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ABSTRACT 

We consider the existence of a nontrivial solution for the Dirichlet boundary value problem  

   = , , in ,

= 0, .

x u

u



on

u a x u g 



 

We prove an abstract result on the existence of a critical point for the functional f  on a Hilbert space via the local 

linking theorem. Different from the works in the literature, the new theorem is constructed under the  condition 

instead of  condition. 
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1. Introduction and Main Results 

Consider the Dirichlet boundary value problem  

   = , , in ,

on ,

x u 

= 0,

u a x u g
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 , d
u
g x s s

, > 2,pa x L p N g   and  
 is a bounded domain whose boundary 

is a smooth manifold. 
 

We assume that , where 
0

. In 
[1], Li and Willem established the existence of a 
nontrivial solution for problem (1) under the following 
well-known Ambrosetti-Rabinowitz superlinearity condi- 
tion: there exists 

G  , =G x u

> 2  and  such that  > 0L

   < ,u ug x u0 < ,G x           (AR) 

for all u L x and , which has been used exten- 
sively in the literature; see [1-4] and the references 
therein. It is easy to see that condition (AR) does not 
include some superquadratic nonlinearity like  
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In [5], Qin Jiang and Chunlei Tang completed the 
Theorem 4 in [1], and obtained the existence of a non- 
trivial solution for problem (1) under a new super- 
quadratic condition which covered the case of (G0). The 
conditions are as follows: 

2
,G x u u  (G1) , as  uniformly on u  

 , 
  2

, 0G x u u (G2) , as  uniformly on 0u 
 , 

(G3) There are constants 
2
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 1 > 0a

 

 and   

such that  

 1, 1g x u a u


  

 ,for all x u R , 

(G4) There are constants 
2

>
2

N

N
 

 2 > 0a

> 0L

   

,  and  

 such that  


2, 2 ,ug x u G x u a u   

for all u L x and 
a 

> 0

, 
If 0 is an eigenvalue of  (with Dirichlet 

boundary condition) assume also the condition that: *Supported by NSFC(11101237). 
#Corresponding author. (G5) There exists   such that: 
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1) , for all  , 0u G x u  , ; or x
G x2) , for all  , 0u  u  , . x
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Note that (G4) is also (AR) type condition. 
The aim of this paper is to consider the nontrivial 

solution of problem (1) in a more general sense. Without 
the Ambrosetti-Rabinowitz superlinearity condition (AR) 
or (G4), the superlinear problems become more com- 
plicated. We do not know in our situations whether the 
(PS) or  sequence are bounded. However, we can 
check that any Cerami (or ) sequence is bounded. 
The definition of   (or ) sequence can be 
found in [6]. 

PS

We will obtain the same conclusion under the  
condition instead of  condition. So we only need 
the following conditions instead of (G3) (G4): 

(G3') Let    ,x u u G x u
1

= ,
2

G g  satisfying 

1) 3G a u
  if u R , 

2)   4 , ,g x u u u
   a G x  if u R , where  

3 4, > 0a a , 
1

, > 1
2 1

q q 
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It is easy to see that function  

   2 2
ln 1u u 

G
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8

3
1

, =
2

G x u u  

satisfies conditions of (G1) (G2) (G5) and (G3'). 
Our main result is the following theorem:  
Theorem 1.1. Suppose that  satisfies (G1) (G2) 

(G5) and (G3'). If 0 is an eigenvalue of  (with 
Dirichlet boundary condition). Then problem (1) has at 
least one nontrivial solution.  

Remark 1. There are many functions which are super- 
linear but it is not necessary to satisfy Ambrosetti- 
Rabinowitz condition. For example,  

   
 

2 3 2, = 1 sin

\ 0

1
sin2 ,f x u u u u u u

u R

    



u u
 

> 2

 

where  . Then it is easy to check that (AR) does not 
hold. On the other hand, in order to verify (AR), it 
usually is an annoying task to compute the primitive 
function of  and sometimes it is almost impossible. 
For example,  

f

    1 |sin |, = 1 cou s ,f x u u u e
  u u R

 

> 0

 

where  . 
Remark 2. Our condition is much weaker than (AR) 

type condition (cf. [6]). 

2. Proof of Theorem 

Define a functional f  in the space  by   1
0=E H 
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= , d ,
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  u E, where   E E 

a

,  is the space spanned 
by the eigenvectors corresponding to negative (positive) 
eigenvalue of   . 

In this paper, we shall use the following local linking 
theorem (Lemma 2.1) to prove our Theorem . Let X  be 
a real Banach space with 1 2=X X X

0 1

 and  
j j jX X X   = such that j j

nn N
X X
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1 2=

,  
. For every multi-index , let 
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2N  m N
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nn m      1 ,. We say f C X R
 *C n

u
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 condition if every sequence   such that 

 n  is admissible and satisfies  

     , < , 1 0
n n nn n

u X supf u u f u         

contains a subsequence which converges to a critical 
point of f . 

 1 ,Lemma 2.1. ([6]) Suppose that f C X R  satis- 
fies the following assumptions: 

(f1) f  has a local linking at 0, 
(f2) f  satisfies  condition,  *C
(f3) f  maps bounded sets into bounded sets, 
(f4) For every m N ,  as  f u   u 

1 2u X X 
, on 

. m

Then f  has at least two critical points.  
Proof of Theorem 1. We shall apply Lemma 2.1 to 

the functional f  associated with (1), we consider the 
case where 0 is an eigenvalue of  and  a 

 , 0 for .G x u u             (2)   

The other case are similar. 
 1 ,f C X R  and 1) f  maps bounded sets into 
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where 
1

= > 1
1

q





 1 ,

. 

Hence f C X R  and maps bounded sets into 
bounded sets. 

In fact,  
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so (f3) holds. 
2) f  has a local linking at 0. 
It follows from (G2) and (G3) that, for any > 0 , 

there exists , such that  > 0C
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