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ABSTRACT 

We investigate plane-parallel wave metrics from the point of view of their (Poisson-Lie) T-dualizability. For that pur- 
pose we reconstruct the metrics as backgrounds of nonlinear sigma models on Lie groups. For construction of dual 
backgrounds we use Drinfel’d doubles obtained from the isometry groups of the metrics. We find dilaton fields that 
enable to satisfy the vanishing beta equations for the duals of the homogenous plane-parallel wave metric. Torsion po- 
tentials or B-fields, invariant w.r.t. the isometry group of Lobachevski plane waves are obtained by the Drinfel’d double 
construction. We show that a certain kind of plurality, different from the (atomic) Poisson-Lie T-plurality, may exist in 
case that metrics admit several isometry subgroups having the dimension of the Riemannian manifold. An example of 
that are two different backgrounds dual to the homogenous plane-parallel wave metric. 
 
Keywords: Sigma Model; String Duality; pp-Wave Background 

1. Introduction 

Sigma models can serve as models of string theory in 
curved and time-dependent backgrounds. Solution of 
sigma-models in such backgrounds is often very compli- 
cated, not to say impossible. On the other hand, there are 
many backgrounds whose properties were thoroughly 
investigated and it is therefore interesting to find if they 
can be transformed to some others. Important example of 
such transformation is so called Poisson Lie T-duality. 

In their seminal work [1] Klimčík and Ševera set con- 
ditions for dualizability of backgrounds and gave formu- 
las for their transformation. Since then several examples 
of dualizable sigma models were constructed, see e.g. [2- 
4]. Unfortunately, most of the examples are not physi- 
cally interesting. The purpose of this paper is to show 
that physical backgrounds that admit sufficiently large 
group of isometries are naturally dualizable and therefore 
equivalent in a sense to some others. In this paper we are 
going to investigate four-dimensional plane-parallel wave 
metrics [5-8] from this point of view. 

The basic concept used for construction of dualizable 
sigma models is Drinfel’d double-Lie group with addi- 
tional structure. The Drinfel’d double for a sigma model 
living in curved background can sometimes be found 
from the knowledge of symmetry group of the metric. 
More precisely, in the Drinfel’d double there are two 
equally dimensional subgroups whose Lie algebras are 
isotropic subspaces of the Lie algebra of the Drinfel’d 
double. In case that the metric has sufficient number of 

independent Killing vectors, the isometry group of the 
metric (or its subgroup) can be taken as one of the sub- 
groups of the Drinfel’d double. The other one then must 
be chosen abelian in order to satisfy the conditions of 
dualizability. Short summary of the dualization proce- 
dure described e.g. in [9] is given in the next section. 

2. Elements of Poisson-Lie T-Dual 
Sigma-Models 

Let G be a Lie group and   its Lie algebra. Sigma 
model on the group G is given by the classical action   

   2d ,FS F 
       

 2: , 1, 2, ,dim ,R R G   

        (1) 

where F is a second order tensor field on the Lie group G. 
The functions  are de- 
termined by the composition x g     where  

   2: , ,g R g G        : and gx U R   
are components of a coordinate map of neighborhood 

 ,U g G g  of element   . 
Equivalently the action can be expressed as   

       2d ,
a b

F abS g xR g E g R g  
R

    (2) 

  are right-invariant fields  where 

   1:
a

aR g gg T
    . The relationship between E 

and F is given by the formula  

          ,a b
abF x e g x E g x e g x      (3) 

  ae g x  are the components of right invariant  where 
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  1d
a

e g ga
    

11
0 ,E g

  forms 




0,      

. The equations of motion de- 

rived from the action (1) have the following form   
 

               (4) 

where 
  are components of the Levi-Civita connec- 

tion associated with the second order tensor field F This 
tensor field is a composition of the metric (a symmetric 
part) and the torsion potential (an antisymmetric part). 
The condition of dualizability of sigma-models on the 
level of the Lagrangian is given by the formula [1]   



,jk
j i kvi

F F v c v F 
               (5) 

where jkc


 

  

i  are structure coefficients of the dual algebra 
 and iv  are left-invariant fields on the Lie group G. 

The algebras  and   then define the Drinfel’d dou- 
ble that enables to construct tensor F satisfying (5).  

2.1. The Drinfel’d Double and Poisson-Lie 
T-Duality 

As mentioned in the Introduction the Drinfel’d double D 
is defined as a connected Lie group whose Lie algebra 

 can be decomposed into pair of subalgebras ,  
maximally isotropic with respect to a symmetric ad-in- 
variant nondegenarate bilinear form .,.  on . 

Under the condition (5) the field Equations (4) for the 
 -model can be rewritten as equation for the mapping 
 ,l   2R

 

   from the world-sheet  into the Drinfel’d 
double D   

1, 0,l l  

  i ij

                (6) 

where subspaces jspan T  E e T  

  i ji

,  

jspan T  E e T    are orthogonal w.r.t. ,

 iT 
 and  

span the whole Lie algebra  . , jT


 
  ,x g

 are the 
bases of  and . 

Due to Drinfel’d, there exists unique decomposition 
(at least in the vicinity of the unit element of D) of an 
arbitrary element l of D as a product of elements from 

 and  . The solutions of Equation (6) and solution 
 ,        

 , ,h D   

 of the Equation (4) are 
related by   

   , ,l g      
       (7) 

where g G h G 

   c
cb ad gE g

    ,c
bc ad gE g

 

,  fulfil the equations   

   1 1 b

a
hh g g 

           (8) 

   1 1 b

a
hh g g 

          (9) 

The matrix E g  of the dualizable  -model is of 
the form  

 E g            (10) 

 where 0E  is a constant matrix, g

       1 t

 is given by the 
formula   

g b g a g g
             (11) 

 a g , and matrices b g  d g

 ,i

,  are given by the 
adjoint representation of the Lie subgroup G on the Lie 
algebra of the Drinfel’d double in the basis jT T

 

1  

 
   

0
.

t a g
Ad g

b g d g

 
  
 

          (12) 

 Let us note that 0E  is the value of E g
e G     0e  

 in the unit 
 of the group  because b e . 
The dual model can be obtain by the exchange   

    1
0 0, , , .G G g g E E          (13) 

Solutions of the equations of motion of dual models 
are mutually associated by the relation   

     
   

, , ,

, , .

l g h

g h

     

   
     

   











       (14) 

2.2. Poisson-Lie T-Plurality 

Generally, more than two decompositions2 (Manin triples) 
of Lie algebra  of the Drinfel’d double can exist. This  

 ̂ possibility leads to Poisson-Lie T-plurality. Let   

is another decomposition of the Drinfel’d algebra 
    

   

 into a pair of maximal isotropic subalgebras. 
Then the Poisson-Lie T-plural sigma model is given by 
the following formulas [10]   

 
     

1
1

0

1

ˆ ˆ ˆˆ ˆ ,

ˆˆ ˆ ˆ ˆ ˆ ,

E g E g

g b g a g





 

  

   1

0 0 0
ˆ ,E



           (15) 

K     E R Q E S

, , ,

       (16) 

Kwhere the matrices Q R S

,  

 determine the relation- 
ship between the bases of the appropriate decompositions 

 and ˆ,     

ˆT T

T T

    
          

K Q

R S

l D

.             (17) 

The relationship between the classical solutions of the 
two Poisson-Lie T-plural sigma-models is given by a 
possibility of two decompositions of the element   
as   

1The superscript t means transposition of the matrix. 
2Two decompositions always exist,     ̂  . , 
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     
   

,

, , .

h

g h

  

 
 

 



0, 1

, ,

ˆ

l g  

 
   

 




       (18) 

The Poisson-Lie T-duality is then a special case of 
Poisson-Lie T-plurality for    Q R

2 2 2d d ,i j

K S . 

3. Homogenous Plane Wave Metrics 

Homogenous plane wave is generally defined by the 
metric of the following form [5,6]  

 d 2d d ijs u A u 

2

x x u x

d

     (19) 

where x  is the standard metrics on Euclidean space 
 and .dE dx E

    iju

 The form of this metric seems to be 
simple, but explicit construction of sigma models can be 
very complicated. Therefore, we have focused on the 
special case of isotropic homogenous plane wave metric 

ijA u      

  2 2 2d d .2d 2d ds u u   x u x

 
,

u i

j j i

a a x

x x

      (20) 

Metric (20) has a number of symmetries important for 
the construction of the dualizable sigma models. It ad- 
mits the following Killing vectors   

i i

ij i





 

 

 

T

X

R

 a u

  

 

2 0.ua a  

R
d

           (21) 

where  satisfies   

               (22) 

The Killing vectors ij  are generators of orthogonal 
rotations in . For special choice of   E

  2
, const.

k
u k 

1,u u    

u
            (23) 

there are further isometries related to the scaling of the 
light-cone coordinates   

.             (24) 

The specific form of   enables us to calculate the 

function  explicitly. The Killing vectors of the 

metric (20) for 

a u 

  2

k
u

u
 

 

1

1

,

i

i

i

x

u x

 


 

 are   

1

i i

i i

u

ij i j j

u u

u

u

x x













 

  

 

   

  

T

X

X

D

R

 







  



2k

       (25) 

where D is the generator associated with the scaling 

symmetry and  
2d

. 
In the following we shall investigate the case  . 

It means that the metric tensor in coordinates  , , ,u x y

 

 
reads   

 2 2

2
1 0 0

, , , 1 0 0 0

0 0 1 0

0 0 0 1

ij

k x y

u
G u x y

  
 
 
 
 
 
 
 

0u 

.     (26) 

This metric is not flat but its Gaussian curvature van- 
ishes. Note that it has singularity in . It does not 
satisfy the Einstein equations but the conformal invari- 
ance conditions equations for vanishing of the  -func- 
tion  

1
0 ,

4
mn

ij i j imn jR H H   

0 ,k k
kij kijH H   

              (27) 

                    (28) 

1
0 2

12
k k kmn

k k kmnR H H        

 R
R

G

   (29) 

where the covariant derivatives k , Ricci tensor ij  
and Gauss curvature  are calculated from the metric 

ij  that is also used for lowering and raising indices. 
Torsion H  in this case vanishes and dilaton field is [5]  

 0 2 1 lncu u      

 
 

1

1
2

1
3

1
4

1
5

6

7

1

1

x

y

x

y

u

y x

u u x

u u y

u u x

u u y

u

x y



 


 


 

.           (30) 

The metric (26) admits the following Killing vectors3  



 


















 

 

 

   

   

    

    

   

   

K

K

K

K

K

K

K



         (31) 

One can easily check that the Lie algebra spanned by 
these vectors is the semidirect sum  where 

 6 7,Span K K  and ideal  
 1 2 3 4 5, , , ,Span K K K K K . The algebra  is abe-

lian and its generators can be interpreted as dilation in 


,u   and rotation in ,x y . Generators of the algebra   
mute as two-dimensional Heisenberg algebra with 

the center 1

com
K .  

Construction of Dual Metrics 

As explained in Section 2, dualizable metric can be con- 

3If 1 2  , i.e. 1 4k  2 4 3 5, K K K K then . 
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 structed by virtue of Drinfel’d double. For this goal the 
Lie algebra   of the Drinfel’d double can be com- 
posed from the four-dimensional Lie subalgebra   
isomorphic to the four-dimensional subalgebra of Killing 
vectors and four-dimensional Abelian algebra4 . 
Moreover, the four-dimensional subgroup of isometries 
must act freely and transitively [1] on the Riemannian 
manifold M where the metric (20, 23) is defined so that 

 
   

6 1 1

6 2 2

6 5 5

, ,

, ,

, 1 ,









 

K K K

K K K



M G

1

. 
Using the method described in [11] for semisimple al- 

gebras we find that up to the transformation  
k k



, 
i.e.  there are six classes of four-dimensional 
subalgebras of the isometry algebra of the homogeneous 
plane wave metric isomorphic to   

 1 2 5 3, , 5 ,Span    4 5K K K K K K K   

  1 2 3 7, , ,Span K K K K   

  1 2 3, , , 6 7Span K K K K K   

  1 2, , ,Span 4 6K K K K   

  1 2, , 5 6,Span K K K K   

  2 3 6, ,  1 7,Span K K K K K   

where , ,    are arbitrary parameters. 
Infinitesimal form of transitivity condition can be for-

mulated as requirement that four independent Killing 
vectors can be taken as basis vectors of four-dimensional 
vector distribution in M. In other words, these Killing 
vectors must form a basis of tangent space in every point 
of M. It means that in every point of M there is an in-
vertible matrix  that solves the equation   , , ,u x yA

 , , , ,u x y X
    A

, 1, 2,3,4

           (32) 

where    ,  and , , ,x y    u  X   form 
a basis of the subalgebra. 

Infinitesimal form of requirement that the action of the 
isometry subgroup is free says that if in any point of M 
there is a vector of the corresponding Lie subalgebra 
such that its action on the point vanishes then it must be 
null vector. 

By inspection we can find that the only four-dimen- 
sional subalgebras that generate transitive actions on M 
are isomorphic to  1 2 3 6 7, , ,Span K K K K K  or  

 1 2 5 6, , ,Span K K K K . Their non-vanishing commuta- 
tion relations are   

 
 
 

6 7 1

6 7 2

6 7 3

 

 

1

2 3

3 2

, ,

, ,

, ,



  

  

 





K K K K

K K K K K

K K K K K

        (33) 

and  

            (34) 

K K K

  and respectively where   are real parameters. One 
can also check that the action of both corresponding 
groups of isometries is free. In the following we shall 
find metric dual to (26) that follows from its Drinfel’d 
double description where   is isomorphic either to 
algebra spanned by  1 2 3 6 7, , , K K K K K  or by  
 , , ,K1 2 5 6K K K


1 2 3 4, , ,

. 
Let us start with construction of the Drinfel’d double 

following from the algebra isomorphic to (33) and dual 
Abelian algebra. Assume that the Lie algebra  is 
spanned by elements X X X X  with commutation 
relations   

 
 
 

4 1 1

4 2 2 3

4 3 3 2

, ,

, ,

, ,

X X X

X X X X

X X X

 

 



 

 

           (35) 

X

where   and   are arbitrary real parameters. The 
basis of left-invariant vector fields of the group generated 
by  is  

   

   

4

1

4 4
4 4

2 3

4 4
4 4

2 3

4

,

cos sin ,

sin cos ,

,

x

x x

x x

e
x

e x e x




x x

e x e x
x x

x

 

 

 

 

 


 
      (36) 

 


 



4, , ,where 1 2 3x x x x

3 31 1 2 2 4 4 .x Xx X x X x Xg e e e e

 are group coordinates used in pa- 
rametrization   

            (37) 

To be able to obtain the metric (26) by the Drinfel’d 
double construction first we have to transform it into the 
group coordinates. Transformation between group coor- 
dinates x1, x2, x3, x4, and geometrical coordinates u,  , x, 
y is  

 
   
   

4

2 2 4
2 3 1

2 4 3 4

3 4 2 4

1

2

cos sin

cos sin .

x

x

u e

x x x e

x x x x x

y x x x x

 

 

 





      
 

 

, , ,

         (38) 

It converts the Killing vectors 1 2 3 6 7K  K K K K  
into the left-invariant vector fields (36) and the metric 
(26) into the form   

4It is easy to see, that the Equation (5) is then fulfilled. 
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  

2 3

3 2

2 2
2 3

1

x x

x x

x x

 
 



 
 
 
 
 
  

  

 1 2 3 4

2 2
2 3 3 2 1

0 0 0

0 1 0
, , , 0 0 1

1 2

ijF x x x x

x x x x x    

 
  

      

.                (39) 

 

Copyright 

that is obtainable by (3) and (10). To get the matrix 0E  
necessary for construction of the dual model we note that 
it is given by the value of  E g  in the unit of the group, 
i.e. by value of ijF  for .   1

0 0 0

2 3 4 0x x x 

1

0 1 0 0
.

0 0 1 0

1 0 0 0

 
 
 
 
 
 

G

 

x 

0 E              (40) 

The dual tensor on the Abelian group  constructed 
by the procedure explained in the Section 2, namely by 
using (3), (10) and (13) is  

  2 2 2 2
2 3 2 3 3

2
1

2 3

1

3 2

1

1

1 11

1 0
1

0 1
1

1
0 0

1

ij

x x x x x 2

1 1 1

1

1

0
.

0

0

F x

x

x x x

 
 

 
 
 
 
 
 
 
 





 




B

x

x x

x

x x

x

x

    

 

 

   
 

 


 



 

    
 

 

 




 

(41) 

One can see that the dual tensor has also antisymmet- 
ric part ( -field or torsion potential)   

 1
.

2 ij jiB F F   
ij

d

              (42) 

and its torsion H B  is  

1 2 3

2
d d d

12
1

.H x x x
x


  


   


          (43) 

The Gauss curvature of its symmetric part vanishes but 
the Ricci tensor is nontrivial. Dual metric that is sym- 
metric part of (41) does not solve the Einstein equations 
either but again we can satisfy conformal invariance 
conditions (27)-(29) by the dilaton field  

   2
0 11 ln 1 .C x

 


 1 2 5 6, , ,

1

1

1
ln

1

x

x
        

 


   (44) 

If we use the subalgebra of isometries spanned by 
K K K K
 , , , 

 instead of that spanned by  

1 2 3 6 7K K K K K  then the transformation between 
group coordinates x1, x2, x3, x4, and geometrical coordi-

nates u,  , x, y is   

  4

4

2 2 2
1 2 3 3

2

3

1
2

2

,

xu e

xx x x x e

x x

y x

  



     




0

      (45) 

the matrix E  gets again the form (40) and we get 
another tensor dual to (26)  

 

   

 

22 2 2
2 3 32

2
1 1 11

2

1

3

1

1

1 1 1

1 1 11

1 0 0
1

.
1

0 1 0
1

1
0 0 0

1

ijF x

x x xx

x x xx

x

x

x

x

x

  





   
 

   
 
 

    
 
 
 
  

 

  
  









 (46) 

Even though it is not symmetric its torsion is zero. It 
satisfies the conformal invariance conditions (27)-(29) 
with the dilaton field  

   2 21
0 1

1

1
ln 1 ln 1

1

x
C x

x
 

 
.         

  


  (47) 

4. Lobachevsky Plane Waves 

Another type of metrics that have rather large group of 
isometries are so called Lobachevsky plane waves [7,8]. 
They are of general form  

 
 

2 2 2 2

2 2

2 2

2 2

, , ,

, , 1
0 0

1
0 0 0

1
0 0 0

1
0 0 0

ijG u x y

H u x y

b x b x

b x

b x

b x



 
  
 
  

  
  
 
  
 

23b

  (48) 

They satisfy Einstein equation with cosmological con- 
stant  iff  
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   
 
   
 
 
 

, 2 ,

, ,

, 2 ,

, ,

, 2 ,

, .

I VI I

III V IV

     , , 0H u x y




212b

2 2

2 2

2
, , , ,H u x y H u x y

x xy x

 
 

 
(49) 

The Gauss curvature of this metric is . For spe-
cial forms of function H the metric (48) admits various 
sets of Killing vectors. All of them are subalgebras of a 
vector space spanned by  

   

 2 2 2

2 2

1

2

I

II

III

IV

V

VI

VIII

u
u

u

y

y u
y

u x y








  







 

 
 








 

 
 

 
   

 
 

   
 

K

K

K

K

K

K

K

2 2u x y
u x y

ux uy
u x y

 
 

 
 


 

 , ,

  (50) 

A bit surprisingly, all these seven independent vector 
fields found in [7] form a Lie algebra even though they 
are not Killing vectors of the same metrics (it depends on 
the form of H u x y ). We are interested in metrics 
that admit at least four independent Killing vectors be- 
cause they can be interpreted as dualizable backgrounds 
for sigma models in four dimensions. 

As mentioned in the Section 3.1, for construction of 
dualizable metrics we need a four-dimensional subalge- 
bra of Killing vectors that generates group of isometries 
that acts freely and transitively on the four-dimensional 
Riemannian manifolds. Here we shall investigate metrics 
of the form (48) where that H x , i.e.  

 

2

2 2 2

2 2

1

1
0 0

, , ,
1

0 0

0 0

ij

x

b b x

b xG u x y

b x2 2

2 2

0 0

0
.

0

1
0

b x



 
  

 
  

  
  
 
  
 

2 3



(51) 

It solves the Einstein equation with the cosmological 
constant  for 3b    [12]. 

4.1. Construction of the Dual Metric 

The metric (51) has five-dimensional Lie group of iso-
metries generated by the Killing vectors KI, KII, KIII, KIV, 
KV, KVI. Their nonzero commutators read  

III VI III

IV V I

IV VI IV

V VI V







 

 

 







K K K

K K K

K K K

K K K

K K K

K K K

         (52) 

Four-dimensional subalgebras of the Lie algebra (52) 
for generic   are isomorphic to one of the following 
algebras:   

  , , ,I III IVSpan VI VK K K K K   

  , , ,I IIISpan IV VK K K K   

  , , ,I IV V ISpan  II VIK K K K

0

K   

It is easy to check that the only subalgebra of these 
that satisfy the condition of transitivity (32) in every 
point of M is the first one. Its action is free on M as well 
so that we can use it for dualization of the metric (51). 

In the following we shall consider the case    
because 0   do not bring anything qualitatively dif- 
ferent. It means that for dualization we shall use the al- 
gebra  spanned by KI, KIII, KIV, KVI with nonzero 
commutation relations  



   
   
 

, 2 ,

, 2 ,

, 2 .

I VI I

III VI III

IV VI IV





 

 



K K K

K K K

K K K




 

          (53) 

The corresponding Drinfel’d double is generated by 
the algebra  defined by the commutation relations (53) 
and four-dimensional Abelian algebra. The basis of left- 
invariant vector fields of the group generated by  is  

 4 4 42 2 2

1 2 3 4

, , ,x x xe e e
x x x x

        
   

     (54) 

where x1, x2, x3, x4 are group coordinates used in pa-
rametrization  

  3 31 1 2 2 4 4
1 2 3 4, , , x Xx X x X x Xg x x x x e e e e



 

and X1, X2, X3, X4 are generators of  satisfying  

   
   
 

1 4 1

2 4 2

3 4 3

, 2 ,

, 2 ,

, 2 .

X X X

X X X

X X X





 

 



          (55) 

Transformation between group coordinates and coor- 
dinates u,  , x, y of the Lobachevsky manifold is  

 
1 1

2 2
1 2 3 4

1
, , , ln

2

y
x .x x u x x x x

x

 


   

   

This transformation converts the Killing vectors KI, 
KIII, KIV, KVI into the left-invariant vector fields (54) and 
the metric (51) into  

  (56) 
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 

 

  

Copyright © 2012 SciRes.    



           

2
2

1
0

b


 2

2 1
2 2 2

1 2 3 4
3

2 2

22 2 2
2 3 1 22 2 1 3

2 2 2 2

2

2 21 1
0

, , , .
21

0 0

2 4 1 2 42 2 2 2

ij

x

b
x x

b b b
F x x x x

x

b b

x x x xx x x x

b b b b



 

   

 


 
   

  
 
 

  
 
         
 
 

 

The value of t 0x x    , i.e. in the unit of the group, gives the matrix  

0

his metric for 1 2x x 3 4

2

1
0 0 0

b


2 2

0

2

2

1 1
0 0

1
0 0 0

4
0 0 0

b b

b

b

 
 
 
   

  
  
 
  
 

E                                 (57) 

Having this matrix we can construct the dual tensor. It is again obtained using (3), (10) and (13) and has the form  

 

      
    

      
 

             

   
   

4 4
1 2 1 1 2 1

2 6 2 6 2 2
1 2 1

4 4
1 2 1 1 2 1

4
2 1

4
1 2

2 2 2 2 4 2 2 2 2 4

4 4 ( 2)

2 2 2 2 4 2 2 2 2 4

0 0

( 2 2 )

2 2 2

ij

b x x x b x x x

b b x x b x
F x b x x x b x x x

b x x

b x x

     

 
     

 
 

22 2 4 2 6 2
2 1 2

2 4 4 4b x b b b x x    


         

  
          

  


  

     

  
       

 
     

  

 
      

    
      

      

      

4
1

4
1 1 2 1

4
2 1

4
1 2 1

4
1

4
1 2 1

2

2

4
1 2 1

2

2 4 2 2 2 2 4

2 2
0

2 2 2 2 4

( 2)
0

.2 2 2 2 4

0

0
2 2 2 2 4

b x

x b x x x

b x x

b x x x

b x

b x x x

b

b

b x x x


   

 
  


  

  








 





      
  


     


 
    


 


     


  

 
  


  

  

 

 
This tensor has nonzero and nonconstant Gauss cur-

va re and torsion.  

double construction enables to add the B- 
tential) to the metric so that the resulting 

tu 1 22

1 32 2

0

2 3 2

2

1
0 0

1 1
0

1
0

4
0 0 0

b

b b

b

b

 

 

 

   
 
    

  
    
 
  
 

E     (58) 

and applying the formula (3), (10), we get covariant ten- 
sor that after the transformation (56) acquires the form  

4.2. B-Field 

The Drinfel’d 
field (torsion po
tensor G G B    is invariant with respect to the same 
isometry group as the metric itself. Namely, changing 

0E  to5  

5Other antisymmetric elements do not change torsion. 
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 
22

1
2 2 2

2
1

2 2

2 2

2 2

2
2

3

2
2

2

2 2

, , ,

1
0

1
0 0

.
1

0 0 0

ijG u x y

bx
x

b b x

b
x

b x

b x





 



 

 

 

 



 
  

 
 

 
 

 
 
 

  (59) 

Its symmetric part is the metric (51). This tensor is 
again invariant with respect to the isometry group gener- 
ated by KI, KIII, r 1 2 0

3 2 2 2

1
0x x

b x
 

  
   
 




KIV, KVI. Fo     the invariant 
group can be ext generator KV. 

d
ended by the 

Torsion H B  obtained from the antisymmetric 
G  is  

 d d d

part of 

 
1 2

3

4 d d d 4

4 d d d

H u y

x y

  

  

     

   

u x y  
 (60) 

As the tensor (59) was obtained by the Drinfel’d dou- 
ble construction it is possible to dualize it but the result is 
to

 construction 
of nabelian)

 that the metric have an isometry sub- 
group whose dimension is equal to the dimension of the 
Riemannian manifold and its action on the manif
transitive and free. 

e metrics and B-fields dual
 For homogeneous plane waves (26)
 the dilaton field that guarantees

 can construct several backgrounds
du

o extensive to display. 

5. Conclusions 

Isometry groups of metrics can be used for
 their (no  T-dual backgrounds. Sufficient con- 

dition for that is

old is 

We have shown that for the plane wave metrics (26) 
and (51) such isometry subgroups exist and the metrics 
can be dualized by the Poisson-Lie T-duality transforma- 
tion. We have determined th  

 to the plane waves.
we have also found  con- 
formal invariance of the dual metric. 

Metrics that possess isometry group whose dimension 
is greater than the dimension of the Riemannian manifold 
may have several duals. More precisely, if the metric 
admits various isometry subgroups with above given 
properties then we  

al to the metric. This phenomenon is another kind of 
plurality of sigma models different from the Poisson-Lie 
T-plurality described in the Section 2. 

An example of this type of plurality is provided by the 
plane wave metric (26) with isometry subgroups gener- 
ated by Killing vectors  1 2 3 6 7, , , K K K K K  or by 
 , , ,1 2 5 6K K K K  (see (31) producing two dual back- 
grounds (41) and (46)). To decide if this plurality is dif- 
ferent from the Poisson-Lie T-plurality one has to check 
whether the eight-dimensional Drinfel’d double s gener- 

ated by the four-dimensional abelian algebra and alge- 
bras spanned by  1 2 3 6 7, , , K K K K K  or  
 1 2 5 6, , ,K K K K  are isomorphic by a transformation 
that leave the constant matrix (40) invariant. This is, 
however, very difficult task that might be investigated in 
th

 

.  
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e future.  
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