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ABSTRACT 

In this paper, we consider the apparent superluminal speed of neutrinos in their travel from CERN to Gran Susso, as 
measured by the OPERA experiment, within the framework of the Extended Lorentz Transformation Model. The model 
is based on a natural extension of Lorentz transformation by wick rotation. Scalar and Dirac’s fields are considered and 
invariance under the new Lorentz group is discussed. Moreover, an extension of quantum mechanics to accommodate 
new particles is considered using the newly proposed Generalized-C quantum mechanics. A two dimensional represen- 
tation of the new Dirac’s equation is therefore formulated and its solution is calculated. 
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1. Introduction 

Recently, the OPERA collaboration, according to their 
precision measurement, claims [1] an early arrival time 
of CNGS (CERN Neutrino beam to Gran Sasso) muon 
antineutrinos traversing 730 kilometers from CERN to 
Gran Sasso. This corresponds to  
  52.37 0.32 10v c c     . This larger deviation of 
the neutrino velocity from c is a new result pointing to 
new physics in the neutrino sector. The CNGS neutrinos 
have an average energy of 17 GeV with a broad distribu- 
tion reaching up to several tens of GeV. A separate 
measurement of neutrinos above and below 20 GeV has 
revealed no significant energy-dependence of the super- 
luminality in this energy range. The OPERA claim is 
compatible with earlier results obtained by the MINOS 
experiment at FERMILAB [2]. This result was recently 
confirmed in a new investigation by OPERA using a 
beam with a short-bunch. As we can see from Table 1. 
To understand the underlying physics, a large number of 
papers has been published in arXiv that can be catego- 
rized into models of geometric solutions in extra dimen- 
sions [3], deformed special relativity [4], environmental 
superluminality [5-7], and explicit Lorentz violation [8], 
and combinations of these ideas. While most of theories 
[9-12] are concerned about the Lorentz violation/modi- 
fication, our main motivation here is the extension of 
Lorentz transformation using a natural mechanism namely 
a wick rotation via . As consequence of this 
transformation, a new dispersion relation is discovered 

which allows to probe a new velocity domain. The model 
will be applied to superluminal neutrino to obtain an es- 
timation of neutrino mass. Moreover, as our main con- 
cern here is to probe new physics, we have considered 
the dynamics of superluminal particles not only within 
the framework of quantum mechanics but also in the 
generalized quantum mechanics [13]. 

c ic

This paper is organized in the following manner. In the 
next section, the extended Lorentz transformation Model 
(ELTM), is presented and its application to neutrino is 
studied. In Section 3 application of ELTM to field theory 
is discussed. In Section 4 using the discovered dispersion 
relation a new Dirac’s equation (DE) within the frame-
work of Generalized-C quantum mechanics (GCQM) is 
derived. Section 5 summarizes the results of the present 
investigation and also concluded remarks are given. 

2. Modeling Superluminal Particles 

The basic idea of the proposed Extended Lorentz Trans- 
formation Model (ELTM) is the observation that the 
Minkowski metric  
 
Table 1. The summary of superluminal neutrinos from 
OPERA, MINOS. 

Experiment Velocity ratios 
v c

c


 Energy range 

OPERA   52.37 0.32 10   17 GeV 

MINOS   55.1 2.9 10   3 GeV 
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 22 2d d d d 2 2ds c t x y z      

and the four-dimensional Euclidean metric  

 22 2 2d d d d d 2s c x y    z



 

are equivalent if we make, Wick rotation, that is if one 
permits the coordinate ct to take on imaginary values1. 
Applying this rotation to Lorentz transformation, that is 
allowing c, which is the only parameter of special rela- 
tivity, to take imaginary value  the space-time 
transformation becomes 

c ic
x x  

    and  

cos sin 0 0

sin cos 0 0

0 0 1

0 0 0 1

 
 


 

 
 

0






 

with 2 2cos 1 1 v c     and, because of the 
Euclidian metric, ( , )x ct x

 x . Clearly the symme- 
try group of such transformation is SO(4) with the prop- 
erties that  

    4 3LieSO LieSO LieSO  3  

and its representation is equivalent to the tensor product 
of the two representations of SU(2) where the objects that 
transform under this representation are  

1 1 2 2 1 1 2 2;j m j m j m j m   

We observe that the new transformation extends the 
Lorentz transformation to a range of velocity2 v > c. Note 
that, in the ELTM, we avoid any necessity for imaginary 
masses in order to have v > c as done in tachyon theory. 
Thus sidestepping the problem of interpreting exactly 
what a complex-valued mass may physically mean. 
Other physical quantities can be obtained upon substitu- 
tion of , in particular, a new dispersion relation 
can be found3  

c ic

2 2 2 2 .oE p c m c  

3. Discussion about the Physical  
Interpretation of the Discovered  
Dispersion Relation 

The found dispersion relation (Equation (1)) can have a 
physical interpretation as propagation of a wave in a me- 
dium with negative index of refraction (metamaterial). 
Moreover, the mass term o  can be generated by a 
quantification in an extradimension without introducing 
the higgs field4. In fact, if we assume the following equa- 
tion of motion  

m

 5 0,
        

and by considering a wave solution to this equation with 
periodic boundary condition for Bosons5 in the quantified 
extradimension we can generate the mass term as  

2 2π
.

n
m p

a
    

Here   is complex and 5  is the partial derivative 
with respect to the extradimension. 



An important observation can be seen from this ap- 
proach. By evaluating the angular momentum  

2π

2π

n a
L n

a
     we found that  

2

2π

a
L m  

which is the Regge trajectory, one of the main motivation 
of string theory. 

Moreover, the proposed dispersion relation Equation 
(1) introduce a limit to the maximum energy of the su- 
perluminal particles thus no need of renormalization 
group and perhaps a unified theory can emerge. 

4. Application of the Model to the Opera 
Results 

Applying Equation (1) to the Opera results, the neutrino 
mass can be extracted  

2 2 24.4 GeVm c E


  .  4            (1) 

In Figure 1 we show E in GeV versus v c  where we 
have fixed E = 17 GeV at v c  = 1 for neutrino. From 
the inner figure of Figure 1, we conclude that there is no 
significant energy-dependence of the superluminality at 
the vicinity of v ∼ c. Moreover, this result can be con- 
fronted to experimental results in the future if more su- 
perluminal particles (SP) are observed with large velocity 
ranges. These results, can be subject to two criticisms  

1The Minkowski metric becomes Euclidean when ct is restricted to the 
imaginary axis, and vice versa. Taking a problem expressed in Min-
kowski space with coordinates x, y, z, t, and substituting ct = icτ, some-
times yields a problem in real Euclidean coordinates x, y, z, τ, which is 
easier to solve. This solution may then, under reverse substitution, 
yield a solution to the original problem. 
2The foundations of special relativity are the relativity principle and the 
invariance of the speed of light. As a result, the Galilei group of clas-
sical mechanics is replaced by the Lorentz group, which leads, for 
example, to the relativistic law of addition of velocities. The fact that 
the speed of light is the maximum attainable velocity of all particles 
does not directly follow from the Lorentz group, since it only delivers 
an invariant velocity at first. 

3Note that max 0p m c  correspond to  and v

1) The velocity dependence like shown in Figure 1 
would lead to much larger deviations of neutrino velocity        


2

0
max

2

m c
E   cor-

respond to v = c.  

4Work in progress. 
5Note that for fermion we must assume antiperiodic boundary condi-
tions. 
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Figure 1. E in GeV as function of v c  for superluminal neutrino. 

 

 2ˆ ˆ 0, 0,1,2,3m
               (2) from c than suggested by Opera: a large range of neu- 

trino energies from few GeV to 80 GeV needs to be con- 
sidered.  with tE i   and p i   . The field equation written 

at this form, that is using the  form, is used to con- 
serve properties like covariant and contravariant. This 
will simplify the discussion of invariance under the fol- 
lowing extended Lorentz transformation7  

̂2) Also, Equation (1) does not allow real energies for 
neutrino momenta above m0c

2 = 24.4 GeV. This contra- 
dicts the observations from Z decay at LEP where neu- 
trinos with energy 45.6 GeV were produced.  

However, since enough experimental data for mass- 
matrix of the neutrinos under consideration is still absent, 
it is not clear its exact form for the superluminal neutrino. 
Here, we claim the following: 

0 0 cos sin 0 0

0 0 sin cos 0 0ˆ
0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

i

i

   
   

  
      
  
  
  








 

“If nature allows the existence of superluminal parti- 
cles they must obey to the proposed dynamics.” 

In Figure 2 we show the neutrino E as function of pc 
for particle/antiparticle and SP/anti-SP (4 branches). 
From Figure 2 we expect that the neutrino becomes su- 
perluminal at the 4 points of intersection of the circle 
describing the Superluminal neutrino and the lines de- 
scribing neutrino. We call this mechanism as the super- 
luminality mechanism for zero mass particles.   

where iv c  , and cos  . The invariance of Equa- 
tion (2) can now be deduced from the invariance of the 
scalar field in standard field. After studying invariance of 
the new scalar field, it is useful to see what happen for 
the dynamical quantities like Green’s function. We start 
our discussion from the wick-rotated8 functional integral 
of   

   4exp dD x i xL      5. Application of the ELTM to Field Theory 

In order to show that our approach is not a simple trans- 
formation from Minkowski space to Euclidian space, 
which transforms the action ES S 6, we consider the 
application of the model to complex local field theory. 
Consider as an example, a scalar field with the dispersion 
relation given above (Equation (1)) and defining  

With  2
2 21 1ˆ

2 2
L  m     is the Lagrangian density  

for the free scalar field. The generating function of 
 x  is  

7Note that, this representation of ̂ which transform    , ,ict x ict x 
is used to conserve the Minkwovsi metric. One can use another variant 
of the new Lorentz transformation matrix that transform  

   ,ct x ct x
ˆ , ,i

t
     

  
,  . However, in this case, the invariance is not straight-

forward because the use of Euclidean metric is 

essential. 

diag 1,1,1,1g   

8By wick-rotated we mean the transformation . c ic

then, the field equation can be written as    1c  
6A transformation from quantum to statistical mechanics. 
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Figure 2. E in GeV as function of pc in GeV: Solid line for 
SP; Dotted line for particle; Dashed line for antiparticle; 
Dashed dotted line anti-SP. 
 

      4exp dZ j D x i x L j        

Therefore, the Green’s function integral of  x  can 
be calculated from the generating function exactly as 
Minkowski Green’s function that is  

           

 
 

4

4 2 2

1
,

0

d
.

2π

F

ik x x

Z
G x x T x x

Z j x j x

k i
e

k m i

  
 


 

  



 



 

This Green’s function, is just the Feynman propagator 
with  

2 2 2 2 2 2.k w k w    k k  

As for the Dirac field, it is also possible to construct its 
wave equation. In fact, the proposed DE for SP that must 
be invariant under the extended Lorentz transformation is  

 ˆ 0i m
    . 

Of course, this equation can be guessed from the non 
superluminal particles (NSP) DE. Again, as done for 
scalar field, the Lorentz invariance of this equation, un- 
der the extended Lorentz group, can be deduced from the 
invariance of the NSP. In fact, the generators of the Lee 
algebra of the extended Lorentz group will be the same 
as Lorentz group algebra. The only change is in the anti- 
symmetric tensor that gives the infinitesimal angle where 
v c must be replaced by iv c    (see any standard 
field theory text book). Moreover, solution of this equa- 
tion can be obtained from the NSP solution of DE using 

the following substitution  

ip p                   (3) 

in Dirac’s spinors. Thus the positive energy solution four- 
spinors is  

 

 

 

s

s

s
u N i

m E





 
   
 

 
σ p  

and the negative energy solution is  

 
 

 

s

s

s

i

m Eu N




  
   
 
 

σ p
 

where N is a normalization factor and . Other 
physical quantities for Dirac field can be obtained by the 
same substitution given in Equation (3). For example 
when calculating cross-section for some physical process 
in standard model one has to take into account for SP the 

ipxue 

m  and the substitution of  

  , ,p E p E i  p p.  

For example, the scattering cross section of superlu- 
minal e e       can be inferred from the sublu- 
minal scattering for the same process. In fact we found  

2

superluminal subluminal

4π

3s

    

Application of this formalism to interacting fields and 
calculation of cross section for some physical process 
will be left for future investigation. In next section, as we 
are interested in new physics that might govern the dy- 
namics of SP, we take this opportunity to see the smallest 
representation of the new DE in the newly proposed al- 
gebra [13]. This algebra is called the Generalized-C (GC) 
extend quantum theory to new class of theories based on 
the non associative algebra. 

6. Beyond Local Complex Field Theory  
Description of SP  

Since our aim in this paper is to search for new physics 
that describe SP then it is of great importance to investi- 
gate the new DE within the framework of the extended 
quantum mechanics that has been recently proposed in 
[13]. In fact, Quantum mechanics as developed in the 
standard textbooks, and as applied to elementary particle 
physics in the standard model, is understood to be com- 
plex quantum mechanics: the wave functions and prob- 
ability amplitudes are represented by complex numbers. 
However, it has been known since the 1930s that more 
general quantum mechanical systems can, in principle, be 
constructed. 

In the present work, the Generalized-C quantum me- 
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chanics [13] is studied for SP. However, we do not con- 
struct, a general formalism for Generalized-C local field 
theory. We only concentrate on the description of the 
new DE within the framework of Generalized-C quantum 
mechanics. We believe that this will be useful in future 
investigation of new physics. For clarity, to avoid the 
explicit use of i, the most general form of DE is9 

   .x x y y z z t t H C C C C C  m               

(4) 

To recover the new Klein-Gordon equation  

 2 2 2 ,t m     

the following conditions must hold  

 

2 2
, , 1; 1;

,

x y z tC C

C C C C C C     

   

   0,
        (5) 

where  

. , , , ,x y z t      

Using the following Dirac matrices, satisfying (5) 

1

1

0

0t

e

e

 
  
 

C  

2

2

0

0x

e

e

 
  
 

C  

1

1

0

0y

e

e

 
   

C  

2

2

0

0z

e

e

 
   

C  

( 1 2  are the imaginary GC units, see Appendix), in 
Equation (4) results in:   

,e e

 
1 2 1 2 1

1 2 1 2 2

0y z t x

t x y z

H m

m e e e e

e e m e e








         
            






 

The solution to this equation in 1 + 1 dimension, y, t, is  

   1,

1

e py Et

E

p my t N e 
 
    
 

 

where, as usual p represents the “momentum”, E is the 
“energy” and N is a normalization factor. As expected 

2 2E p   

7. Conclusion 

We have attempted to account for neutrino superluminal- 
ity, as reported by OPERA, while staying within the fa- 
miliar framework of local field theory. We show that 
superluminal neutrinos can be fitted into the original 
Standard Model without changing other results. Since 
enough experimental data for mass-matrix of the neutri- 
nos is still absent, it is not clear what is the exact form of 
it. However, using the extended Lorentz transformation 
model we have provided an estimation of this mass. It is 
also found, in this paper, a two dimensional Dirac’s wave 
function for the new dispersion relation within the frame- 
work of the three dimensional non-associative algebra. 
Finally we believe that the proposed models merits to be 
explored in more physical problem. 
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Appendix is associative  

   1 2 3 1 2 3.q q q q q q      We remind the reader about the properties of the Gener- 
alized-C algebra (GC). An interested reader may refer to 
[13,14] for further information. The proposed generaliza- 
tion of the C algebra, the GC, is finite-dimensional non 
division algebra10 containing the real numbers R as a 
sub-algebra and has the following properties:  

 The multiplication is defined as  

 
 

1 2 1 2 1 2 1 2 1 2 1 2 1

1 2 1 2 2 ,

q q a a b b c c a b b a e

a c c a e

    

 
 

is non-associative under multiplication that is  
   1 2 3 1 2 3q q q q q q .  

 A general GC number, q, can be written as  

0 1q ae be ce   2  
 The norm of an element q of GC is defined by  

where  
     1 21 2 2 2 2N q qq a b c     

, , or ,a b c R C  
with the GC conjugate q  given by  The real 0  and the imaginary GC units,  

are defined by  
1e  1 2,e e

1 2 .q a be ce    

1 1 2 2 1 2 2 11, 0e e e e e e e e      

 The addition is defined as  

   1 2 1 2 1 2 1 1 2 2 ,q q a a b b e c c e        

 

10A division algebra, is a finite dimensional algebra for which a ≠ 0 and b ≠
0 implies ab ≠ 0, in other words, which has no nonzero divisors of zero.
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