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ABSTRACT

We apply the distributional derivative to study the existence of solutions of the second order periodic boundary value
problems involving the distributional Henstock-Kurzweil integral. The distributional Henstock-Kurzweil integral is a
general intergral, which contains the Lebesgue and Henstock-Kurzweil integrals. And the distributional derivative in-
cludes ordinary derivatives and approximate derivatives. By using the method of upper and lower solutions and a fixed
point theorem, we achieve some results which are the generalizations of some previous results in the literatures.
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1. Introduction

This paper is devoted to the study of the existence of
solutions of the second order periodic boundary value
problem (PBVP for brevity)

-D*x = f(t)+g(t,x,Dx),

x(0)=x(T), Dx(0)=Dx(T)=0, (1)

where Dx and D’x are the first and second order
distributional derivatives of x € C' ([O,T ]) respectively,
9:[0.T]xC'([0,T])xC([0.T]) >R and f is a dis-
tribution (generalized function).

If the distributional derivative in the system (1.1) is
replaced by the ordinary derivative and f (t)=0, then
(1) converts into

-X"=g(t,x,x’),

x(0)=x(T), x'(0)=x(T),
here g:[0,T]xRxR —> R, and x' and X" denote the
first and second ordinary derivatives of x € C* ([O,T]) .
The existence of solutions of (1.2) have been extensively
studied by many authors [1,2]. It is well-known, the
notion of a distributional derivative is a general concept,
including ordinary derivatives and approximate deriva-
tives. As far as we know, few papers have applied
distributional derivatives to study PBVP. In this paper,

we have come up with a new way, instead of the ordinary
derivative, using the distributional derivative to study the

(12)
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PBVP and obtain some results of the existence of
solutions.

This paper is organized as follows. In Section 2, we
introduce fundamental concepts and basic results of the
distributional Henstock-Kurzweil integral or briefly the
D, -integral. A distribution f is D, -integrable on
[a,b] c R if there is a continuous function F on [a,b]
with F(a)=0 whose distributional derivative equals
f . From the definition of the D, -integral, it includes
the Riemann integral, Lebesgue integral, HK-integral and
wide Denjoy integral (for details, see [3-5]). Furthermore,
the space of D, -integrable distributions is a Banach
space and has many good properties, see [6-8].

In Section 3, with the Dy, -integral and the distribu-
tional derivative, we generalize the PBVP (1.2) to (1.1).
By using the method of upper and lower solutions and a
fixed point theorem, we achieve some interesting results
which are the generalizations of some corresponding
results in the references.

2. The Distributional Henstock-Kurzweil
Integral

In this section, we present the definition and some basic
properties of the distributional Henstock-Kurzweil inte-
gral.

Define the space

C’ =
{¢ :R—>R|¢eC” and ¢ has compact support in R},

where the support of a function ¢ is the closure of the
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set on which ¢ does not vanish, denote by supp(¢). A
sequence {¢,} = C; converges to ¢eC. if there is a
compact set K such that all ¢ have support in K
and for every meN the sequence of derivatives ¢™
converges to ¢™ uniformly on K. Denote C” en-
dowed with this convergence property by D . Where @
is called test function if ¢ €D . The distributions are
defined as continuous linear functionals on D . The
space of distributions is denoted by D', which is the
dual space of D. Thatis, if f €D’ then f:D >R,
and we write (f,¢>eR,for ¢peD.

Forall f eD’, we define the distributional derivative
Df of f tobe a distribution satisfying
(Df,¢)=—(f,¢'), where ¢ isa test function.

Let (a,b) bean open intervalin R, we define

D((ab))={¢:(ab) > R|geC"
and ¢ has compact support in (a, b)},

the dual space of D((a,b)) is denoted by D'((a,b)).
Remark 21. D((a,b)) and D'((a,b)) are D
and D' respectively if a=-ow, b=+w.
Let C([a,b]) be the space of continuous functions
on [a,b],and

B. ={F eC([a,b]): F(a)=0}.

Note that B; is a Banach space with the uniform
norm ||F||w = max[a‘b]|F| .

Now we are able to introduce the definition of the
D, -integral.

Definition 2.1. A distribution f is distributionally
Henstock-Kurzweil integrable or briefly D, -integrable
on [a,b] if f is the distributional derivative of a
continuous function F e B

The Dik —1ntegral of f on [a b] is denoted by

D« J' f= , where F is called the primitive of

f and “(DHK) ” denotes the Dy, -integral. Analo-

gously, we denote HK -integral and Lebesgue integral.
The space of Dy -integrable distributions is defined
by
Dy« ={f eD'((ab)): f =DF,F eB.}.

With this definition, if f € D,,, then we have for all

$eD((ab)).
(f.¢)=(DF.¢)=~(F.¢')= [ Fg. @.1)

With the definition above, we know that the concept of
the D, -integral leads to its good properties. We firstly
mention the relation between the D, -integral and the
HK -integral.

Recall that f is Henstock-Kurzweil integrable on
[a,b] if and only if there exists a continuous function
F whichis ACG" (generalized absolutely continuous,
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see [4]) on [a,b] such that F'(x)=f(x) almost
everywhere. P. Y. Lee pointed out that if F is a
continuous function and pointwise differentiable nearly
everywhere on [a,b], then F is ACG". Furthermore,
if F is a continuous function which is differentiable
nowhere on [a,b] ,then F isnot ACG". Therefore, if
F eC([a,b]) but differentiable nowhere on [a,b] ,
then DF exists and is D, -integrable but not HK -
integrable. Conversely, if F e ACG" and it also be-
longs to C([a,b]). Then F' is not only HK -inte-
grable but also D, -integrable. Here F' denotes the
ordinary derivative of F. Obviously, the D, -integral
includes the HK -integral.

Now we shall give some corresponding results of the
distributional Henstock-Kurzweil integral.

Lemma 2.1. ([3, Theorem 4], Fundamental Theorem
of Calculus).

1)Let f eD,y,define F(t)=
FeB, and DF =1 .

2) Let Fe C([a b]) Then

Dy ) [.DF = F(t)-F(a) forall te[a,b].

For € D, , we define the Alexiewicz norm by

111, = max] I

Dy )Ltf . Then

The following result has been proved.

Lemma 2.2. ([3, Thoerem 2]). With the Alexiewicz
norm, D, isa Banach space.

We now impose a partial ordering on D, : for
f,geD,,wesaythat f =g (or g=f)ifandonly
if f—g isameasureon [a,b] (see details in [9]). By
this definition, if f, g e D, then

Duc )], f = (Duc )] 95

whenever f =g, I=[c,d]c[a,b]. We also have
other usual relations between the D, -integral and the
ordering, for instance, the following result.

Lemma 2.3. ([9, Corollary 1]). If f,g,heD'((a,b)),
f<g=<h and if f and h are D, -integrable,
then g isalso D, -integrable.

We say a sequence {f }c Dy, converges strongly
to feDy if ||fn—f||—>0 as n—oo . It is also
shown that the following two convergence theorems
hold.

Lemma 2.4. ([9, Corollary 4], Monotone convergence
theorem for the Dy, -integral). Let {f }” = be a se-
quence in D,, such that f,<f <..-<f <. and

that (Dyy) j:fn—>A as n—>ow. Then f —f in

b
D, and (DHK)I f=
Lemma 2.5. ([7, Lemma23] Dominated convergence
theorem for the Dy, -integral). Let {f }" ~be a se-
quence in D, such that f, — f in D’. Suppose
there exist g,heD,, satisfying g=<f <h,VneN.

2.2)
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(D) [ F -

We now give another result about the distributional
derivative.

Lemma 2.6. Let f,g be the distributional deri-
vative of F,G,where F,G eC([a,b]). Then

D(FG) = fG + Fg. (23)

Then feD,, and limnaw(DHK)Lbfn =

Proof. It follows from the definition of the distribu-
tional derivative and (3.1) that

(D(FG).¢)

=—(FG.¢") =] .F (G#)=~[,F(D(G#)-g¢)
~—['FD(Gg)+ [Fap = [ G+ [ Fas

- ["(Fg+1G)$ = (Fg + 1G.¢).

Consequently, the result holds. O

If g:[a,b] >R, its variation is
Vg = 9(t)-9(s,)
is taken over every sequence {(tn,sn )} of disjoint in-
tervals in [a,b], then g is called a function with
bounded variation. The set of functions with bounded
variation is denoted BV . It is known that the dual space
of D, is BY (see details in [3]), and the following
statement holds.

Lemma 2.7. ([3, Definition 6], Integration by parts).
Let fe DHK,and geBY. Define fg =DH , where
H(t)=F(t)g Ing Then fge D,y and

L fg=F (b —Lng.

<+o00 where the supremum

3. Periodic Boundary Value Problems

Consider the second order periodic boundary value
problem (1.1)

-D’x= f(t)+g(t,x,Dx),
x(0)=x(T), Dx(0)=Dx(T)=0,

where Dx and D?x denote the first and second order
distributional derivatives of X € C'([0,T]), respectively,
g:[0.T]xC'([0,T])xC([0,T]) >R and f is a dis-
tribution (generalized function).

The distributional derivative subsumes the ordinary
derivative. And if the first ordinary derivative of
xeC! ([O,T]) exists, the first ordinary derivative and
first order distributional derivative of x e C' ([O,T]) are
equivalent. For xeC' S O,T]) , then the distributional
derivative DxeC ([O,T B and Dx(0)=0, hence
D’xe D,y .

Recall that we say (v,Dv)<(u,Du) if and only if
v(t)<u(t) and Dv(t)<Du(t) forall te[0,T].

Copyright © 2012 SciRes.

We impose the following hypotheses on the functions
f and g.
(DO) There exist v,ueC' ([O,T]) with
(v, Dv)s(u,Du),cv,cu € D, such that
-D’u= f +g(-u,Du)-c,
-D’v= f +g(-Vv,Dv)+c,,
u(T)<u(0), v(T)=v(0), on [0,T]

and p(t)e HK
P(t)=(HK)[ p(s
that
Du(T)—-Du(0)
< (Dy )J':ep(s)’””cu (s)ds+(Dy )j;ep(s)cuds,
Dv(0) - Dv(T)
<(Dyx )J'tTeF’(S)’P‘T)cV (s)ds+(Dyy ).[;ep“')cv (s)ds,

(D1) g (-, x(+), y()) is Lesbesgue integrable on
[0,T] when x,yeC' ([O,T]) , v<x<u,Dv<y<Du,
and f is D,y -integrable on [0,T],

(D2) g (t,x, y) p(t)y is nonincreasing with respect
to (X,y)e [v t)]x[DV(t),Du(t)] for all

te [O,T] .

We say that x is a solution of PBVP (1) if
xeC'([0,T]) and satisfies (1). Before giving our main
results in this paper, we first apply Lemma 2.1 to convert
the PBVP (1) into an integral equation.

Lemma3.1. Let f:[0,T] >R be a distribution and
9:[0.T]xC'([0,T])xC([0,T]) > R, a function

x:[0,T]—> R is asolution of the PBVP (1.1) on [0,T]
if and only if x and Dx=vy satisfy for any pe HK ,
p(t)=0 on [0,T], with P(t)=(HK) jp s)ds and
P(T)=0, the integral equation

(%)),

(x¥)=G(xy)=(G (xy).G,

p(t)>0, with

s)ds and P(T)#0, te[0,T] such

3.1

where

G (x.y)(t) =" (D) [ €7 (P(s)X(5)+y(s))ds

) (DHK )J-OTeP(s) ( p(S)X(5)+y(S))d5

T
(3.2)

and

G, (%y)(t) =e" (Duc ) €™ (p(s)
—g(s,x(s),y(s)))ds

N0 e (3.3)
+ep(T)_1(DHK)I0e p(s)y(s)

- f(s)-a(s.x(s), y(s)))ds.

y(s)=f(s)
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Proof. Let xeC' ([O,T]), then the function y = Dx
with Dx(0)=0 is continuous on [0,T], so D’x is
D, -integrable. Let Dx=1vy, then by (1.1) we have
Dy =—f (t)-g(t,x,y), or equivalently,

e"" (Dy + py)
=e" (py-f(t)-g(t-xy))
Integrating (3.4) we have
e"Vy(t)
=y(0)+(D K)J';ep(“(p(s)y(s)
1 (s)-a(s.x(s).y () s
y(0)=y(T)
(& -) (D)

[7e" (p(s)y(s)- f(5)-9(s.x(s).¥(s)))ds.

This implies y =G, (X, y). We can prove that
Xx=G,(x,y) by the same way. Thus X and y=Dx
satisfy the operator Equation (3.1).

Conversely, assume that x,y satisfy (3.1). In view
of (2) we then have for each te[0,T]

e"x(t)
1

:W_I(DHK )I;ep(s) (( p(s)x(s)+y(s))ds (3.5

+(Du) [ (p(5)x(5)+ y(s)) s

Noticing that X,y € C[0,T], then (3.5) implies by dif-
ferentiation that

3.4

Dx=y on [0.T]. (3.6)
It follows from (3.1) and (3.3) that for each te[0,T],
e"My(t)

(D) ™ (P(5)¥ ()~ T(5)- 0 (s.X(5).¥(5))) s
1

*m (D)

jOTeP(S) ( p(s)y(s)-f(s)-g(s.x(s). y(s)))ds.
(3.7)
Applying Lemma 2.6 to (3.7), we obtain for all
te[0.T]

PGy () =(e" ~1)  (

e" (p(t)y(t)+Dy(1))
=" (p()y(t)- f(s)-g(tx(1).y(1))).
which together with (3.6) implies that

D’x=—f(t)-g(t,x,Dx), te[0,T].

It follows from (5) that x(T)=x(0), and from (7)
that Dx(T)=Dx(0), so that X is a solution of the
PBVP (1.1). o

Let E be an ordered Banach space, K a nonempty
subset of E . The mapping G:K — E is increasing if
and only if Gp<Gy , whenever ¢,y e K and
Oo<y.

An important tool which will be used latter concerns a
fixed point theorem for an increasing mapping and is
stated next.

Lemma 3.2. ([10, Theorem 3.1.3]) Let ¢,,p, €E
with ¢, <vy,, and G:[¢@,.w,]>E be an increasing
mapping satisfying ¢, <Gg,, Gy, <y, . If
G([@y.w,]) is relatively compact, then G has a
maximal fixed point x* and a minimal fixed point x,
in [¢,.%,]. Moreover,

X = lim@y, X = lim¥,, (3.8)
where ¢, =Gg,, and y, =Gy, (n=1,2,3,-),
T (3.9)
X <X <<y, <Ly Sy

Lemma 3.3. Let conditions (D0)-(D2) be satisfied.
Denoting

o(t)=(v () Dv(t)),
w(t)=(u(t),Du(t)),

then Gy <y and ¢ <Ge.
Proof. The hypotheses (D0) and (D2) imply that for all
X,y in C([0,T]), satisfying

(v,Dv)<(x,y)<(u,Du),
D’v+c, + pDv < py— f (t)
-g(t,x,y) < D’u—c, + pDu, te[0,T].

(3.10)
te[O T

3.11)

This and (D1) ensure that G;¢ and G in (3.2)
and (3.3) are defined for j=1,2. Condition (D0) im-
plies that for each te[0,T]

D, )jOTe”(S) (p(s)u(s)+Du(s))ds+(Dy )f;ep(s) (p(s)u(s)+Du(s))ds

= (eP(T) —1)_1 (eP(T)u (T)-u (0)) +e"Yu(t)-u(0)<u(0)+e"u(t)-u(0)=e"Vu(t).

It follows from (3.7), (3.10) and (DO) that for each te[0,T ]

Copyright © 2012 SciRes.

APM



334 X.Y.ZHOU, G.J. YE

G (1)=(

Dy ) Iep‘s)(p(s)Du
1
e

(Dye )L)Tep(” ( p(s)Du

(s)-f(s)-g(s.u

(s),Du (s)))ds
(s)-f(s)-g(s.u

(s),Du(s)))ds

<(Dpe ).[;e"‘s) (p(s)Du(s)+D%u(s)-c,(s))ds

1
e 1

=e"Du(t)-Du(0)-(
P(T)

=e"“Du(t)

~ (D )j;ep‘s)cu (s)ds<e”®Du(t).

Thus, Gy <u and G <Du,
The proof that ¢ < G¢ is similar. O

Lemma 3.4. Assume that conditions (D0)-(D2) hold.

Denoting
[4.v]

={(cy)ec! ([oT])xc([0.T]):p<(xy) v},

e" VG, (x,y,)(t)=
(D) [ (P(8)% (8)+ ¥ (5)) s + i —(

and

e"VG, (x.y,)(t)
=(Dy jep(s’ ( p(s)

(s)y(s)-f(s)-9g(s,
i —7(Pu) Ioep‘” p(s)y(s
< (D Iep“)(p(S) 2(s)-
)| e

P(s)
tem eP(T) DHK .[ (p S

Thus G;(X.Y,)<G;(%,Y,). ]
ma 3.3 imply the assertion. O

With the preparation above , we will prove our main
result on the existence of the extremal solutions of the
periodic boundary value problem (1.1).

Theorem 3.1. Assume that conditions (D0)-(D2) are
satisfied. Then the PBVP (1.1) has such solutions x
and X in [v,u] that x<x<X and Dx<Dx<DX
for each solution x of (1.1)in [v,u] such that
Dx e[Dv,Du].

Proof. In view of Lemma 3.4 the Equations (3.1)-(3.3)
define a nondecreasing mapping G Z[(/),l//] - [(/),l//] .

=1,2. This and Lem-

Copyright © 2012 SciRes.

+ (D) [1e" (p(s) Du(s)+ D?u(s) -
DHK)'[(:eP‘S)Cu (s)ds+

+ﬁ(Du(T)— Du(0))~ (" ~1) " (D)

whence Gy <y .

(D) & (P(s)% ()4 % (8))ds +—r—

c,(s))ds

l(eP(T)Du (T)-Du(0)-

(Dy )'[OTeP‘S)Cu (s)ds)

ePM _

.
[,e"c, (s)ds

then the Equations (1)-(3) define a nondecreasing mapp-

ing G:[p,w]—>[pyw].
Proof. Let

(X Y1) Y2 ) €[ow ], (1) < (%05 Y5 ) s

be given. The hypotheses (D0)-(D2) imply that for each
te [O,T]

- (Dp )j;ep(s) (p(s)x (s)+,(s))ds

D ).[oTeP(S) ( p(s) X (S)+ Y (S))dS = ep(t)Gl (Xza Y, )(t)’

% ()% (5)))ds

)= 1(5) =06 (5). ¥, (5)) s

f(5)- 9%, (5). (5)) és
¥,(5)-1(5)-9(s.

%, (s). Y, (S))) s=e""G, (x,,¥,)(t)
Forany (x,y)e[p,w] ,wehave

V<G (X,y)<u,Dv<G,(x,y)<Du, on [0,T].
Since u,veC'([0,T]) and Du,DveC([0,T]), there
exists constant N, such that, for each (x,y)e[p,y],
&/ O6y)< M+ lull < Ny,

3.12
le. (v <[ovf+ o <n,

which implies G([(o,l/l]) is uniformly bounded on
[0,T].

Let t,t, €[0,T]. Then by (3.2) and (3.3), for each
(xy)elp.v]
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G, (% y)(t)=G (% y)(t)

:(e”‘”*““ )G, (xy)(t) (3.13)
P(Il) HK .[1 P(s (S +y(s))ds

G, (%.Y)(t) -G, (xy)(t,)

=(ep“2)’P“”—1)G (cY)(L)+e" (D) G.14)

J167 (p(5) (5)~ (5)-0(5x(5) ().
Since p(t)e HK, p(t)>0,
P(t)=(HK) jp

continuous on [0,T], ie., for all £>0, there exists
0 >0 such that

dS is continuous and so is uniformly

IP(t,)-P(t)<¢
whenever t,,t, €[0,T]and |t, —t,|< 6.

It is casy to sce that " e C([0,T])( VBV (sois e™")
on [O,T] . Hence, there exists M >0 such that

L<ep(t) <M, te[O,T].
M

The result e € BV on [0,T] implies by Lemma
2.6 that e”¥ (p(t)x(t)+y(t)) and
" (p(t)y(t)- f(s)-g(t.x(t).y(t))) are

D, -integrable on [0,T], because p(t)x(t)+y(t)
and p(t)y(t)—f(t)—g(t,x(t),y(t)) are D, -inte-
grable for all (X,y)e[@,y]. This result and the mono-
tonicity of e )x(t)+y(t)) and
ep‘”(p(t)y(t)— )—g(t,x(t),y(t))) imply

J'tl P(s)

s)+y(s))ds <( (s)+Du(s))ds,

K )Lzep(s)(P(S)y(S)— f(s)-g(s.x(s).y(s)))ds

D,40) €7 (p(8)¥()+ Dv(s))ds = (Do ['e"

and
2 /& (p(5) DV(s) - £(5) - (s.v(s). D)) s (D
D) Pw( u(s)~ £(5)-0(su(5),Du(s))ds

Then by (3.12)-(3.14), there exists N, >0 such that

G (% ¥)(t)-G, (x.y)(t |

U J“l P(s)

G, (xy)(t,) <M|(D

and

|Gz (xy)(t)-

SMU(D

K)L:ems)(p(s)Dv(s)— f (s)—g(s,v(s),Dv(s))ds‘

\ w167 ((5)x()+ y(5)) ] ¢ oo
(3.15)
+ DV( ))ds‘+‘(DHK )Lzlep(S) ( p(S)U(S)+ DU(S))dSD+ N,é,
L)y (5)= F(5) =9 (s.x(5). ¥ (s))ds|+ N,e
(3.16)

+‘(DHK )L:ep(s)( p(s)Du(s)-f(s)—g(s.,u(s),Du (s))dsD +N,e.

Since e”(p(t)v(t
e”® (p(t)v(t)+Du(t)
the primitives of e”" (p(

e”(p(t)v(t)+Du(t)

+Dv(t)) and

are DHK -integrable on [0,T],
p(t)v(t)+Dv(t )) and
are contmuous and so are uni-
formly continuous on |0 T] Similarly, the primitives of
e”™(p(t)Dv(t)- f(t)-g(t,v,Dv)) and
e"(p(t)Du(t)-f(t)-g (t,v, Du)) are uniformly con-
tinuous on [0,T]. Therefore, by inequalities (15) and
(16), G,([p.v]) and G,([p.w]) are equiuniformly
continuous on [0,T] forall (x,y)e[p,w].So
G([gp,://%) is equiuniformly continuous on [0,T] for
all (X,y € [(/J,l//

In view of the Ascoli-Arzelatheorem, G([p,y]) is

A— ~—"—

\_/\_/

Copyright © 2012 SciRes.

relatively compact. This result implies that G satisfies
the hypotheses of Lemma 3.2, whence G has the mini-
mal fixed point X, = (5, y) and the maximal fixed point
=(X,y). It follows from Lemma 3.1 that X,X are
solutions of PBVP (1), and that Dx=y and DX=Y.
Let 9, =@y, =y ,and @, =Gg,,,
v, =Gy, (n=1,2,3,--), then (3.8) and (3.9) hold. If
xe[v,u] with Dxe[Dv,Du] is a solution of (1), it
follows from Lemma 3.1 that z=(x,Dx) is a fixed
point of G. It follows from the extremality of X, and
X" that x, <z<x",ie, v<x<u and
Dv<Dx<Du.
As a consequence of Theorem 3.1 we have
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Corollary 3.1. Given the functions f,f,, assume
that conditions (D0) and (D1) hold for the function

g(txy)=f(t,x)+f,(ty),
te[0,T].x,yeC([0.T]).

If f(t,) is nonincreasing in [v(t),u(t)] for all

te[0,T], andif f,(t,)

is nonincreasing in

[Dv(t),Du(t)] forall te[0,T], then the PBVP (1.1)
has the extremal solutions in [v,u].

(1]

(3]
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