said to be a 
fuzzy metric space if X is an arbitrary set, * is a continu-
ous t-norm and M is a fuzzy set on  satisfy-
ing the following conditions: For all 

 , ,X M 

2X 0, 
, ,


x y z X , 
,   ,t s  0

1) ,   , , 0M x y t 
 , , 1M x y t 2)  if and only if x y ,  

3)  , ,  , , M x y t M y x t
  , , , ,

,  
4)   , , M x y t M y z s  M x z t s

    
 ,  

5) , , : 0, 0,1M x y     is continuous.  
Then M is called a fuzzy metric on X and  , ,M x y t  

denotes the degree of nearness between x and y with 
respect to t.  

Let  be a fuzzy metric space. For , 
the open ball 

 , ,X M 


0t 
 , ,x r t  with center x X  and radius 

 is defined by  0 r 1

   , , : , , 1 .x r t y X M x y t r     

Now let  be a fuzzy metric space and  , ,X M    
the set of all A X  with x A  if and only if there 
exist  and  such that 0t  0 1r   , ,x r t  A . 
Then   is a topology on X induced by the fuzzy metric 
M. 

In the following example (see [3]), we know that every 
metric induces a fuzzy metric: 

Example 2.1 Let  , X d
min ,a

 be a metric space. Denote 
 (or ) for all a b ab  a b b   , 0,1a b  and 

let dM  be fuzzy sets on  defined as fol- 
lows:  

0, 2X

   
, ,

,d

t
M x y t

t d x y



.  

Then  is a fuzzy metric space and the 
fuzzy metric M induced by the metric d is often referred 
to as the standard fuzzy metric.  

 , ,dX M 

Definition 2.3 Let  , ,X M   be a fuzzy metric space. 
M is said to be continuous on  if  2 0, X

   lim , , , ,n n
n

M x y t M x y t


  

whenever a sequence   , ,n n nx y t  in  con- 
verge to a point 

2 0,X  
  2 0,t X , ,x y    , i.e.,  

   lim , , lim , , 1n y
n n

M x x t M y x t
 

   

and  

   lim , , , , .n
n

M x y t M x y t


  

Lemma 2.1 [28] Let  , ,X M   be a fuzzy metric 
space. Then  , ,M x y t  is non-decreasing for all 

,x y X .  
Lemma 2.2 [29] Let  , ,X M  be a fuzzy metric 

space. If there exists  0,1k  such that  

  , , , , ,M x y kt M x y t  

for all ,x y X  and , then 0t  x y .  
Definition 2.4 [30] Two self mappings f and g of a 

non-empty set X are said to be weakly compatible (or 
coincidentally commuting) if they commute at their co-
incidence points, i.e. if fz gz  some z X , then 
fgz gfz .  

Remark 2.1 [30] Two compatible self mappings are 
weakly compatible, but the converse is not true. There-
fore the concept of weak compatibility is more general 
than that of compatibility.  

Definition 2.5 [7] A pair of self mappings f and g of a 
fuzzy metric space  , ,X M   are said to satisfy the 
(E.A) property, if there exists a sequence  nx  in X for 
some z X  such that  

lim lim .n n
n n

fx gx
 

z   

Remark 2.2 It is noted that weak compatibility and 
(E.A) property are independent to each other (see [31], 
Example 2.1, Example 2.2).  

In 2011, Sintunavarat and Kumam [12] defined the 
notion of “common limit in the range” property in fuzzy 
metric space as follows: 

Definition 2.6 A pair  ,f g  of self mappings of a 
fuzzy metric space  , ,X M   is said to satisfy the “com- 
mon limit in the range of g” property (shortly, (CLRg) 
property) if there exists a sequence  nx  in X such that  

lim lim ,n n
n n

fx gx g
 

u   

for some u X .  
Now, we show examples of self mappings f and g 

which are satisfying the (CLRg) property. 
Example 2.2 Let  , ,X M   be a fuzzy metric space 

with  0,X    and  

 
, if 0;

, ,

0, if 0.

t
t

t x yM x y t

t

    
 

  

for all ,x y X . Define self mappings f and g on X by 
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  2 3f x x   and   5g x  x  for all x X . Let a se- 

quence   1

nn 




  

1 nx  in X, we have  

 lim limn n
n n

5 1 ,fx gx


  g X


 

  

which shows that f and g satisfy the (CLRg) property.  
Example 2.3 The conclusion of Example 2.2 remains 

true if the self mappings f and g is defined on X by  

6

x
f x   and   2

5

x
g x   for all x X . Let a se- 

quence   1
n

nn 

   
  

x  in X. Since  

 lim lim 0 0n n
n n

,fx gx
 

   g X  

therefore f and g satisfy the (CLRg) property.  
The following definition is on the lines due to Imdad 

et al. [32]. 
Definition 2.7 [32] Two families of self mappings  

  1

m

i i
f


 and    are said to be pairwise commuting 

if   
1

n

k k
g



1) i j j if f f f  for all  , m, 1, 2, i j ,  
2) k l l kg g g g  for all ,   ,n, 1, 2,k l 
3) i k k if g g f  for all  



1,2, ,i m   and  
.   1,2, ,k n

Throughout this paper,  is considered to be 
a fuzzy metric space with condition  

 , ,X M 

 lim , , 1t M x y t   for all ,x y X . 

3. Main Results 

In this section, we first introduce the notion of “the joint 
common limit in the range property” of two pairs of self 
mappings. 

Definition 3.1 Let  , ,X M   be a fuzzy metric space 
and , , , :f g a b X  X . The pair  , f b  and  are 
said to satisfy the “joint common limit in the range of b 
and g” property (shortly, (JCLRbg) property) if there 
exists a sequence 

 ,a g 

 nx  and  ny  in X such that  

lim lim lim lim ,n n n
n n n n

nfx bx ay g
   

   gy bu

n

u

n

   (1) 

for some .  u X
Remark 3.1 If ,  and  a f b g x y  in (1), 

then we get the definition of (CLRg).  
Throughout this section,   denotes the set of all 

continuous and increasing functions  in 
any coordinate and  for all 

 5: 0,1 0,1 
 , , , ,t t t t t t   0,1t . 

Following are examples of some function   : 

1)   1 2 3 4 5, , , , min
h

i x x x x x x   for some 0 1h  .  

2)  1 2 3 4 5 1, , , ,  hx x x x x x 

 , , , ,

 for some 0 < .  <h

4 5

1

3) 
h1 2 3 4 5 1 2 3 x x x x x x   x x x x   for some 

 and for all t-norm  such that t t .  0 < < 1h  t 
Now, we state and prove main results in this paper. 
Theorem 3.1 Let  , ,X M  be a fuzzy metric space, 

where   is a continuous t-norm and f, g, a and b be 
mappings from X into itself. Further, let the pair  ,f b  
and  ,a g  are weakly compatible and there exists a  

constant 
1

0,
2

k   
 

 such that  

     
 

,

, ,

2


 

, , , ,

, ,

, ,


, , ,

, ,

M fx ay kt M bx t M fx bgy x t

M ay gy M fx gy

M ay b t









t

x t

t      (2) 

holds for all ,x y X , ,  and  2  0, 0t    . If 
 ,f b  and  ,a g  satisfy the (JCLRbg) property, then f, 
g, a and b have a unique common fixed point in X.  

Proof. Since the pairs  ,f b  and  satisfy the 
(JCLRbg) property, there exists a sequence 

 , a g
 nx  and 

 ny  in X such that  

lim lim lim lim ,n n n
n n n n

nfx bx ay g g
  

y bu u


      

for some u X . 
Now we assert that gu au . Using (2), with nx x , 

y u , for 1  , we get  

     
 

, ,

, , , 
 

, , , , , ,

,

.

n

n, ,

, ,

n n

n

nM fx au kt M gu t M

M au M fx

M au t

 bx

gu t

bx

fx bx t

gu t  

Taking the limit as , we have  n 

     


, ,

, , ,  
 

, , , , , ,

,

.

, ,

, ,

M gu au kt M g gu t M g

M au u t M gu

M au t

 u

g

gu

u gu t

gu t  

Since   is increasing in each of its coordinate and 
 , , , ,t t t t t t  for all  0,1t , we get  
   , , , ,M gu au kt  M gu au t . By Lemma 2.2, we have 

gu au . 
Next we show that fu gu . Using (2), with x u , 

ny y , for 1  , we get  

     


, ,

, ,n 
 

, , , , ,

, , , ,

, , .

n n

n n

n

M fu ay kt M gy t M


,bu fu bu t

M ay t M

M ay u t



gy

b

fu gy t  

Taking the limit as , we have  n 

     
 

, ,

, , ,

 

, , , , , ,

( , , ),

., ,

M fu gu kt M u t M

M g t M f

M gu t

 gu g

u gu

gu

fu gu t

u gu t  

Since   is increasing in each of its coordinate and 
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 , , , ,t t t t t t 
 , ,

 for all , we get  0,1t
 , , M fu gu kt  M fu gu t . By Lemma 2.2, we have 

fu gu . 
Now, we assume that z fu gu au bu    . Since 

the pair  ,f b  is weakly compatible, fbu bf u  and 
then fz fbu  bfu bz . It follows from  a g,  is 
weakly compatible, gau agu  and hence  
gz gau ag  u az . 

We show that . To prove this, using (2) with z  fz
x z y u, , for 1  , we get  

    
  
 

, , , , , ,

, , , ,

 ,

, ,

, ,


,M fz au kt u t M fz bz tM bz g

M au gu

M au bz




 
 

, ,

, ,

, ,

t M fz gu t

t



 

and so  

    
 

, , , , , ,

, , , ,

.

M fz z kt t M fz fz t

M fz z t

 M fz z

M z z t

M z fz t



 

Since   is increasing in each of its coordinate and 
 for all ,   , , , ,t t t t t t 

 , ,
 0,1t

 , ,M fz z kt M fz z t , which implies that fz z . 
Hence . z fz  bz

Next, we show that . To prove this, using (2) 
with 

z az
x u , , for y z 1 

 ,

, ,

, ,

, we get  

    
   
 

, , , , ,

, , , ,

, ,M fu az kt z t M fu bu t

M fu gz t

t

 M bu g

M az gz t

M az bu


, ,

, ,

 

and so  

    
  
 

, , , , , , , ,

, , , ,

.


M z az kt z t M z z tM z a

M az az

M az z



t M z az t

t



 

Since   is increasing in each of its coordinate and 
 for all ,   , , , ,t t t t t t 

 , ,
 0,1t
, ,M z az kt  M az az t , which implies that z az . 

Hence . Therefore, we conclude that  
 this implies f, g, a and b have 

common fixed point that is a point z. 

z az 
z fz gz a  

gz
z bz

For uniqueness of common fixed point, we let w be 
another common fixed point of the mappings f, g, a and b. 
On using (2) with x z y  , , for w 1  , we have  

    
  
 

, , , , , , ,

, , , ,

 ,

, ,

, ,


M fz aw kt w t M fz bz tM bz g

M aw gw

M aw bz




 

, , ,

, , ,

t M fz gw t

t



 

and then  

 , ,    
 

, , , , , ,

, , .

M z w kt M z z t M w w t

M z w z t

 z w t M

w t M
 

Since   is increasing in each of its coordinate and 
 t, , , ,t t t t t   for all  0,1t ,  
   , , , ,M z w Mkt z w t , which implies that z w . 

Therefore f, g, a and b have a unique a common fixed 
point.  

Remark 3.2 From the result, it is asserted that (JCLRgb) 
property never requires any condition closedness of the 
subspace, continuity of one or more mappings and con-
tainment of ranges amongst involved mappings.  

Remark 3.3 Theorem 3.1 improves and generalizes the 
results of Abbas et al. ([7], Theorem 2.1) and Kumar ([8], 
Theorem 2.3) without any requirement of containment 
amongst range sets of the involved mappings and clos-
edness of the underlying subspace.  

Remark 3.4 Since the condition of t-norm with 
t t t   for all  0,1t  is replaced by arbitrary con-
tinuous t-norm, Theorem 3.1 also improves the result of 
Cho et al. ([26], Theorem 3.1) without any requirement 
of completeness of the whole space, continuity of one or 
more mappings and containment of ranges amongst in-
volved mappings.  

Corollary 3.1 Let  , ,X M   be a fuzzy metric space, 
where   is a continuous t-norm and f, g, a and b be 
mappings from X into itself. Further, let the pair  ,f b  
and  ,a g  are weakly compatible and there exists a  

constant 
1

0,
2

k   
 

 such that  

 
       
       
   

1 2

3 4

1 2

5

, ,

, , , ,

, , , ,

, , 2

M fx ay kt

a t M bx gy t a t M fx bx t

a t M ay gy t a t M fx gy t

a t M ay bx t t





 
 

  

    (3) 

holds for all ,x y X , ,  and   0,2  0t 
 :ia   0,1  such that 

1 ii
. If   15 a t  ,f b  and 

 ,a g  satisfy the (JCLRbg) property, then f, g, a and b 
have a unique common fixed point in X.  

Proof. By Theorem 3.1, if we define  

 

          
1 2 3 4 5

1

2
1 1 2 2 3 3 4 4 5 5

, , , ,

,

x x x x x

a t x a t x a t x a t x a t x



    
 

then the result follows.  
Remark 3.5 Corollary 3.1 improves the result of Cho et 

al. ([26], Corollary 3.4) without any requirement of com-
pleteness of the whole space, continuity of one or more 
mappings and containment of ranges amongst involved 
mappings while the condition of t-norm  for all t t t 

 0,1t  is replaced by arbitrary continuous t-norm.  
Corollary 3.2 Let  , ,X M   be a fuzzy metric space, 

where   is a continuous t-norm and f and g be map-
pings from X into itself. Further, let the pair  ,f g  is  
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weakly compatible and there exists a constant 
1

0,
2

k   
 

 

such that  

     
  
 

, , , , , , , ,

, , , , , ,

, , 2


M fx fy kt M gx gy t M fx gx t

M fy gy t M fx gy t

M fy gx t t











   (4) 

holds for all ,x y X , ,  and  0,2  0t    . If 
 ,f g  satisfies the (CLRg) property, then f and g have a 
unique common fixed point in X.  

Proof. Take  and a f b g  in Theorem 3.1, then 
we get the result.  

Our next theorem is proved for a pair of weakly com-
patible mappings in fuzzy metric space  , ,X M   using 
(E.A) property under additional condition closedness of 
the subspace. 

Theorem 3.2 Let  , ,X M   be a fuzzy metric space, 
where  is a continuous t-norm. Further, let the pair 
 ,f g  of self mappings is weakly compatible satisfying 
inequality (4) of Corollary 3.2. If f and g satisfy the (E.A) 
property and the range of g is a closed subspace of X, 
then f and g have a unique common fixed point in X.  

Proof. Since the pair  ,f g  satisfies the (E.A) prop-
erty, there exists a sequence  nx  in X such that  

lim lim ,n n
n n

fx gx
 

  z  

for some . It follows from z X  g X
X

 being a closed 
subspace of X that there exists  in which u z gu . 
Therefore f and g satisfy the (CLRg) property. From 
Corollary 3.2, the result follows.  

In what follows, we present some illustrative examples 
which demonstrate the validity of the hypotheses and 
degree of utility of our results. 

Example 3.1 Let  with the metric d de-
fined by 

 2,19X 
 ,d x y x y   and for each  0,1t  define  

  
, if 0;

, ,

0, if 0.

t
t

t x yM x y t

t

    
 

  

for all ,x y X . Clearly  , ,X M   be a fuzzy metric 
space with t-norm defined by  min ,a ba b   for all  

 , 0,1a b . Consider a function  de-

fined by 

  5 : 0,1 0,1 

   
1

2
1 2 3 4 5, , , , min ix x x x x x . Then we have  

   1 2 3 4 5, , , , , , M fx fy t x x x x x . Define the self map-
pings f and g on X by  

   
 

2 if 2 3,19

15 if 2,3 ,

x
fx

x

    

 

 

2 if 2;

12 if 2,3 ;

1
f 3,19

2

x

gx x

x
i x


 


 
  


 

,

Taking   1
3n

n

x
n 

   
  

 or , it is clear 

that th ir 

   2nx 

e pa  ,f g  satisfies the (CLRg erty since  

 

) prop

lim lim 2 2 .n n
n n

fx gx g
 

     X

         2,15 2,10 12f X g    . 
itions of Corollary 3.2 are satisfied for

It is noted that X
Thus, all the cond   

a fixed constant 
1

0,k     and 2 is a unique common  
2 

e pairfixed point of th   ,f g . Also, all the involved 
mappings are even discon s at their unique common 
fixed point 2. Here, it may be pointed out that 

tinuou
 g X  is 

not a closed subspace of X.  
Example 3.2 In the setting of Example 3.1, replace the 

mapping g by the following, besides retaining the rest:  

 

 

2 if 2;

10 if 2,3 ;

1
if 3,19 ,

2

x

gx x

x
x


 


 
  


 

Taking   1
3n

n

x
n 

   
  

 or , it is clear 

that th ir 

   2nx 

e pa  ,f g  satisfies erty the (E.A) prop since  

lim 2 .n nlim
n n

fx gx X
 

    

       2,15 2,10f X g  
of Theorem 3.2 are satisfied and

It is noted that X . Thus, 
all the conditions  2 is a 
unique common fixed point of the mappings f and g. No-
tice that all the involved mappings are even discontinu-
ous at their unique common fixed point 2. Here, it is 
worth noting that  g X  is a closed subspace of X.  

Now, we utilize ition 2.7 which is a natural ex- Defin
tension of commutativity condition to two finite families 
of self mappings. Our next theorem extends Corollary 
3.2 in the following sense: 

Theorem 3.3 Let  m

i i
f

;

and  

 

1  
1

n

j j
g


  and be two finite  

fa gs in f tric spmilies of self mappin uzzy me ace  , ,X M  , 
where   is a continuous t-norm such that  

1 2 mf f f f   and 1 2 ng g g g   which satisfy th
q  Coroll  pair  ,

e ine- 
ualities (4) of ary 3.2. If the f g  shares 

(CLRg) property, then f and g have a unique poin  
coincidence. 

t of
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Moreover,  m

i 1i
f


 and  n

j 1j
g


 have a unique common 

fixed point p d the f families  rovide  pair o   ,i jf g   

commutes pairwise, where  1,2, ,i m   and  
 1, 2, ,j n  .  

Proof. The proof of this t  comple
eore

heorem can be ted on 
the lines of Th m 3.1 contained in Imdad et al. [15]
he

, 
nce details are avoided.  
Putting 1 2 mf f f f     and  

1 2 ng g g g     in Theorem 3.3, we get the f

Corollary 3.3 Let
ace 

ol- 
lowing lt:  resu

 f and g be two self mappings of a 
fuzzy metric sp  , ,X M  , where is a continuous 
t-n

  
orm. Further, let the pair  ,m nf g  shares (CLRg)  

property. Then there exists a constant 
1

0,
2

k   
 

 such 

that  

    
  
 

, , , , , , ,

, , , , ,

, , 2

m m n n m n

m n m n

m n

 ,
 ,

M f x f y kt M g x g y t M f x g x t

M f y g y t M f x g y t

M f y g x t t











 

holds for all ,x y X ,  0,2  , 0t  ,  
 and g

air 

 and m
and n are fix rs, th  have a

 
 ed positiv

on fixed
e intege
oint provi

en f
d theunique comm  p de  p  ,m nf g  

commutes pairwise.  
Remark 3.6 Theorem 3.2, Theorem 3.3 and C  

3.3 can also be outline
orollary

d in respect of Corollary 3.1.  

t of 
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