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ABSTRACT 

This paper presents some recent developments in modelling and numerical analysis of piezoelectric systems and con-
trolled smart structures based on a finite element formulation with embedded control. The control aims at vibration sup-
pression of the structure subjected to external disturbances, like wind and noise, under the presence of model inaccura-
cies, using the available measurements and controls. A smart structure under dynamic loads is analysed and comparison 
between results for beam with and without control is made. The numerical results show that the control strategy is very 
effective and suppresses the vibrations of the structure. 
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1. Introduction 

The intelligent material sector has broadly motivated 
research interest during the last decades. Materials are 
classified as intelligent if they exhibit the ability to sense 
a certain stimulus and initiate a reaction to it in a con-
trolled manner [1-11]. An intelligent structure is a struc-
tural system or member with embedded sensors and ac-
tuators, combined with a control system that automates 
the structure's reaction to external loadings acting on it, 
by attenuating their influence or improving desirable 
responses. Development in this scientific discipline is 
aided by advances in material science as well as in the 
field of control. Material science research has spurred the 
development of new materials that can be incorporated in 
structures to be used as actuators and sensors [9-11]. 

In this paper, we address the problem of vibrations of 
intelligent structures. Stimuli may come from external 
perturbations of the system, disturbances or excitation 
that may cause structural vibrations, such as wind load-
ing or earthquakes. An intelligent structure is expected to 
be able to sense the vibration and counteract it in a con-
trolled fashion, so that vibration of the system be reduced 
and contained. To that end, a number of intelligent mate-
rials may be used as actuators and sensors. [9-11] Piezo-
electric materials, memory materials, electrostrictive and 
magnetostrictive materials are such materials. In this 
work, we focus on the use of piezoelectric materials, given 
that they exhibit good sensing and actuation properties. 

Among the commonly used optimal control schemes 

are LQR, and H . It is known that if the controller is 
not robust enough, the uncertainties of the system may 
destroy the efficiency of the controller. The H , control 
provides better robustness than LQR [12-14]. The aim of 
this work is to design an H , robust controller for a 
beam bonded with piezoelectric sensors and actuators 
and to investigate the behaviour of the controlled beam. 
First, a detailed shear-deformable (Timoshenko) model 
for a laminated beam structure is developed. A finite 
element formulation is presented for the model. Quad-
ratic Hermitian polynomials are used for the transverse 
and rotational displacements, respectively. The differen-
tial equations are based on the Timoshenko beam theory 
[15]. The governing state equation is established and 
used for the design of the control. The numerical simula-
tions carried out on the laminated beam shows that the 
vibration of the system is significantly suppressed within 
the permitted actuator voltages. Herein the integration of 
control into a home-made finite element code developed 
in MATLAB is presented [16]. The numerical solution of 
the H  feedback controller has been done by using a 
nonconvex, non differentiable optimization approach with 
the usage of HIFOO software within MATLAB [14,17]. 
For the numerical results wind type loads are taken into 
account. The effectiveness of the technique in the model-
ling of the standard uncertainties is also presented. 

2. Mathematical Modelling 

A cantilever slender beam with rectangular cross-sec- 
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tions is considered. Four pairs of piezoelectric patches 
are embedded symmetrically at the top and the bottom 
surfaces of the beam, as shown in Figure 1. The beam is 
made from graphite-epoxy T300-976 and the piezoelec-
tric patches are PZT G1195N. The top patches act like 
sensors and the bottom like actuators. The resulting 
composite beam is modelled by means of the classical 
laminated technical theory of bending. Let us assume that 
the mechanical properties of both the piezoelectric mate-
rial and the host beam are independent in time. The 
thermal effects are considered to be negligible as well [5, 
6]. 

The beam has length L, width W and thickness h. The 
sensors and the actuators have width bS and bA and 
thickness hS and hA, respectively. The electromechanical 
parameters of the beam are given in the Table 1. 

2.1. Reduced Piezoelectric Equations 

In order to derive the basic equations for piezoelectric 
sensors and actuators (S/As), we assume that: 
 The piezoelectric S/A are bonded perfectly on the 

host beam; 
 

 

Figure 1. Beam with piezoelectric sensors/actuators. 
 

Table 1. Parameters of the composite beam. 

Parameters Values 

Beam length, L 0.3 m 

Beam width, W 0.04 m 

Beam thickness, h 0.0096 m 

Beam density, ρ 1600 kg/m3 

Young’s modulus of the beam, E 1.5 × 1011 N/m2 

Piezoelectric constant, d31 254 × 10−12 m/V 

Electric constant, ξ33 11.5 × 10−3 V m/N

Young’s modulus of the piezoelectric element 1.5 × 1011 N/m2 

Width of the piezoelectric element bS = ba = 0.04 m 

Thickness of the piezoelectric element hS = ha = 0.0002 m

 The piezoelectric layers are much thinner then the 
host beam; 

 The piezoelectric material is homogeneous, trans-
versely isotropic and linearly elastic; 

 The piezoelectric S/A are transversely polarized (in 
the z-direction) [5]. 

Under these assumptions the three-dimensional linear 
constitutive equations are given by [4],  
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where xx , xz  denote the axial and shear stress com- 
ponents, zD , denotes the transverse electrical displace- 
ment; xx  and xz  are a axial and shear strain compo- 
nents; Q11, and Q55, denote elastic constants; d31, and ξ33, 
denote piezoelectric and dielectric constants, respectively. 
Equation (1) describes the inverse piezoelectric effect 
and Equation (2) describes the direct piezoelectric effect. 
Ez, is the transverse component of the electric field that is 
assumed to be constant for the piezoelectric layers and its 
components in xy-plain are supposed to vanish. If no 
electric field is applied in the sensor layer, the direct pie-
zoelectric Equation (2) gets the form, 

11 31z xxD Q d                (3)  

and it is used to calculate the output charge created by 
the strains in the beam [3]. 

2.2. Equations of Motion 

The length, width and thickness of the host beam are 
denoted by L, b and h, respectively. The thickness of the 
sensor and actuator is denoted by hs and ha. We assume 
that: 
 The beam centroidal and elastic axis coincides with 

the x-coordinate axis so that no bending-torsion cou-
pling appears; 

 The axial vibration of the host beam centreline is 
considered negligible; 

 The displacement field {u} = (ux, uy, uz) is obtained 
based on the usual Timoshenko assumptions, 

   
 
   

, , ,

, , 0

, , ,

ux x y z z x t

uy x y z
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









            (4) 

where φ is the rotation of the beams cross-section about 
the positive y-axis and w is the transverse displacement 
of a point of the centroidal axis (y = z = 0). 

The strain displacement relations can be applied to 
Equation (4) to give, 

xx xxz z
 
x x

  
              (5) 

 
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We suppose that the transverse shear deformation is 
equal to zero [2]. In order to derive the equations of the 
motion of the beam we use Hamilton’s principle, 

1

2

t

t
  d 0U W t                (6) 

where T [6] is the total kinetic energy of the system, U is 
the potential (strain) energy and W is the virtual work 
done by the external mechanical and electrical loads and 
moments. The first variation of the kinetic energy is 
given by, 
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The first variation of the kinetic energy is given by, 
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If the load consists only of moments induced by pie- 
zoelectric actuators and since the structure has no bend- 
ing twisting couple then the first variation of the work 
has the form [6], 

0

L
W b   dAM x

x

  
  

            (9) 

where MA is the moment per unit length induced by the 
actuator layer and is given by, 
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2.3. Finite Element Formulation 

We consider a beam element of length Le, which has two 
mechanical degrees of freedom at each node: one transla-
tional ω1 (respectively ω2) in direction z and one rota-
tional φ1 (respectively φ2), as it is shown in Figure 2. 
The vector of nodal displacements and rotations qe is 
defined as [3],  

 1 1 2 2, , ,r
eq                   (11) 

 

 

Figure 2. Beam finite element. 

The beam e (x, t) and the 
be

lement transverse deflection ω
am element rotation ψ(x, t) of the beam are continuous 

and they are interpolated within by Hermitian linear 
shape functions iH  and iH as follows [4], 
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This classical finite element procedure leads to the ap-
proximate (discretized) variation problem. For a finite 
element the discrete differential equations are obtained 
by substituting the discretized expressions 12 into Equa-
tions (7) and (8) to evaluate the kinetic and strain energies. 
Integrating over spatial domains and using the Hamiltons 
principle 6 the equation of motion for a beam element are 
expressed in terms of nodal variable q as follows, 

         m eMq t Dq t Kq t f t f t         (13) 

where M is the generalized mass matrix, D the visc

on

ous 
damping matrix, K the generalized stiffness matrix, mf  
the external loading vector and ef  the generalized c -
trol force vector produced by electromechanical coupling 
effects. The independent variable q(t) is composed of 
transversal deflections 1  and rotations 1 , i.e., [7] 
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where n is the number of nodes used in analysis. Vectors 
ω and mf  are positive upwards. To transform to state- 
space co rol representation, let (in the usual manner),  
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Furthermore to express  ef t  as  Bu t  we write it 
as *

ef u  where *
ef  the piezoelectric  is for a unit 

app  on the co esponding actuator, and u represents 
the voltages on the actuators. Furthermore,  
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lied rr

   md t f t  is the disturbance vector [18]. 
Then,  
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The previous description of the dynamical system will 
be augmented with the output equation (some d
ments or velocities are measured) [4],  

   T

isplace-

     1 3 1ny t x t x t x    t Cx t    (18) 

 

3. Statemen

ith known elastic, piezo-
electric and viscous properties. A more realistic question 

 

In this formulation u is n × 1 (at most, but can be 
smaller), while d is 2n × 1. The units used are compatible
for instance m, rad, sec and N.  

(a)                            (b) 

Figure 3. Uncertainty modelling. 
 
satisfies 

t of the Robust Control Problem 

The optimal control problem is initially studied for the 
nominal system, i.e., the beam w

1


  . Since controller K is known. Figure 
3(a) can be simplified to Figure 3(b). Given this struc
ture it is kn

1) The sy   concerning the robustness of the control in the presence of
defects is also addressed. The fact that the system is in 
subjected to disturbances, such as the wind power, as well 
as the noise of measurements, is taken into account. The 
mathematical pattern being used in the design is an ap-
proximation of the real one. Further, two control laws for 
the composite beam are designed in order to suppress the 
vibrations. Because of its linearity and easy implementa-
tion, the linear quadratic regulator (LQR) [13] is pre-
sented first. The response of the controlled nominal and 
damaged beams is investigated. In order to take into ac-
count the incompleteness of the information about the 
eventual damages and external additional influences a 
robust H  controller is designed [12,14]. A system 
analysis is made on condition that the system is not accu-
rate but includes uncertainty that may be related to some 
kind of damage [7]. 

For practical applications both algorithms need several 
trial-and-error design iterations in order to provide appro-
priate control voltages, since the piezoelectric actuators 
can be depolled by high oscillating voltages. The effec-
tiveness of the proposed control strategies is investigated 
with the help of numerical simulations [3]. 

3.1. Robustness Analysis 

The following three steps are taken in the robustness 
analysis [13,14,19]: 

1) Expression of an uncertainty set by a mathemati-

an

cal model. 
2) Robust stability (RS): check if the system remains 

stable for all plants within the uncertainty set. 
3) Robust performance (RP): if the system is robus-

tly stable, check whether performance specifications 
are met for all plants within the uncertainty set. 

To perform the robustness analysis, the interconnec-
tion of Figures 3(a), (b) will be used.  
Δ define the uncertainty, Μ define the nominal sys-

tem, w are the inputs (the mechanical force and the 
noise of the system), z are the outputs (the state vector 

d the control vector). The uncertainty included in Δ  

-
own that [16,19], 
stem (M, Δ) is robustly stable if,
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is the structure singular value of M given the struc-
certainty set tured un  . 
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nding to (w,z). Unfortunately, only bounds on 

μ can be estimated.  
To proceed let us assume uncerta nty in the M, D and 

K matrices of the form, 
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 means that we are allowing a percentage devia-
tion from the nominal values [4]. With these definitions 
Equation (13) becomes, 

    (24) 
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aim is to study the response of the composite beam in the 
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Two kinds of dynamic loading are used as distur-
bances: 
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Writing (25) in state space form, gives, 
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 Periodic sinusoidal loading pressure acting on the 
side of the structure simulating a strong wind. A si-
nusoidal load with an amplitude of 10 N and fre-
quency of 6.2832 rad/sec, has been considered.  

26) 

 A typical stochastic wind-type load on the side of the 
structure (Figure 4). 
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In this way we treat uncertainty in the original ma-
trices as an extra uncertainty term. 

4. Numerical Examples 

For the numerical simulations a cantilever composite 
be

tization, which cer-
roximation of higher fre-
 trend of the results. Our  

4.1. Results 

The first load analyzed is sinusoidal load acting on the 
side of the structure. Figure 5 shows the dynamical re-
sponse for the displacements of the uncontrolled and  

D

x t Ax t Bu t Gd t G q t

   
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am with viscous and piezoelectric layers bonded on its 
top and bottom and discretized with four finite elements, 
is used. A finer finite element discre

 tainly is required for the app
quencies, does not change the Figure 4. Corresponding wind load acting. 
 

 

 for the displacement with LQR and H∞ control and response without control.  Figure 5. Response of the four nodes
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controlled beam with LQR control 3] and H [12,1   
control [14,19], for the four nodes of t am. Figure 6 
shows the dynamical response for th rotations of the 
uncontrolled and controlled beam with LQR control and 

he be
e 

H

The beam
 control strategy, for the four n of the beam. 

 with 
odes 

H  control keep ilibrium and 
 zero ddisplacements, comp bration reduc-

tion is achieved. The comparison of the open and closed 
loop frequency response of the system are shown in Fig-
ure 7, as shown in figure, there is a significant improve- 
ment in the effect of disturbance on error up to the fre-
quency of 1000 Hz. Figure 8 shows the control voltages 
for the four nodes of the beam. The control voltages for 

the disturbance rejections of the beam are less than 500 
volt. 

Comparison with the open loop response for the same 
plant shows the good performance of the 

s in equ
lete viwe have

H  controller. 
Results are very good, and the beam remains in equilib-
rium. Reduction of vibrations is observed, while piezo-
electric add-ons produce voltage within their tolerance 
limits (±500 volt). 

Then a typical wind load (Figure 4) acting on the side 
of the structure. The wind load is a real life wind speed 
measurements in relevance with time that took place in 
Estavromenos of Heraklion Crete. We transform the 
wind speed in wind pressure with, 

 

 

or theFigure 6. Response of the four nodes on the vibrating beam f
 

 rotation with LQR and H∞ control and without control. 

 

Figure 7. Singular value for H∞ control strategy. 
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Figure 8. Control profile for the four nodes with H∞ control strategy. 
 

   21

2m uf t C V t               (29) 

where V = velocity, ρ = density and Cu = 1.5. 
In Figure 9 the structural displacement responses are 

reported, for the four nodes of the beam. It is possible to 
see clearly the benefit induced the control on the maxi-
mum value of these di ements. 



Hsplac   controller re-
sults are very satisfactor ve that y and pro H  control 
can reduce smart structures . In Figure 10 we 
can see the structural r the four nodes of the 
beam. The m with 

 vibrations
 forotations

bea H  
p
co l keeps in equilibrium 

and we most zero dis l ents.  
In Figure 11 we can see the control profile for the four 

nodes of the beams. As we can see t
less than 500 Volt, which is the piezo

4.2. Reduced Order Control 

The H∞ controller found is of order 24. The fact that con-
troller order, which is equal to the order of the system, is 
relatively higher than the order of classical controllers 
such as LQR has led a number of researchers to develop 
order reduction algorithms. The most widely used such 
algorithm, known as HIFOO, has been implemented in a 
Matlab environment, and is the one used in the following 
procedure [17,20]. 

The general problem is to compute a controller of re-
duced order n < 24 while retaining the performance of 
the H  criterion as well as the behaviour of a full order  

ntro
acem have al

he voltage is more 
electric limit. 

 

Figure 9. Responses of the four nodes of the beam without 
and with H∞ control. 
 
controller for the given system [17,20]. 

Nonsmooth variation analysis and related computa-
tional methods are powerful tools that can be effectively 
applied to identify local minimizes of nonconvex 
+optimization problems arising in fixed-order controller 
design. Our computational methods found a 24th order 
controller that stabilized the system. Using the Matlab 
package HIFOO we can reduce this controller and stabi-
lize the system with a 2nd order controller without diffi-  ∞
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Figure 10. Rotations of the four nodes of the beam without 
and with H∞ control. 
 

 

Figure 11. Control voltages for the four nodes of the beam 
using H∞ control. 
 
culty, suggesting explicit formulas
for the closed loop system. Furtherm

 for the controller and 
ore, our analytical 

techniques prove that this controller is locally optimal in 
the sense that there is no nearby controller with the same 
order for which the closed loop system has all its poles 
further left in the complex plane [20]. 

These approaches can be extended in order to take into 
account other key quantities of great practical interest, 
such as optimization of H  performance. In particular, 
with the help of a MATLAB toolbox  HIFOO ( called H  
Fi

free end of the beam, using hifoo controller (a second 
order controller). Figure 13 shows the control voltages 
for the four nodes of the beam [20]. As we can see we 
need less energy then the 24th controller for reduced vi-
brations. 

5. Conclusion 

A mathematical formulation and finite element model for 
the vibration suppression of a cantilever beam with piezo-
electric laminated surface and viscous layers and elastic 
core is presented in this paper. The design of the piezo-
electric active control using LQR strategy and 

xed Order Optimization) we can reduce the order of the 
controller and have very good results. Figure 12, shows 
the response of the uncontrolled and control beam of the 

H  con-
trol theory for the nominal and damaged sandwich beam 
has been studied. The numerical results show that the 
H  control strategy is very effective and suppresses the 
vibrations of the beam. The vector of active control forces  
 

 

Figure 12. Displacement of the free end of the beam without 
and with hifoo controller. 
 

 

Figure 13. Control voltages for the four nodes of the beam 
using hifoo controller. 
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subjected to H  performance criterion and satisfying 
stems dynamic equations such that to reduce the 

wind excitations is determined. High robust performance 
and robust stability are achieved. This work clearly dem-
onstrates the advantages of using advanced robust control 
theory for the design of practical smart structure. 
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