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ABSTRACT 

Weyl invariant gravity has been investigated as the fundamental theory of the vector inflation. Accordingly, we con- 
sider a Weyl invariant extension of Dirac-Born-Infeld type gravity. We find that an appropriate choice of the metric 
removes the scalar degree of freedom which is at the first sight required by the local scale invariance of the action, and 
then a vector field acquires mass. Then non-minimal couplings of the vector field and curvatures are induced. We find 
that the Dirac-Born-Infeld type gravity is a suitable theory to the vector inflation scenario. 
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1. Introduction 

The cosmological inflation is proposed as some resolu- 
tions for the important cosmological problems, e.g. the 
flatness, horizon and monopole problems. Most of suc- 
cessful models are based on classical scalar fields, al- 
though we have not observed such scalar bosons associ- 
ated with the field. 

The inflation can also be caused by other type of fields. 
The vector inflation has been proposed by Ford [1] and 
some authors [2-4]. It is emphasized that the massive 
vector field should non-minimally couple to gravity in 
such models [1-4]. 

The reason why the non-minimal coupling is important 
is as follows. Suppose the equation of motion for the 
vector field is given by 

  21
0.

6

R
g F m A

g
 


        

     (1.1) 

For the background field, we assume1 

 2 2 2d d ds t a t   x2


,          (1.2) 

and  depends only on t and . Then 
we define 

 1,2,3iA i  0 0A 
,i iB A a  (1.1) becomes 

23i i i

a
B B m B

a
  
  0,

2

          (1.3) 

which is very similar to the equation for a homogeneous 

scalar field in the Friedmann-Lemaître-Robertson-Walker 
universe. Moreover, the energy density is expressed as ~ 

i i , which is also similar to the one for the scalar 
field. Thus, the slow evolution of the effective scalar 
field Bi can occur in the approximately isotropic inflating 
universe. 

2 2B m B

We have studied [5] Weyl invariant gravity [6-39] as a 
candidate for the theoretical model of the vector inflation. 
We found that the choice of the frame yields the mass of 
the Weyl gauge field, but the non-minimal coupling term 
is lost [5]. We come to the conclusion that we need fur- 
ther generalization of the gravitational theory. 

In the different context, Deser and Gibbons considered 
Dirac-Born-Infeld (DBI)-Einstein theory [40] almost a 
decade ago, whose Lagrangian density is of the following 
type 

 det ,g R              (1.4) 

where Rμν is the Ricci tensor and the α is a constant. 
Originally, electromagnetism of the DBI type has been 
considered as a candidate of the nonsingular theory of 
electric fields. Therefore the Dirac-Born-Infeld-Einstein 
theory as the highly-nonlinear theory is also expected as 
a theory of gravity suffered from no argument of singu- 
larity. The studies on the theory have been done by many 
authors [41-50]. Because of the nonlinearity in this the- 
ory, we expect the extension as the theory of gravity 
which realizes a successful vector inflation. *Corresponding author. 

1Of course, only the vector field as the source cannot lead to the ex-
actly isotropic expansion. 

Consider the Weyl invariant D-dimensional extension 
of the Ricci curvature (see the next section) is 
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(1.5) 

By simple replacement of the Ricci tensor by the Weyl 
invariant tensor in the action (1.4), the expansion 

    2 21 1
det 1 1 tr tr 2tr ,

2 8
A A A A       (1.6) 

yields the terms RAμA
μ and RμνA

μAν and so on as well as R 
and FμνF

μν. Other Weyl invariant terms are necessary, 
because the metric tensor must be combined with a scalar 
field which compensates the dimensionality. After the 
frame choice, the freedom of the scalar field is eaten by 
the vector field, then, the presence of the non-minimal 
terms mentioned above is still realized2. 

In the next section, we review the Weyl invariant 
gravity with the vector field [11-14,16-21,25-37]. The 
expression (1.4) is generalized to the Weyl invariant one. 
The Lagrangian for a Weyl-invariant DBI gravity is pro- 
posed in Section 3. In Section 4, the necessity condition 
for the vector inflation is investigated. In Section 5, an- 
other possible inflationary scenario is provided. The last 
section is devoted to the summary and prospects. 

2. Weyl’s Gauge Gravity Theory 

In this section, we review the Weyl’s gauge transforma- 
tion to construct the gauge invariant Lagrangian. 

Consider the transformation of metric (in D dimensions) 

 2 ,xg g e g  
            (2.1) 

where  x  is an arbitrary function of the coordinates xμ. 
We can define the field with weight  2 2d D    

which transforms as 

   2 2 .D xe                (2.2) 

In order to construct the locally invariant theory, we 
consider the covariant derivative of the scalar field 

2
,

2

D
A  


                 (2.3) 

where Aμ is a Weyl’s gauge invariant vector field. 
Under the Weyl gauge field transformation 

  ,A A A x                (2.4) 

we obtain the transformation of the covariant derivative of 
the scalar field as 

   2 2 .D xe
     


           (2.5) 

The field strength of the vector field is given by 

,F A A                   (2.6) 

which is gauge invariant as 

.F F F                 (2.7) 

The modified Christoffel symbol is defined as 

 1
,

2
g g g g 

                    (2.8) 

where 2g g A g         . The modified curvature 
is given as follows: 

 , .R g A      
                         (2.9) 

The Ricci curvature in the Weyl invariant version is 
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(2.10) 

where   denotes the usual generally covariant deriva- 
tive. Note that under the gauge transformation 

     , ,R g A R g A R g A       , .      (2.11) 

3. Weyl Invariant Lagrangian 

Although we can use the Weyl invariant Ricci tensor R
  

in the DBI gravity, we should note that the metric tensor in 
the action is not Weyl invariant (which is shown in (2.1)). 
Thus, we use a combination  4 2D g

  instead of the 
metric tensor. The scalar Φ compensates the dimension of 
the metric. Now the use of R

  and  4 2D g
  in the 

DBI type action leads to the theory of gravity, a vector 
field, and unexpectedly, a scalar field. 

The introduction of the compensating scalar field tells 
us the action is far from general one. The monomial of the 
type of the kinetic term, in other words, two coordinate 
derivatives of the scalar field can be considered, while the 
curvature includes also two derivatives with no contrac-
tion. The possible monomials are 

2
 

      and      (3.1)  1 . 
    

Another notice is in order. The decomposition of a rank 
two tensor shows that there are three irreducible ones; an 
anti-symmetric tensor, a traceless symmetric tensor and a 
trace part. 

Now, we must introduce the following independently 
Weyl invariant tensors into the determinant in the DBI 
theory: 

2Note that   , f R g A  does not bring about substantial nonminimal 

couplings [5]. 
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where 
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and 
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   (3.4) 

We choose those as symmetric tensors are not trace- 
less3. 

Our model of Weyl invariant DBI gravity is described 
by the Lagrangian density 

    4 2det 1 det ,DL M g          (3.5) 

with 
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 (3.6) 

where α1, α2, β, γ1, γ2, γ3, γ4 and λ are dimensionless con- 
stants4. 

Furthermore the Lagrangian density can be expressed 
by the new metric conformally related to the original one 
and new variables. Here we choose 

 4 22ˆ ,Dg f g
               (3.7) 

and 

2ˆ ln .
2

A A
D     


           (3.8) 

Note that a mass scale f was introduced here. By using 
the new metric and vector field, we rewrite the each term 
in the determinant of the Lagrangian as 
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(3.9) 

We now can write Mμν as 
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where the “hat”s are dropped and dimensionless constants 
are 
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We can rewrite the Lagrangian as 

 
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det 1

det 1 .
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L M f g

g M f
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
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    (3.11) 

This is the candidate Lagrangian for the vector infla- 
tion. 

4. Cosmology of Weyl’s Gauge Gravity 

In this section, we apply our Weyl invariant DBI theory of 
gravity to cosmology in four dimensions (D = 4). 

We take the metric for the homogeneous flat universe 
as 

3Judging from the number of fields and derivatives, the term Φ−4/(D−2)

gλμFνλFσμ is allowed in the same order. But this term is different from 
others in the point that it includes two kinds of fields except for the
metric. Therefore we discarded this marginally possible term here. 
4If we demand that the terms with lowest derivatives in the expansion 
(1.6) look like the Lagrangian of scalar-tensor theory, we must choose 
as α1 + 4α2 > 0 and γ1 + 4γ2 + 4γ3 + 8γ4 > 0, for D = 4. 

     2 2 2 2 2 2 2
1 2 3d d d d d 2s t a t x a t y a t z       (4.1) 

and, moreover, we assume the approximate isotropy 1a   
 2 3a a a t  . 
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We consider that only A1(t) is homogeneously evolving, 
and A2 = A3 = A0 = 0. 

By these ansätze, we look for the condition that the 
vector field behaves much like a scalar field at classical 
homogeneous level. Substituting the ansätze, we find 

2
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After some calculations, we can subtract the part of the 
Lagrangian which includes bilinear and higher-order of 
the vector field A1. We find that if the parameters are 
chosen as 
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the vector-field part becomes 
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     (4.9) 

where 1 1B A a . 
A simple case is realized when α2 = γ1 = γ2 = γ3 = γ4 = 0, 

or these parameter take small values in comparison with 
α1. Then the parameter is α1 only. Equations (4.7) and (4.8) 
tell us 1 2 12       , 3 1    and 2

17 2  . In this 
case, this is so simple that the effective mass for B1 may be 
large. The tuning is possible; say, the choice of γ4 does not 
affects (4.8) and makes the change in the effective mass. 

An elaborate tuning may give the potential which in- 
duces the chaotic inflation [51]. In the next section, 
however, we show another simple inflation scenario. 

5. A Simple Cosmological Scenario 

The chaotic inflation in the model can occur by tuning of 
the parameters. We should remember that the model in- 
volves the higher-derivative gravity. Therefore another 
kind of inflation is worth to be considered. 

First let us suppose the flat space. Then the potential, or 
the energy density for the constant B1, can be easily writ- 
ten down as 

    32 2 2 2
2 1 1 2 1 .V f B f B            (5.1) 

Although other choices are possible, we consider here a 
simple choice as 1 0    and 2 0   5. In this case, un- 
fortunately, the previous conditions (4.7, 4.8) cannot be 
satisfied simultaneously, because 1 24 0    for the 
positive coefficient of the Einstein-Hilbert term in the 
action. Then the potential is 

 22 2
2 1 .V f B                (5.2) 

This is the simplest potential. In the true vacuum, the 
vector field “condensates” and a “natural” choice λ = 1 
leads to vanishing cosmological constants6! 

This simplest version also has an inflationary phase. 
That is, for B1 = 0, the scale factor behaves as a(t) ≈ eHt 
where   2 2

1 23 4H f    . 
Unfortunately, this phase is stabilized by the non- 

minimal coupling between curvatures and the vector field, 
because the effective potential in this phase becomes 

  22 24 4 2
2 1 2 1 3 14 .V B B H B      2     (5.3) 

The exit of the de Sitter phase is problematic, like the 
other higher-derivative models. Though the additional 
matter fields may play important roles, we will perform 
further study on them elsewhere. 

6. Summary and Outlook 

The Weyl invariant DBI gravity is a candidate for a model 
which causes an inflationary universe. If the vector infla- 
tion can explain the possible anisotropy in the early uni- 
verse, we may seriously investigate the Weyl invariant 
DBI gravity. 

Here we examined slow development of the massive 
vector field. The inflation along with a fast evolution is 
shown to be possible in the DBI inflation, where the scalar 
degrees of freedom which originate from string (field) 
theory or D brane theory [52,53]. The similar scenario is 
feasible in our model, though the higher-derivatives make 
the detailed analysis difficult. Anyway, numerical calcu- 

5Note that 2   can be tuned by take an appropriate value for γ4. 
6The parameters    s can be taken to be sufficiently small so that no 

“antigravity” emerges. 
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lations and large simulations will be needed to understand 
the minute meaning of the Weyl invariant DBI gravity, 
because the local inhomogenuity in the spatial directions 
as well as the strength of vector fields is important for 
thorough understanding in the early cosmology. 

Finally, we think that some marginally related subjects 
are in order. The higher-dimensional cosmology in the 
Weyl invariant DBI gravity is worth studying because of 
its rich content. Incidentally, DBI gravity in three dimen- 
sions is eagerly studied [54-57], which is related to New 
Massive Gravity [58,59]. We think that the Weyl invariant 
extension of the lower-dimensional theory is also of much 
mathematical interest. 

7. Note Added 

After completing this manuscript, we become aware of the 
paper “Higgs mechanism for New Massive gravity and 
Weyl invariant extensions of higher derivative theories” 
by Dengiz and Tekin [60]. They investigated a Weyl- 
invariant DBI gravity in three dimensions. 

We also become aware of two recent papers about the 
cosmology of Weyl invariant theory [61,62]. 
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