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ABSTRACT 

The human placenta nourishes the growing fetus during pregnancy. The newly developing field of placenta analysis 
seeks to understand relationships between the health of a placenta and the health of the baby. Previous studies have 
shown that the median placental chorionic shape at term is round, and deviation from such prototypical shape is related 
to a decreased placental functional efficiency. In this study, we propose the use of a nearly-continuous shape descriptor 
termed signed deviation vector to systematically study the relationship between various maternal and fetal characteris- 
tics and the shape of the placental surface. The proposed shape descriptor measures the amount of deviation along with 
the direction of the deviation a placental shape has away from the shape of normality. Using Linear Discriminant 
Analysis, we can independently examine how much of the placental shape is affected by maternal, newborn, and pla- 
cental characteristics. The results allow us to understand how significantly various maternal and fetal conditions affect 
the overall shape of the placenta growth. Though the current study is largely exploratory, the initial findings indicate 
significant relationships between shape of the placental surface and newborn’s birth weight as well as their gestational 
age.  
 
Keywords: Signed Deviation Vector; Placenta; Shape Analysis; Linear Discriminant Analysis; Principal Component 

Analysis 

1. Introduction 

The human placenta is a fetus’s lifeline during gestation, 
providing nutrients and antibodies, while eliminating 
waste products via the mother’s blood supply. The pla- 
centa is an integral part of the child’s development, but is 
generally disposed of after delivery. The relatively new 
field of placenta analysis within the field of perinatal 
pathology investigates the possibility of learning impor- 
tant health information about the child from the placenta. 
The theory is that the placenta may hold vital information 
that can contribute to clinical practice and patient care. 

The placenta is connected to the uterine wall and ex- 
changes nutrients and waste through the placental blood 
barrier. It connects to the fetus by the umbilical cord 
containing two arteries and one vein. The cord inserts 
into the chorionic plate, or fetal side of the placenta, 
where the vessels branch into a network covered by a 
thin layer of cells. This vascular network is one area that 
placenta analysts continue to research. Similar to the root 
system of a tree, the vascular network must effectively 
and efficiently provide nutrients for the fetus as it grows 
larger. Intuitively, the optimal network would have the  

base of the umbilical connection in the center where 
vessels branch evenly and thoroughly in all directions. 
Previous studies by [1] have found that the average pla- 
centa is in fact structured optimally with round placentas 
having the umbilical cord centrally inserted. 

Additional studies have found that the directional 
growth of the vascular network influences the final shape 
of the placenta. For example, if the uterine environment 
limits the growth of vessels, the placental shape will re- 
flect the obstacle, as illustrated in [2]. Currently, the 
causes of placental shape irregularity are not fully under- 
stood. Furthermore, medical understanding of the effects 
of irregularly shaped placentas and poor vascular cover- 
age is also limited. 

In this study, we search for connections between the 
geometric shape of the placenta and physical features of 
the mother, fetus and placenta. During the investigation, 
we confirm prior results finding the average placental 
shape to be round with the umbilical cord centrally lo- 
cated. Also, we develop a measure to numerically repre- 
sent a placenta’s geometric deviation from the average 
shape. The proposed shape descriptor can then be em- 
ployed to analyze any maternal, newborn or placental 
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feature. 
We begin in Section 2 with a description of the data 

sets used in this study. In Section 3, we describe the steps 
taken to preprocess and register the given placenta im- 
ages in order to perform computations without introduc- 
ing bias. We propose a numerical shape descriptor to 
measure the amount and direction of deviation of a given 
placental surface shape away from a normal placental 
shape in Section 4. Linear Discriminant Analysis is used 
in this study to reveal a suggestive relationship between 
the shape of placental surface and various medical fea- 
tures. For completeness, a brief overview of the dis- 
criminant analysis will be given in Section 5. The dis- 
criminating power of the proposed shape descriptor is 
revealed under a series of carefully designed experiments 
and the mathematical and medical implications of those 
experiments will be described in Section 6. Finally, con- 
cluding remarks and future areas of research are given in 
Section 7. 

2. Materials 

2.1. Digital Images 

There are two data sets investigated in this study. The 
first data set is a subset of a collection of 1225 digital 
photographs of placental surfaces and their accompany- 
ing medical data. This information originated from the 
Pregnancy, Infection, and Nutrition Study at an academic 
health center at the University of North Carolina (UNC). 
The data set is fully described in [3] and made available 
by Placental Analytics LLC. Each of the 1225 placentas 
went through a consistent protocol of cleaning and trim- 
ming of extra placental membranes and umbilical cord 
before being photographed with a standard high-resolu- 
tion digital camera. The minimum image size is 2.3 
megapixels. The placentas were oriented prior to being 
photographed so that the point on the perimeter closest to 
the rupture point on the amniotic sac was placed on the 
negative vertical axis for consistency. This orientation is 
the best approximation to the orientation the placenta 
took in the uterine environment prior to delivery, and 
thus is biologically significant as indicated in [1]. Each 
placenta was photographed with either a ruler or a penny 
for scaling purposes within the field of view. Examples 
of the original images can be seen in Figure 1. 

Of the 1225 placentas photographed, 150 were traced 
by hand by a trained pathologist. Fifty images were cho- 
sen at random from each group of low, normal and high 
birth weights according to the following criteria. Birth 
weights below 2500 grams are considered low, weights 
above 3500 grams are considered high, and those in be- 
tween are considered normal. Different criteria for label- 
ing birth weights are described in Section 2.2. Using a 
Tablet PC and GNU Image Manipulation Program (GIMP),  

the perimeter was traced in green, the umbilical cord 
insertion marked in yellow and the blood vessels traced 
in pink. While automatic vessel extraction and perimeter 
detectors are being developed by, e.g., [4], they are still 
far from perfect for this data set. Therefore, we select the 
150 hand-traced images to be the ground truth for the 
perimeter shape and the vascular structure. Four of the 
tracings were poor, one was a duplicate, four were miss-
ing placenta weights and two were missing a maternal 
vascular pathology diagnosis. Thus, the first data set in-
vestigated in this study includes  cases, 
which are 93% of the traced set and 11% of the original 
set. Figures 2(a) and (b) show the original and traced 
images, respectively, of one placenta from this set. 

139UNCN 

The second set of data, termed the NYU data set, 
comes from a collection of 96 placenta images from New 
York University. The placentas were trimmed, cleaned, 
and oriented prior to being photographed, consistent with 
the treatment of the placentas from the Pregnancy, Infec- 
tion, and Nutrition Study in North Carolina. All 96 of 
these images were hand-traced by the same trained pa-
thologist, following the same procedure and protocol as 
described before. Of the 96 cases, twelve were missing 
the placenta weight and three were missing gender labels. 
Thus this data set includes  cases, which are 
84% of the original collection. Figure 3 shows an exam- 
ple of one placenta from this set.  

81NYUN 

 

 

Figure 1. Example images from the original UNC data set. 
 

 
(a)                          (b) 

Figure 2. (a) Image of placenta ID#1572 from the UNC data 
set; (b) Traced image of placenta ID#1572 from the UNC 
data set. 
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Figure 3. Image of placenta ID#243 from the NYU data set. 

2.2. Medical Features 

The maternal data used in this study includes: 1) mo- 
ther’s age at the beginning of pregnancy and whether or 
not the mother suffered from 2) eclampsia or preeclamp-
sia, 3) gestational diabetes, 4) chronic hypertension, or 5) 
pregnancy-induced hypertension. The newborn data in-
cludes the 6) birth weight in grams, 7) gender, and 8) 
gestational age measured in weeks. Under the supervi-
sion of Dr. Carolyn Salafia, technicians at Early Path 
Clinical and Research Diagnostics, a New York State- 
licensed histopathology facility, performed image ana- 
lysis, a histology review and a gross examination of each 
placenta. The pathology exam resulted in six diagnoses 
of the pathology of each placenta, which were recorded 
as either present or not present. Thus the placenta data 
includes the presence or absence of 9) acute inflamma-
tion, 10) chronic inflammation, 11) vascular pathology, 
12) maternal vascular pathology, 13) fetal vascular pa-
thology, and 14) other vascular pathology. Detailed his- 
topathological diagnoses are described in [5]. 

Each of the two data sets of images is accompanied by 
the birth weight in grams, gender, and gestational age in 
weeks. In the case of the UNC data set, there are eleven 
additional features listed previously. 

In this preliminary study, we require that each of the 
features has a two-class label. That is, for any given 
medical feature, it can be categorized as one of two op- 
tions. The presence of eclampsia or preeclampsia, gesta- 
tional diabetes, chronic hypertension and pregnancy- 
induced hypertension in the mother already have this 
dichotomy. A present condition is labeled as 1, and not 
present is 0 except that gender is divided so that male is 
labeled as 1 and female is given a 0. Similarly, the six 
vascular pathologies are labeled 1 for present and 0 for 
not present. When the mother’s age at the beginning of 
pregnancy is 35 or more, the mother is labeled as having 
advanced maternal age (AMA). Such cases are labeled 1, 
while mothers beginning pregnancy under the age of 35 
are labeled 0. Pregnancies that lasted less than 37 weeks 
of gestation are labeled as preterm with a 1, while preg- 
nancies that reached or exceeded 37 weeks are labeled 
term with a 0. 

Furthermore, the birth weight is also labeled, but 

medical resources mainly classify in a three-class system 
of low, normal, and high birth weights. Realistically 
speaking, the low birth weights are considered to have 
the highest health risk while babies who are born with 
normal or high birth weights are less likely to develop 
threatening health conditions. Because of this, cases of 
normal and high birth weights are grouped together and 
given the label “Not at Risk” and numerically repre- 
sented by 0, while cases of low birth weight are labeled 
“At Risk” and numerically represented by 1. Initially the 
birth weight (BW) data came separated according to the 
piecewise labeling rule   such that  

 
 
 
 

LBW , if BW 2500

BW NBW , if 2500 BW 3500

HBW , if BW 350

 

0

0 

1

2 


 








   

It is henceforth referred to as Labeling Scheme I. This 
labeling, however, does not take into account the gesta- 
tional age of the newborn. Naturally, a shorter gestation 
will lead to a lower birth weight, so the region of nor- 
malcy must be adjusted based upon the gestational age in 
weeks. Two additional labeling options are presented 
next. An important aspect of this study is to search for a 
superior labeling scheme to be implemented in medical 
practice that has the most practical uses. 

Williams Obstetrics [6], a central text in the medical 
specialty of obstetrics, provides a table of percentiles for 
birth weights and gestational age. The table is based on 
3,134,879 single live births in the United States. It in- 
cludes the fifth, tenth, fiftieth, ninetieth and ninety-fifth 
percentiles for birth weights of children born between the 
twentieth and forty-fourth week of gestation. 

The table is used to create two other labeling options: 
Labeling Scheme II uses the 10 - 90th percentile range as 
normal, and Labeling Scheme III uses the 5 - 95th percen- 
tile range as normal. The advantage of using these label- 
ing schemes is that the percentiles in the table come from 
a large data set of over three million live births. The dis- 
advantage, however, is that these labeling schemes label 
all children born before the 35th week of gestation in our 
study as normal. 

There are a combined total of 1099 unique placentas 
from the two original data sets together with correspond- 
ing birth weights and gestational ages. Table 1 shows the 
number of placentas classified in the categories of low 
birth weight (LBW), normal birth weight (NBW), and 
high birth weight (HBW) for each labeling scheme. The 
proposed shape descriptor will then be used to investi- 
gate the level of discriminatory power inherited within 
these three labeling schemes. 

3. Data Registration 

In this section, we will describe the steps required for  
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Table 1. Number of placentas that are categorized into each 
birth weight group in the original UNC data set for the 
three labeling schemes. 

Labeling Scheme 
Birth Weight 

I II III 

LBW 50 38 93 

NBW 618 1003 894 

HBW 431 58 112 

 
preprocessing the images from the UNC and NYU data 
sets. The traced images from the UNC and NYU data 
sets were conveniently oriented, however, it was still 
necessary to preprocess the images to properly scale 
them and extract the perimeter shapes. This work was 
done using MATLAB and ImageJ, an image-processing 
program provided by the National Institutes of Health. 
While missing medical features limited our sets to 

UN  and NYU , 143 images from the ori-
gin- nal UNC set and all 96 from the original NYU set 
remain useful images. Maximizing our image database 
was beneficial for future computations of median pla-
centa shape to be discussed in Section 4.1. Therefore, the 
pre- processing steps described in this section are applied 
to a total of 239 traced images. 

139N  81N 

Black and white digital photographs of length n by 
height m are represented in MATLAB as m-by-n matri- 
ces with integer entries between 0 and 255. The entries 
take these values because each pixel of the image is 
stored in 8-bit, so there are  possible intensity 
values. Zero intensity corresponds to black and an inten- 
sity of 255 corresponds to white. Since the images are in 
color, three sets of intensities are stored in the red, green, 
and blue channels. The 143 images of placentas from the 
UNC set ranged in size from 1024-by-768 to 1600-by- 
1200. All images were first normalized to size 1600-by- 
1200 for the ease of future computations. Similarly, the 
96 images from the NYU data set ranged from 2228-by- 
1587 to 3008-by-2000. Similarly, smaller images were 
padded to be 3008-by-2000 to obtain a database of im- 
ages with consistent resolution. Figure 4(a) shows pla- 
centa 1618 from the UNC data set padded to be 1600- 
by-1200. 

82 256

Since the images were not taken from the same height 
with the same zoom, it was necessary to scale the images 
before performing other computations. Each image in- 
cluded either a piece of a ruler or a penny. Using ImageJ, 
we recorded the number of pixels present in one centi- 
meter on the ruler or along the diameter of the penny, 
thus providing a scale for each placenta. 

Next, using MATLAB, the boundary of the placenta 
was extracted from the green perimeter hand tracing and 
filled with white to form the placental mask. The result- 

ing matrices are 1600-by-1200 or 3008-by-2000, for the 
appropriate data set, consisting of ones where the pla- 
cental surface exists and zeros outside of the placenta 
boundary. Also, we extracted the umbilical cord insertion 
point from the yellow tracing. The mean of the yellow 
pixel locations provided a single point for the umbilical 
insertion. Figure 4(b) shows the result of this step. 

Now with the scale, umbilical point and the masks, the 
images could be scaled to two pixels per millimeter and 
translated such that the umbilical insertion point rested in 
the center of each image. Notice that the umbilical cord 
insertion point was chosen as the center of the image, as 
opposed to the geometric center of the placenta shape, 
since the geometric center has no particular significance 
in the internal structure of the placenta as indicated in [7], 
and has been shown to have no significant correlation 
with the functional efficiency of the placenta. 

With each of the images scaled and centered about the 
umbilical cord insertion point, the images are ready for 
analysis. After the scaling, however, the placental masks 
and boundaries do not need matrices of size 1600-by- 
1200 or 3008-by-2000 to contain the important chorionic 
plate information. A minimal bounding box of size 797- 
by-1049, computed from all placental masks, was then  
 

 
(a)                          (b) 

 
(c)                          (d) 

Figure 4. An illustration of preprocessing on placenta 
ID#1618. (a) Traced image is first padded with zeros to 
reach the desired resolution; (b) Placenta mask and um- 
bilical cord location are extracted; (c) Image from (b) is 
scaled and aligned so the umbilical cord insertion point 
appears in the center of the resulting image; (d) A one-pixel 
boundary of the placental surface. 
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imposed on each image to reduce computational com- 
plexity. As shown in Figure 4(c), all matrices are thus 
reduced to 797-by-1049 with umbilical cord insertion 
points still at the center, (399, 525), of the images. 

In some instances, the entire mask of the placental sur- 
face, also referred to as the chorionic plate, is required 
for analysis. At other times, the boundary, one pixel in 
width, is sufficient. For future analysis, the images are 
eroded to the boundary matrices, still of size 797-by- 
1049 as shown in Figure 4(d). 

4. Placental Surface Geometry 

This study seeks to investigate which of the features col- 
lected for the given data sets are most connected to the 
geometric shape of the placenta. 

Previous studies have shown that an average placenta 
is round with the umbilical cord inserted in the center. 
Also, deviation from the prototypical placenta shape is 
related to a decrease in placental functional efficiency as 
illustrated in [1]. To study the potential relationships, it is 
important to have a reliable and accurate mathematical 
representation for the shape of the placental surface. To- 
gether with a shape representing normality, the accurate 
representation of the shape can provide a numerical 
measure of deviation from normality. In this section, we 
propose a nearly continuous shape descriptor that can be 
made to measure the deviation from normality to any 
degree of precision as desired to study the relationship of 
shape and various medical features. While our feature list 
is limited, our hope is that the calculation of the proposed 
shape descriptor can be automated and the results can be 
used in future placenta studies with more extensive 
medical data about the child’s health. 

We begin the section by forming the median placenta 
shape for the combined set of traced images from the 
UNC and NYU data sets. We then describe the proposed 
shape descriptor called the signed deviation vector for 
the placentas in the UNC and NYU data sets. 

4.1. Shape of Normality 

The resulting 797-by-1049 image matrices obtained from 
the registration process in Section 3 include the surface 
masks of the 239 hand-traced images and their respective 
eroded boundaries. Following a similar procedure refer- 
enced in [5], this section describes the definition and 
creation of the median placenta shape using those 239 
masks. 

Mask matrices, , where , contain 
zeros where there is no appearance of placental surface, 
while ones mark the coverage of the chorionic plate. For 
any given pixel or element in a matrix, , here 

 and 1  the number of times a placenta 
occurs at that location, over all images, is recorded in the 

frequency matrix, . Notice that in our experiments, 

( )kp

j n 

1, 2, ,k  

ijp

N

,

( )k

1 i m 


797m   and n 1049 . Thus,  

( )

1

.
N

k
ij

k

p


 ij



 

The values at each position of ij  can range from 0, 
meaning no placenta ever appears at that pixel, to N, 
where all the placentas agree. For example, since all the 
images have the umbilical insertion point translated to 
the center of the image matrix (399, 535), it must be true 
that in our data set (399, 535) . The resulting fre- 
quency matrix is shown in the leftmost plot in Figure 5 
where the brightest white corresponds to 



N

239N   and 
black corresponds to zero. The median shape mask is 
defined by the m-by-n matrix  where 

0, if
2 .

1, if
2

ij

ij 

ij

N

N

















 

This means that if over half of the contributing pla- 
centas occur at a given pixel, then that pixel is considered 
part of the median shape. The boundary where the fre- 
quency reaches N/2 is shown in the middle plot of Fig- 
ure 5 and the final median placental shape,  , is 
shown in the rightmost plot of Figure 5. 

The area of the median placenta is Amediam = 100,588 
pixels which amounts to 251.5 cm2. The centroid, or the 
geometric center of mass, lies at (403, 535), and is 
marked in the rightmost plot of Figure 5 with an asterisk. 
It lies very close to the actual center of the image 
(marked with a circle), which is the shared umbilical 
cord insertion point for the contributing placenta shapes. 
The area, if associated with a perfect circle, would result 
in the radius being 8.95 cm. If we overlay a best-fit el- 
lipse on top of , then the major axis length is 18.7 cm, 
the minor axis length is 17.1 cm and the eccentricity is 
0.39, where the eccentricity is defined to be e c a , 
where c is the distance between foci of the best fit ellipse 
and a is the length the major axis. A perfect circle has an  
 

 

Figure 5. An illustration of the process of creating the me- 
dian placenta shape on UNC and NYU data sets. Left: Fre- 
quency matrix. Middle: Separation of frequency where pix- 
els lie within the one-pixel curve represent the majority. 
Right: The resulting median placenta shape. The circle 
gives the center of the image while the asterisk gives the 
geometric center of mass of the resulting median shape. 
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eccentricity of 0, while a straight line has an eccentricity 
of 1. These measurements mean that the median placenta 
shape is approximately circularwith the umbilical inser- 
tion point at the center and a radius of approximately 9 
centimeters. This result is in accordance with previously 
documented results shown in [5]. 

The median shape in the rightmost plot of Figure 5 is 
a combined product of the 239 masks from the UNC and 
NYU data sets. It represents the shape of normality for 
these two sets, and will contribute to the formation of the 
shape descriptor for each placenta. The next section de- 
scribes the formation of the proposed signed deviation 
vector that will measure the deviation from the median 
shape. 

4.2. Shape Descriptor 

With the median shape available for the data sets, the 
shape information for each placenta can be measured as 
its deviation from the prototypical placenta shape. We 
propose to capture this unique information with a shape 
descriptor called the Signed Deviation Vector (SDV). In 
short, the elements of the SDV measure the difference 
between the distance to the edge from the umbilical cord 
insertion point on the placenta and the corresponding 
distance measured on the median placenta shape. In gen- 
eral, each SDV is a k-dimensional vector. In our study, 
we use k = 360-dimensional signed deviation vectors for 
the UNC and NYU data sets calculated from the cropped 
797-by-1049 boundary matrices. The derivation of the 
SDVs from the median shape and the boundary matrices 
is described next. 

The one-pixel width boundary of the placenta perime- 
ter is stored in a m-by-n (m = 797, n = 1049 in our case) 
matrix of ones where boundary exists and zeros else- 
where. From the matrix center,   measures the angle 
counterclockwise from the positive x-axis and is meas- 
ured in one degree increments from 1 to 360. Radial co- 
ordinates,  ,x y


, are defined to be the coordinates of 

the boundary at  . A radial distance, d , is defined to 
be the distance, in pixels, from the center of the image, 

0 0 , x y  (x0 = 399, y0 = 525 in our case), to the radial 
coordinates,  , x y


 so that 

     2 2

0 0 .d x x y y       

Figure 6 gives a visual representation of the radial 
distance. For a placenta,  the radial distances form 
a 360-element vector  with elements of the nth im- 
age. Similarly, since the median boundary is obtained by 
taking the one-pixel boundary of the median placenta, the 
vector 

( ) ,nP
( )nd

360d   holds the radial distances for the me- 
dian shape. 

Now, the signed deviation vector, , for a given 
placenta,  is defined by 

( )nv
  ,nP

 

Figure 6. An illustration of the radial distance. 
 

( ) ( )n n v d d .               (1) 

This forms a 360-element vector with positive ele- 
ments corresponding to radial coordinates on the placenta 
that are farther from the center than the median shape’s 
radial coordinates. 

The SDV is a unique way to measure the nearly con- 
tinuous deformation of a shape from a fixed contour, 
henceforth a powerful tool in describing the discrimina- 
tory feature of a shape contour. On the other hand, meas- 
ures that rely on a single number such as the symmetric 
difference of areas [7], do not guarantee uniqueness of 
shape which makes it harder to draw conclusions from 
the results. We show in Lemma 1 that the uniqueness of 
SDV can be extended to any convex closed curve. 

Lemma 1. Let the radial distance,  d  , be the 
Euclidean distance from the radial coordinate  ,x y   
emanating from the center of the coordinate system 
 0 0,x y  so that 

     2 2

0 0 .d x x y y       

Furthermore, suppose   takes on values from a fam- 
ily of ordered real numbers between 0 and , . A 
radial distance vector, d, can be formed for a given con-  

2π Λ

vex closed curve such that . Then the   
Λ

d





   d

signed deviation vector for this curve, defined by 
 v d d , is unique, where d  is the radial distance 

vector for a fixed contour. 
Proof .Suppose the contrary that two distinct convex 

closed contours, 1  and 2 , have the same SDV, then 
(1) (2) ,v    dd dd  

where  and  are the radial distance vector for (1)d (2)d

1  and 2 , respectively. This implies that    1d   and 
 2d    must agree for all Λ.   That is, for any 
Λ  ,  

        2 2 2 21 1 (2) (2)
0 0 0 0 .x x y y x x y y            (2) 

Since 1  and 2  are convex and v is signed, there 
exist unique  such that  1 2r r,  0
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     1 1
1 0 1, cos , ins 0x y r x r y       

and 
     2 2

2 0 2, cos , sin 0x y r x r y       

If 1 2  the uniqueness is trivial. Therefore, we 
assume  Thus, along with Equation (2), we have  

0,r r 
1 2,r r  0.




2

2

  
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2

1 0 0 1 0 0

2

2 0 0 2 0 0

cos sin

cos sin ,

r x x r y y

r x x r y y

 

 

    

     
 

whichreduces to 1 2  or 1 2r r r r  . 1  can not be 2r r  
due to positivity. Hence, 2  which results in 

 and consequently 1

1 ,r r
(1) (2)d d   agrees with 2  com- 

pletely on  This is a contraction.  Λ.
Figures 7(a) and 8(a) illustrate the boundaries of pla- 

centas 243 and 1572, respectively. Their SDVs can be 
visualized in Figures 7(b) and 8(b) as the distances rep- 
resented by the arrows starting at the radial coordinates 
on the median shape, P , and ending at the correspond- 
ing radial coordinates on the placenta. The median shape 
is slightly thicker. Arrows pointing outward represent 
positive elements in the SDV, while inward-pointing 
arrows represent negative elements.  

Geometrically, these two SDVs capture distinct varia- 
tions. For example, majority of the elements in  
have negative value while roughly half of the elements in 

 are negative indicating that  is smaller than 

(1572)v

(243)v (1572)P
P  while  is likely to be elongated. Moreover, (243)P

360 360
(243) (1572)

1 1

v v 
  
   

 

 
(a)                          (b) 

Figure 7. A Visualization of the signed deviation vector for 
placenta ID#243. (a) Boundary of P(243); (b) SDV of P(243). 
 

 
(a)                          (b) 

Figure 8. A Visualization of the signed deviation vector for 
placenta ID#1572. (a) Boundary of P(1572); (b) SDV of P(1572). 

i.e., the the overall magnitude of  is much larger 
than the overall magnitude of . Combining these 
two pieces of information, we can conclude that  is 
much larger than  and  is quantitatively less 
round. Evidently, the newborn who is associated with 

 weights 1600 grams while the newborn who is 
associated with  weights 3360 grams. Under all 
three birth weight labeling schemes,  is labeled as 
a “At Risk” and  is labeled as a “Not at Risk”. 
Using the proposed signed deviation vectors, we can 
capture how the shape and size of a given placenta varies 
from the geometry of what considered as a normal 
placenta under a specified medical label.  

(243)v
1572)

)

(1572P

(v

(243

(243)P
(1572)P

(243)P

(243)P

P

(1572)P

)

5. Methods 

To empirically test the validity of the proposed shape 
descriptor (signed deviation vector) in gauging variation 
exhibited in the maternal and fetal features, we per- 
formed a series of analysis. First, Principal Component 
Analysis is used to reduce the high-dimensional shape 
information to a manageable and meaningful size. This 
step is a cautionary measure to avoid the issue of over- 
fitting that is commonly associated with LDA for an un- 
der-sampled problem [8,9]. 

The PCA step is followed by a correlation analysis to 
gain a rough intuition for whether the shape descriptor is 
a good proxy for studying maternal and fetal conditions. 
Once a suggestive correlation is established, we use Lin- 
ear Discriminant Analysis (LDA) to examine latent 
shape structures exhibited in distinct groups of medical 
conditions that can be explained linearly. The results 
from LDA comprise the heart of this study and will be 
presented in Section 6. Here, we explain briefly how in-
formation extracted from PCA can be used in this context 
and give a quick overview of LDA for our purposes.  

5.1. PCA 

Let     1 2 ( ), , , nD P P P 
( )iP

( )iv

( )iu

( )v

 be a set of distinct placen- 
tas. For each , associate it with an m-dimensional 
signed deviation vector, , that becomes distinct col- 
umns of the data matrix X. Note that the order at which 
these vectors are listed does not affect the outcome of 
this computation. After the data set is centered at the ori- 
gin of the coordinate system, a singular value decompo- 
sition of X is performed next to obtain a set of optimal 
orthonormal basis, ’s, spanning the space where 

’s reside. The coefficient, i.e., magnitude of the pro- 
jection, of each 

( )iv
  onto the ith basis, , is given by 

the inner product 

( )iu

( ) ( ) ( ),i
ia u v   

Intuitively, the first principal direction, , represents 
a feature that the majority of the group members share. 

(1)u
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For example, for a set of colored circles, the first principal 
component when displayed as an image will look like a 
circle without color. In another word, the first few prin- 
cipal components of a data set offer the dominant direc- 
tions of intrinsic features and the corresponding coeffi- 
cients show how much of a certain feature is exhibited in 
the data point. 

The projected coefficient, ( )
iPC  , of the th  subject 

in the ith principal direction provides shape information 
for the th  subject in a meaningful dimension. The way 
these numbers capture the shape variations inherited in a 
given placenta is similar to how they are used in captur- 
ing face features [10]. For convenience, let i  be an 
n-dimensional column vector storing the coefficient of 
each data point projected onto the ith basis direction, i.e.  

PC

( ) 1

1

n n
i iPC a 






     ,  1 .i m 

Table 2 shows the Pearson correlation coefficients de- 
rived from the UNC data set between various birth 
weight labeling schemes and the first five projected coef-
ficients. Notice that with 99.9% accuracy, the important 
shape features can be rearranged to actually lie in a 24- 
dimensional subspace embedded in the 360-dimensional 
ambient space. We draw from this information the effect- 
tiveness of each dimension of the shape coefficient has in 
predicting birth weight labels. 3  consistently appears 
to have the highest correlations with all of the birth 
weight labeling schemes with  and  showing 
the next layer of significance. 

PC

1PC 4PC

This result prompts us to investigate further the dis- 
criminating power of the shape coefficients 1 , 3 , 
and 4  in predicting a maternal or fetal feature. Ques- 
tions such as “is the birth weight of the newborn affected 
by the shape of the placenta” and “can we tell from 
looking at the shape of the placenta that a baby is going 
to have a high or low birth weight” are at the heart of the 
investigations. 

PC PC
PC

Figure 9 provides a visualization of the UNC data 
points when projected down to two dimensions using the 
coordinates of 3  and 4  as well as three dimen- 
sions using the coordinates of , , and .  

PC PC

1PC 3PC 4PC
 
Table 2. Pearson correlation coefficients derived from the 
UNC data set between the first five projected coefficients 
and various birth weight labeling schemes. 

Birth Weight Labeling Scheme 
PC 

BWT Label I BWT Label II BWT Label III

PC1 −0.050 −0.059 −0.062 

PC2 0.225 0.116 0.091 

PC3 0.579 0.547 0.408 

PC4 0.105 0.197 0.250 

PC5 −0.053 −0.036 −0.036 

The data points do not change their locations as we move 
from one row to the other; however, the labels assigned 
to each point vary as we switch from one labeling 
scheme to the next. Collectively, Figure 9 helps us as- 
sessing the optimal birth weight labeling scheme for the 
chosen shape descriptor. Ideally, the data points associ- 
ated with each birth weight group should separate them- 
selves from the other two point clouds perfectly in the 
best labeling system if shape information alone can be 
used to predict health risks. When this phenomenon is 
not observed, we need a method to measure the goodness 
of the linear separation. It is also worth noting that the 
linear separation appears to be very strong between the 
LBW and HBW groups, as illustrated in Figure 10. This 
result confirms the discriminating power of the proposed 
shape descriptor in the case of extreme conditions. 

5.2. LDA 

Linear Discriminant Analysis (LDA) is a method used in 
machine learning to learn a hyperplane that linearly 
separates high-dimensional data into disjoint sets. Con- 
sidering its success in applications of face recognition [11] 
and the nature of the shape descriptor, we exploit it here as 
a first step towards understanding the interplay between 
the shape of placental surfaces and maternal and fetal 
features. 

The two-class scenario of the LDA is often referred to 
as Fisher’s Discriminant Analysis (FDA) named after Sir 
R. A. Fisher, who in 1936 documented his use of a similar 
discriminant to classify the two flower species, Iris Setosa 
and Iris Versicolor [12]. Since our core task is a classifi-
cation problem with binary label of “At Risk” and “Not at 
Risk”, FDA seems to be a natural first choice for this 
exploration. Briefly, given a set of points  1, , ND x x  , 

 and their corresponding class labels,  ,n
ix 
      1 , , 0,1 ,Nx x    let D0 and D1 be the set of 

points in D with class label 0 and 1, respectively. A line 
with coefficients stored in w can be learned by maximiz-
ing the Fisher criterion 

 
T

B
T

W

w S w
J w

w S w
 ,                (3) 

where SB is the between-class scatter matrix measuring 
the variance between the two class means and SW is the 
within-class scatter matrix measuring the overall vari-
ances between each point and its class mean. With class- 
wise means defined to be 

0

0
0

1

x D

m x
n 

   and 
1

1
1

1

x D

m x
n 

   

where n0 and n1 are the number of elements in D0 and D1 
respectively, the scatter matrices can be written as 

 1 0 1 0

T

BS m m m m     
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Figure 9. The signed deviation vectors for each point in the UNC data set represented in (a)-(c) PC3 and PC4 coordinates and 
(d)-(f) PC1, PC3, and PC4 coordinates for each of the three labeling schemes. (a) and (d): BWT Label I. (b) and (e): BWT La- 

el II. (c) and (f): BWT Label III. b   
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Figure 10. The signed deviation vectors for the HBW and 
LBW groups in the UNC data set represented in PC3 and 
PC4 coordinates with BWT Labeling Scheme I. 
 
and 

  
0,1 i

T

W i
i x D

S x m x
 

    im  

A solution to Equation (3) can be found by solving the 
generalized eigenvalue problem 

B WS w S w  

arisen from the decent problem . Since we 
seek the hyperplane w that optimizes 

  0J w 

  ,
T

B B
T

W W

S w w W w
J w

S w w S w
     

the eigenvector corresponding to the largest eigenvalue 
solving Equation (3) gives the optimal w. In fact, for the 
2-class LDA problem, the analytic solution for w is 

. Notice that the rank of SW is at most 
, thus care needs to be taken in obtaining a nu-

merically stable and accurate expression for 

1
1 2Bw S m m 

1N 


1
WS  . Meth-

ods such as regularization and GSVD were proposed to 
deal with the singularity of SW [8]. 

The binary-labeled data is linearly separable if and only 
if there exists a threshold cutoff value C  such that 

orT T T
C Cw x w y w y w x     T  

for all 0x D
Tx y

 and . Without loss of generality, let 

. We let 

1y D
Tw x 

1 0

1
min max

2
T T

C
y D x D

w y w x
 

 





 

Alternatively, one could define 

 1 2

1
.

2
T T

C w m w m    

Accordingly, we define the separation rate of the given 

data to be 

0 1c c

N


  

where c0 and c1 are the number of correctly projected data 
from D0 and D1, respectively. 

Due to the small size of our data sets, a leave-one-out 
cross-validation (LOOCV) is implemented on the UNC 
data set since not all of the medical features are available 
on the NYU data set. As the name suggests, this involves 
using a single observation from the original sample as the 
validation data, and the remaining observations as the 
training data. This is repeated such that each observation 
in the sample is used once as the validation data.  

On the other hand, a separation rate that is over 50% is 
typically not good enough for us to conclude a causal- 
effect relationship. If a data set of 100 has ten cases that 
are “At Risk” while the rest are “Not at Risk”, then a 
separation rate of 50% indicates that the classifier is doing 
much worse than simply guessing “Not at Risk” all the 
time which will guarantee a correct answer 90% of the 
time. Thus, we introduce the Classifier Confidence Rate 
(CCR) as the level of confidence for a given classifier. As 
before, let N be the total number of samples in the data set. 
If each point, xi, in the set is assigned either a label of 0 or 
1 under the map  , then 

   1 1max ,1
N N

i ii i
x x

r
N N

 
 

    
  

 
 

gives the prior statistics. That is, any reliable classifier 
should perform at least as well as the prior statistics. Then 
the probability of that classifier with accuracy 0 1   
produces a non-reliable classification outcome is given by 

   1
N

N kk

k N

N
p r

k




 
   

 



 r  

where  gives the number of incidences that are cor- 
rectly identified. Now, the Classifier Confidence Rate is 
defined to be the minimum classification accuracy to 
guarantee a confidence level of 1  (e.g., 

N

 0.05  
gives a 95% confidence level), i.e., 

 
0 1
minCCR p
 

 


   

Since CCR of a classifier depends on the population 
statistics, we can use it to gauge the statistical validity of 
the classification outcomes in the experiments for any 
particular choice of the data set. 

6. Experiments and Results 

As mentioned previously, the main driving force in using 
PCA and LDA is to analyze correlation between shape 
and medical features, and potentially to predict medical 
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conditions based on placental surface shape alone. Here 
we will outline the two experiments implemented to ac- 
complish these goals for the UNC and NYU data sets. 
Recall that the data matrices for each of the data sets 

and —store the shape 
information for each placenta. At the same time, the fea- 
ture information described in Section 2.2 labels each 
placenta with a 0 or 1, depending on the feature. 

360 139
UNC– X  360 81

NYUX 

6.1. Experiment I 

he first experiment isolates one feature at a time, for a 
total of 16 times, from the UNC data set. After the label 
ing is established, we implement a Leave-One-Out Cross 
Validation scheme to produce a separation rate for the 
UNC data set while varying the number of PC retained. 
The idea behind this experiment is to exhaustively search 
for the best separation rate on the data set. A pseudocode 
for this experiment is given in Algorithm 1 and the re- 
sulting best separation rate for each feature label is re- 
ported in Table 3. 

When the separation rates are compared with their re- 
spective classifier confidence rate, which are also found in 
Table 3, we found that only two feature labels give sig- 
nificant correlational results—BWT Labeling Scheme I  
 

Algorithm 1. LOOCV on UNC. 

Inputs: SDV for the data set,    1 , , ,NV v v   
     1 , , NV v v 

 

where ; 

label for elements in ; maximum num

( )i mv 

,Φ  ber 

of PC used, M.  
Outputs: Separation rates, .M   

1) For get the members of each label group from 1, , ,j    



Table 3. The best separation rate (in %) with LOOCV for 

each feature label in the UNC data set. 1n

N
 and 0n

N
 give 

the percentage of the label 1 and label 0 group in the data 
set, respectively. CCRUNC gives the classifier confidence rate 
with 95% confidence level and  gives the best separa- 

tion rate obtained while varying the number of PCretained. 
UNC

Feature Label 1n

N
 0n

N
 CCRUNC UNC  

1. Adv. Maternal Age 10.79 89.21 94.24 82.73 

2. (Pre-) Eclampsia 7.91 92.09 96.40 87.05 

3. Gestational Diabetes 7.91 92.09 96.40 88.49 

4. Chronic Hypert. 10.07 89.93 94.96 81.30 

5. Preg. Ind. Hypert. 4.32 95.68 99.28 92.09 

6. BWT Label I 30.22 69.78 76.98 82.73 

6. BWT Label II 17.99 82.01 87.77 84.17 

6. BWT Label III 10.79 89.21 94.24 83.45 

7. Gender 61.15 38.85 68.35 60.43 

8. Preterm vs. Term 23.08 76.92 83.45 83.45 

9. Acute Inflammation 12.59 87.41 92.09 82.73 

10. Chronic Inflam. 24.48 75.52 81.29 65.47 

11. Vascular Pathology 19.86 80.14 86.33 72.66 

12. M. Vas. Pathology 16.78 83.22 89.21 76.98 

13. F. Vas. Pathology 13.29 86.71 91.37 79.86 

14. O. Vas. Pathology 6.99 93.01 97.12 90.65 
N

( )jD V v   so   0

 
:D v D v   0  and 

 1D v  :D v 1 .  Repeat step 2). 

2) For  perform PCA on D to obtain a k-by-m  

projection matrix, U, and the projected coefficients, 
. Update 

1, , ,k  

   1 ND a a    

M


1TA U 0 0

TD U D  and 1 1

TD U D . 

Repeat steps 3)-5). 

3) Perform a two-class LDA on D0 and D1 to obtain the coeffi-

cients of the best separating line, w. Apply appropriate operations so 

that the label 0 group lies on the left of the label 1 group. Find the 

threshold, C , based on the newly ordered projected coefficients 

as defined in Equation (4). 

4) Project the validation point, , via w and record the  

classification result. That is, 

( )ja

  jT

Cw a   and    1ja    true positive 

  jT

Cw a   and    0ja    false positive 

  jT

Cw a   and    0ja    true negative 

  jT

Cw a   and    1ja    false negative    

5) Get the separation rate for V, 

  1
true positive true negative

.

N

jk
N







  

 
and preterm vs. term. A further examination in Figure 11 
indicates that the best separation rate is obtained with the 
first four and five PC for BWT Labeling Scheme I and 
preterm vs. term, respectively. This confirms the fact that 
a linear separation cannot be observed when data points 
are visualized in 2D and 3D, as shown in Figure 9. 

Since previous studies have found that placental surface 
shape is correlated with birth weight when the shape in- 
formation is described by a scalar measure similar to that 
of the symmetric difference [5], it is not surprising to see a 
significant separation rate for the birth weight labeling 
scheme I in our study. This also confirms with the fact that 
practicing obstetricians tend to use the Labeling Scheme I 
as a cutoff for assigning health risks. As shown in Section 
4.1, the shape of normality is a round placenta with the 
umbilical cord centrally inserted, which is consistent with 
the intuitive concept of optimal blood flow in the vascular 
network. Deviation from such prototypical shape is shown 
here to be related to the resulting birth weight.  

The feature labeling the gestational age as preterm or   
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(a)                                                            (b) 

Figure 11. Separation rate obtained with LOOCV on the UNC data set while varying the number of PC retained when the 
feature label is (a) BWT Labeling Scheme I and (b) preterm vs. term. 
 
term also results in a significant separation rate in com- 
parison to the distribution of the set. The medical impli- 
cations here warrant further investigation since it may be 
that an irregular placenta shape can cause a preterm de- 
livery, or that other events that cause preterm labor also 
cause irregular shape. Since we are not making any specu- 
lations as to what maternal characteristics causes these 
listed medical conditions, we can only make an conser- 
vative suggestion that placental surface shape alone can 
be used to make a modest prediction for a child’s birth 
weight and placental surfaces of termed and pretermed 
births have noticeably different shape information. 

Among the 16 studied features, the gender group has 
the most balanced data, i.e., the lowest prior statistics. It is 
not surprising that the gender of the fetus shows no linear 
correlation with the placental shape. No previous study 
has shown that the placenta of a male fetus is more or less 
irregularly shaped than that of a female. The other features, 
including advanced maternal age, the presence of eclamp- 
sia, gestational diabetes, pregnancy induced hypertension, 
chronic hypertension, inflammation and pathology, did 
not result in significant separation rates. These results 
could be explained in the following two ways. Either the 
variance of these features is not reflected in the geometric 
placental shape, or these features merely do not give rise 
to a linear separation due to under-sampling. We remark 
that while the separation is not perfect with a linear dis- 
criminant, a nonlinear classifier derived from methods 
such as Kernel Discriminant Analysis or Support Vector 
Machines may suggest a significant result and should be 
investigated further.  

6.2. Experiment II 

The second experiment draws the success from Experi- 

ment I to test the proposed shape metric as a descriptor to 
predict health risks based on learned information. LDA 
classifier is first trained on the UNC data set to learn the 
class variances and later applied to the NYU data set to 
obtain classification statistics. The purpose of this set of 
experiments is to examine the predictive power of the 
proposed shape descriptor in a realistic setting where no 
prior information is known for the test set. Assuming the 
technology allows for an early-stage detection of placen- 
tal surface shape, medical advices can be given based on 
the result of this shape analysis. 

Recall that the features for the NYU data set are re- 
stricted to only birth weight, gender, and gestational age. 
The shape data with the matching features in the UNC 
data set are used as the training set for the classification of 
the new placentas from NYU. After specifying a particu- 
lar feature, a pseudocode for this experiment is given in 
Algorithm 2 and the resulting best separation rate for 
each available feature label is reported in Table 4. 

Notice that the NYU data set is populated with more 
cases of “Not at Risk” under all three labeling schemes 
and all babies were delivered termed. Except for the case 
for gender, this test data set poses quite a challenge for the 
classifier due to this uneven distribution. In the case of 
gender, assertion can be made that no linear correlation is 
observed hence indicating the gender of the baby does not  
influence the shape of the placental surface. Although 
none of the BWT labels or the Preterm label are associated 
with a statistically significant result, we suspect that the 
classifier can be improved given more samples for train- 
ing and testing as well as the use of non-linear methods for 
drawing correlation results.Similar to that in Experiment I, 
a detailed examination of separation rate versus number of 
PC retained for each feature label is given in Figures 12 
and 13 for completion. 



J.-M. CHANG  ET  AL. 966 

Algorithm 2. Train on UNC, test on NYU. 

Inputs: SDV for the training and testing data sets, 

and  respectively, where 

   1 , , xNX x x    




( )i   1 , , ,yN
Y y y   x  and  are in 

; label for elements in X and Y,  and 

; maximum number of PC used, M.  

( )iy

  , , xNx x
 m 








YΦ

  1XΦ 

    1 , , yN
y  

 y

Outputs: Separation rates, M

X    and M

Y  . 

1) For  perform PCA on X to obtain a k-by-m  

projection matrix, U, and the projected coefficients, 

. Assume columns of Y have been centered 

around the origin, obtain the projected coefficients 

. Do steps 2)-6). 

1, , ,k  

   1 xNX a a   

   1 yN
Y b b   

M






TA U

TB U

2) Collect the members of each label group from A so 

  0 :D a A a   0  and   1 : 1D a A a   .  

3) Perform a two-class LDA on D0 and D1 to obtain the coefficients 

of the best separating line from the training set, w. Apply appropriate 

operations so that the label 0 group lies on the left of the label 1 group. 

Find the threshold, C , based on the newly ordered projected  

coefficients as defined in Equation (4). 

4) Calculate the separation rate for the training set  

  0 1
X

x

c c
k

N


  

where c0 and c1 are the number of correctly projected data from D0 and 

D1, respectively.  

5) For each  project each testing point, , via w 

and record the classification result. That is, 

1, , ,yj N  ( )jb

  jT

Cw b   and    1jb    true positive 

  jT

Cw b   and    0jb    false positive 

  jT

Cw b   and    0jb    true negative 

  jT

Cw b   and    1jb    false negative    

6) Get the separation rate for the testing set, 

  1
true positive true negative

.

yN

j

Y

y

k
N







  

7. Conclusions 

In this study, a near-continuous shape descriptor termed 
signed deviation vector was proposed as a mathematical 
representation to capture the deviation of a placental sur- 
face away from a prototypical shape. A protocol for 
automatically registering 2D digital placenta images was 
described and implemented on the UNC and NYU data 
sets. 

Using Linear Discriminant Analysis (LDA), we inde- 
pendently examined how much of the placental shape is 
affected by maternal characteristics such as the preg- 
nancy-induced hypertension and medical diagnoses as 
well as fetal characteristics such as gestational age of the 

Table 4. The best separation rate (in %) for the available 

feature labels in the NYU (testing) data sets. 1n
 and 

N
0n

 

give the percentage of the label 1 and label 0 oup in  
data set, respectively. CCRUNC gives the classifier confi- 
dence rate with 95% confidence level and UNC  gives the 

best separation rate obtained while varying t number of 
PC retained. 

N
gr the

he 

Feature Label 1n

N
 0n

N
 CCRUNC UNC  

6. BWT Label I 3.70 96.30 100 74.07 

6. BWT Label II 16.05 83.95 91.36 77.78 

6. BWT Label III 7.41 92.59 98.77 91.36 

7. Gender 54.32 45.68 64.20 58.02 

8. Preterm vs. Term 0 100 100 83.95 

 
f a birth cohort with 220 ground truth digital images of 

e many possible avenues for continued re- 
se

d 
m

o
placental surfaces manually traced by a human expert with 
a training set of 139 and a testing set of 81. LDA is used to 
obtain an optimal projection direction using the shape 
information to achieve the best linear separation on the 
training set with a Leave-One-Out statistics. When the 
cases from the testing set are projected accordingly, we 
are able to draw conclusions from the resulting separation 
rates as to which medical feature has a significant effect 
on the shape of placental surface and vice versa. A sepa- 
ration rate that is over the classifier confidence rate is 
considered a significant result. In these initial findings, we 
observed suggestive relationship between shape of the 
placental surfaces and newborn’s birth weight as well as 
their gestational age. A future study to visually categorize 
the geometry of placental surfaces that belong to high 
birth weight and low birth weight groups would be of 
interest.  

There ar
arch in this area. For example, classification algorithms 

that are nonlinear in nature could be used for making the 
connection between medical features and shape of the 
placentas. Other geometric features on the placental sur- 
face such as the ones extracted from the placental vascu- 
lature network might also offer discriminatory informa- 
tion. The signed deviation vector appears to be a promis- 
ing measure of deviation from the shape of normality.  

While our data sets were only accompanied by limite
edical features, we can imagine using the proposed 

shape descriptor to analyze shape correlation with other 
medical features that are useful in clinical practice and 
patient care. For example, it would be interesting to have 
follow-up information about the health of the children as 
they grow. What were their APGAR scores that measures 
immediate health upon delivery? Did they need immedi- 
ate care in the neonatal intensive care unit, or were they   newborns. Experimental results are obtained using a subset  
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(a)                                                             (b) 

 
(c) 

Figure 12. Separation rate for the training (UNC) and testing (NYU) data sets while varying the number of PC retained for (a) 
BWT Label I, (b) BWT Label II, and (c) BWT Label III. The best separation for each labeling scheme occurs when 139, 101, 
and 77 PCs are retained for Labeling I, Labeling II, and Labeling III, respectively. 

 
(a)                                                             (b) 

Figure 13. Separation rate for mber of PC retained for the training (UNC) and testing (NYU) data sets while varying the nu
the (a) preterm vs. term and (b) gender feature label. The best separation rate for the preterm vs. term label occurs when 88 
PCs are retained.  
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ischarged soon ad fter delivery? Did they develop a neu- 

study compares the shape to me
fe
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