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ABSTRACT 

We apply the distributional derivative to study the existence of solutions of the second order periodic boundary value 
problems involving the distributional Henstock-Kurzweil integral. The distributional Henstock-Kurzweil integral is a 
general intergral, which contains the Lebesgue and Henstock-Kurzweil integrals. And the distributional derivative in-
cludes ordinary derivatives and approximate derivatives. By using the method of upper and lower solutions and a fixed 
point theorem, we achieve some results which are the generalizations of some previous results in the literatures. 
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1. Introduction 

This paper is devoted to the study of the existence of 
solutions of the second order periodic boundary value 
problem (PBVP for brevity)  
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where  and  are the first and second order 
distributional derivatives of 

Dx D x
 1 0,x C T  respectively, 

       T1C: 0,g T 0, 0,T C     and f  is a dis- 
tribution (generalized function). 

If the distributional derivative in the system (1.1) is 
replaced by the ordinary derivative and , then 
(1) converts into  
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here : 0,g T      , and x  and x  denote the 
first and second ordinary derivatives of   2 0,x C T . 
The existence of solutions of (1.2) have been extensively 
studied by many authors [1,2]. It is well-known, the 
notion of a distributional derivative is a general concept, 
including ordinary derivatives and approximate deriva- 
tives. As far as we know, few papers have applied 
distributional derivatives to study PBVP. In this paper, 
we have come up with a new way, instead of the ordinary 
derivative, using the distributional derivative to study the 

PBVP and obtain some results of the existence of 
solutions. 

This paper is organized as follows. In Section 2, we 
introduce fundamental concepts and basic results of the 
distributional Henstock-Kurzweil integral or briefly the 

HKD -integral. A distribution f  is HK -integrable on D
   ,a b    if there is a continuous function F on ,a b  
with   = 0F a  whose distributional derivative equals 
f . From the definition of the HK -integral, it includes 

the Riemann integral, Lebesgue integral, HK-integral and 
wide Denjoy integral (for details, see [3-5]). Furthermore, 
the space of 

D

HK -integrable distributions is a Banach 
space and has many good properties, see [6-8]. 

D

In Section 3, with the HK -integral and the distribu- 
tional derivative, we generalize the PBVP (1.2) to (1.1). 
By using the method of upper and lower solutions and a 
fixed point theorem, we achieve some interesting results 
which are the generalizations of some corresponding 
results in the references. 

D

 
=

: | and has compact support in ,

cC

C  



   

2. The Distributional Henstock-Kurzweil  
Integral 

In this section, we present the definition and some basic 
properties of the distributional Henstock-Kurzweil inte- 
gral. 

Define the space  
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set on which   does not vanish, denote by  supp  . A 
sequence n c  converges to c  if there is a 
compact set  such that all n

  C  C

K
 

  have support in  
and for every  the sequence of derivatives n

K
m ( )m   

converges to (m)  uniformly on . Denote cK C  en- 
dowed with this convergence property by . Where    
is called test function if  


f 

. The distributions are 
defined as continuous linear functionals on . The 
space of distributions is denoted by , which is the 
dual space of . That is, if  then , 
and we write 



:f  



,f   , for   . 

For all , we define the distributional derivative 
 of 

f 
Df f  to be a distribution satisfying  

, = ,Df f  , where   is a test function. 
Let  be an open interval in , we define   ,a b 

    
and has
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the dual space of  is denoted by   ,a b
 



.  
Remark 2.1.  and  are  

and  respectively if , .  
  ,a b

=a 
  ,a b




=b
Let  ,C a b   be the space of continuous functions 

on  ,a b , and  

 = ,C a  b  : = 0 .

B

CB F

C

F a  

Note that  is a Banach space with the uniform 
norm [ , ]= max a bF F


Now we are able to introduce the definition of the 

. 

HK

Definition 2.1. A distribution 
D -integral. 

f  is distributionally 
Henstock-Kurzweil integrable or briefly HK -integrable 
on 

D
 ,a b  if f  is the distributional derivative of a 

continuous function CF B .  
The HKD -integral of f  on  ,a b  is denoted by  

 HK  F b=
b

D f ,
a

 where F  is called the primitive of  

f  and “  ” denotes the  HKD HKD -integral. Analo-  

gously, we denote HK -integral and Lebesgue integral. 
The space of HK



D -integrable distributions is defined 
by  

  a b .CF B= , : f = DF ,HKD f  

With this definition, if HKf D  then we have for all 
.   ,a b 

, = ., = , =
b

a
f DF F F          (2.1) 

With the definition above, we know that the concept of 
the HK -integral leads to its good properties. We firstly 
mention the relation between the 

D

HKD -integral and the 
HK



-integral. 
Recall that  is Henstock-Kurzweil integrable on f
,a b  if and only if there exists a continuous function 

F  which is ACG  (generalized absolutely continuous, 

see [4]) on  ,a b    = such that F x f x  almost 
everywhere. P. Y. Lee pointed out that if F  is a 
continuous function and pointwise differentiable nearly 
everywhere on  ,a b , then F  is ACG . Furthermore, 
if F  is a continuous function which is differentiable 
nowhere on  ,a b , then F  is not ACG . Therefore, if 

  ,F C a b  but differentiable nowhere on  ,a b
DF

, 
then  exists and is HKD -integrable but not HK - 
integrable. Conversely, if F ACG  and it also be- 
longs to   ,C a b . Then F   is not only HK -inte- 
grable but also HK -integrable. Here D F   denotes the 
ordinary derivative of F . Obviously, the HKD -integral 
includes the HK -integral. 

Now we shall give some corresponding results of the 
distributional Henstock-Kurzweil integral. 

Lemma 2.1. ([3, Theorem 4], Fundamental Theorem 
of Calculus).  

1) Let HKf D , define    =
t

HK a
F t D f . Then  

CF B  and .  =DF f
2) Let   ,F C a b

     =
t

a
D DF F t F a 

. Then  
 for all HK , .bt a   

For HKf D , we define the Alexiewicz  norm by  

[ , ]
= = .max

a b
f F F


 

The following result has been proved. 
Lemma 2.2. ([3, Thoerem 2]). With the Alexiewicz  

norm, HK

We now impose a partial ordering on 
D  is a Banach space.  

HK : for D
, HKf g D , we say that f  or g  ( g f ) if  and only 

if f g  is a measure on  ,a b e details in [9]). By 
this definition, if ,

 (se

HKg Df   then  

    ,HK HKI I
D f D g 

f g

           (2.2) 

whenever ,    = , ,I c d a b . We also have 
other usual relations between the HK -integral and the 
ordering, for instance, the following result. 

D

Lemma 2.3. ([9, Corollary 1]). If   , , ,f g h a b
f g h  f h

, 
 and if  and  are HKD -integrable, 

then g  is also HK

We say a sequence 
D -integrable.  

 n HKf D  converges strongly 
to HKf D  if 0f fn   n  as . It is also 
shown that the following two convergence theorems 
hold. 

Lemma 2.4. ([9, Corollary 4], Monotone convergence 
theorem for the HK -integral). Let    be a se- 
quence in 

D
=0n n

f


HKD 0 1 nf f f    
  b

HK na
D f A n  nf f

 such that  and  

that  as . Then  in  

HK HK a
Lemma 2.5. ([7, Lemma 2.3], Dominated convergence 

theorem for the 

D   =
b

D f A and .  

HK -integral). Let  n  be a se- 
quence in 

D
=0n

f


HKD  such that nf f  in 
,

. Suppose 
there exist HKg h D  satisfying ,g f h n    .  
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Then HKf D  limn HK nD f and .   =
b b

HKa a
D f 

,

We now give another result about the distributional 
derivative. 

Lemma 2.6. Let f g  be the distributional deri- 
vative of ,F G , where   , ,F G C a b

=G fG Fg

. Then  

  .               (23) D F

Proof. It follows from the definition of the distribu- 
tional derivative and (3.1) that  
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Consequently, the result holds. □ 
If : ,g a b  

 
, its variation is  

 = sVg up <n nn
g t g s 

 
 where the supremum  

is taken over every sequence  ,t sn n  of disjoint in- 
tervals in  ,a b , then g  is called a function with 
bounded variation. The set of functions with bounded 
variation is denoted . It is known that the dual space 
of 


HK  is  (see details in [3]), and the following 

statement holds. 
D 

Lemma 2.7. ([3, Definition 6], Integration by parts). 
Let HKf D , and . Define g = fg DH

  t
, where  

   =
a

H t F t g t  Fdg . Then HKfg D

= .
b b

a a

 and  

   fg F b g b Fdg 
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3. Periodic Boundary Value Problems 

Consider the second order periodic boundary value 
problem (1.1)  

  
     

2 = ,

0 = , 0

D x f t g t x

x x T Dx

 

2

 

where  and  denote the first and second order 
distributional derivatives of  1 0,x C T , respectively, 

       T1C: 0,g T 0, 0,T C    f



 and  is a dis- 
tribution (generalized function). 

The distributional derivative subsumes the ordinary 
derivative. And if the first ordinary derivative of 

 1 0,x C T


 exists, the first ordinary derivative and 
first order distributional derivative of  1 0,x C T  are 
equivalent. For   0,1x C T , then the distributional 
derivative   0, T  DxDx C

2
 and , hence  0 = 0

HKD x D . 
Recall that we say    if and only if 
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,v Dv u D , u
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    , ,g x y(D1)    is Lesbesgue integrable on 
 1, 0, 0,T  when x y C T ,v x u Dv y Du   

f
, , 

and  is HKD -integrable on 0,T ,  
   , ,g t x y p t y  is nonincreasing with respect  (D2) 

         , , ,x y v t u t Dv t Du t to        for all  
 0,t T .  

x  is a solution of PBVP (1) if We say that 
 1 0,x C T  and satisfies (1). Before giving our main 

results in this paper, we first apply Lemma 2.1 to convert 
the PBVP (1) into an integral equation. 

 : 0,f T    be a distribution and  Lemma 3.1. Let 

       1: 0, 0, 0,g T C T C T    , a function  

   : 0,x T    is a solution of the PBVP (1.1) on 0,T  
if and only if x  and  satisfy for any =Dx y p HK , 
  0p t   on  0,T      

0
= d

t
P t HK p s s, with  and 

  0P T  , the integral equation  

        1 2, = , = , , , ,x y G x y G x y G x y
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  1 0,x 
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Proof. Let C T =, then the function y Dx
0

 
with  is continuous on  0Dx  0,T , so  is 
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It follows from (5) that , and from (7) 
that 

Integrating (3.4) we have  
   = 0Dx T Dx , so that x  is a solution of the 

PBVP (1.1). □  
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This implies 2y G x y . We can prove that  
 1= ,x G x y  by the same way. Thus x  and =y Dx
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satisfy the operator Equation (3.1). 

Conversely, assume that x y

 satisfy (3.1). In view 

of (2) we then have for each 0,t T   

 

   

     

( )

( )
( ) 0

( )

0

1

1

P t

T P s
HKP T

t P s
HK

e x t

D e p s
e

D e p s x s



 





    
  

d

d .

x s y s s

y s s

 



 (3.5) 

Noticing that , 0,x y C T



, then (3.5) implies by dif- 
ferentiation that  

= on 0, .TDx y            (3.6) 

It follows from (3.1) and (3.3) that for each  0,t T
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Applying Lemma 2.6 to (3.7), we obtain for all 
0,t T   

  , whenever ,    and 
  . 

An important tool which will be used latter concerns a 
fixed point theorem for an increasing mapping and is 
stated next. 

Lemma 3.2. ([10, Theorem 3.1.3]) Let 0 0, E    
with 0 0  <  , and 0 0: , E  

,G G
G  be an increasing 

mapping satisfying 0 0 0 0    . If  
 ,G   G

*
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Lemma 3.3. Let conditions (D0)-(D2) be satisfied. 
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 It follows from (3.7), (3.10) and (D0) that for each 0,t T   
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Thus, 1G u   and 2G Du  , whence G  . 

The proof that G   is similar. □ 
Lemma 3.4. Assume that conditions (D0)-(D2) hold. 
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  , ,x yThus  This and Lem- 

ma 3.3 imply the assertion. □ 
With the preparation above , we will prove our main 

result on the existence of the extremal solutions of the 
periodic boundary value problem (1.1).  

Theorem 3.1. Assume that conditions (D0)-(D2) are 
satisfied. Then the PBVP (1.1) has such solutions x  
and x  in  ,v u  that x x x   and Dx Dx Dx   
for each solution x  of (1.1) in  ,v u


 such that  

,Dx Dv Du



.  
Proof. In view of Lemma 3.4 the Equations (3.1)-(3.3) 

define a nondecreasing mapping   : , ,G     . 

For any    , we have  

     1 2, , , , on 0, .v G x y u Dv G x y Du T      

 1, 0,u v C T  and Since  , 0,Du Dv C T
1N  

, there 
exists constant  such that, for each  , ,x y   ,  

 
 

1 1

2 1

, ,

, ,

G x y v u N

G x y Dv Du N

  

  
     (3.12) 

 ,G    is uniformly bounded on  which implies 
 0,T . 

 1 2, 0,t t T . Then by (3.2) and (3.3), for each Let 
  , ,x y     
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 imply  

       ( )P s
HKD e p s v s Dv  

and  

        
         

1 ( )

2
, , d , , d

, , d .

t P s
HK t

s f s v s Dv s s D e p s y s f s g s x s y s s

Du s f s g s u s Du s s

  

  

 

2 > 0N

    

   
2

HK t
D e p s

1 ( )

2

1 ( )

t P s
HK t

t P s

D e p s Dv s g 
 

Then by (3.12)-(3.14), there exists  such that  

         

                 

1 ( )
1 2 2

2

1 1 ( )
2

2 2

, , d

d d ,

t P s
HK t

t t P s
HKt t

G x y t G x y t M D e p s x s y s s N

s v s Dv s s D e p s u s Du s s N

1 1

( )P s
HKD e pM 

   

      
 



 

   

    (3.15) 

and  

              

            

            

1 ( )
2 1 2 2 2

2

1 ( )

2

, , ( , , d

( , , d

t P s
HK t

t P s
HK t

G x y t G x y t M D e p s y s f s g s x s y s s N

M D e p s Dv s f s g s v s Dv s s

1 ( )
2

2
( , , d .

t P s
HK t

D e p s Du s f s g s u s Du s s N



   


    

  






   

     (3.16) 

 
Since  ( )P te p t v t Dv t

      ( )P te p t v t Du t
 and  

 are HKD -integrable on  0,T , 
the primitives of       ( )P t t Dv te p t v  and  

 are continuous and so are uni- 
formly continuous on 

      ( )P te p t v t Du t
 0,T

        ( ) , ,P te p t Dv t f t g t v Dv 
        ( ) , ,P te p t Du t f t g t v Du 

. Similarly, the primitives of 
 and  
 are uniformly con- 

tinuous on  0,T . Therefore, by inequalities (15) and 
(16),   ,G1    and   ,G2    are equiuniformly 
continuous on  0,T  for all    , ,x y   . So  

  ,G    is equiuniformly continuous on  0,T
  

 for 
all , ,x y   . 

In view of the Ascoli-Arzelàtheorem,   ,G    is 

relatively compact. This result implies that  satisfies 
the hypotheses of Lemma 3.2, whence  has the mini- 
mal fixed point 

G
G

 = ,*x x y  and the maximal fixed point 
 * = ,x x y . It follows from Lemma 3.1 that x x,  are 

solutions of PBVP (1), and that =Dx y  and =Dx y

0 0= , =
. 

    , and 1n n= G   ,  Let 
 = = 1, 2,3,n nG n  1 , then (3.8) and (3.9) hold. If 

   x ,v u  with ,Dx Dv Du
 = ,z x Dx

G

 is a solution of (1), it 
follows from Lemma 3.1 that  is a fixed 
point of . It follows from the extremality of x  and 
x  that x z x   v x
Dv Dx Du

, i.e.,  and  u 
  .  

As a consequence of Theorem 3.1 we have  
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Corollary 3.1. Given the functio 1 2,ns f f , assume 
that conditions (D0) and (D1) hold for the function 

   
  

1 2, , ,

0, .

 

 
 
, , =

0, , ,

g t x y f

t T x y 

t x f t y

C T





 

If 1 ,f t     ,v t u t  is nonincreasing in    for all 
 0,t T , and if 2  ,f t 


 is nonincreasing in  

 for all   ,Dv t Du  t   0,t T , then the PBVP (1.1) 
has the extremal solutions in  ,v u . 
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