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ABSTRACT 

In this paper, a new iterative solution method is proposed for solving multiple linear systems ( ) ( ) ( )=i i iA x b , for 

, where the coefficient matrices 1 i s£ £ ( )iA  and the right-hand sides  are arbitrary in general. The proposed 

method is based on the global least squares (GL-LSQR) method. A linear operator  is defined to con-
nect all the linear systems together. To approximate all numerical solutions of the multiple linear systems simultane-
ously, the GL-LSQR method is applied for the operato   and the approximate solutions are obtained recursively. 
The presented method is compared with the well-known LSQR method. Finally, numerical experiments on test matrices 
are presented to show the efficiency of the new metho

( )ib

: n s n s ´   ´

r

d. 
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1. Introduction 

We want to solve, using global least squares (GL-LSQR) 
method, the following linear systems:  

( ) ( ) ( )= ,        1i i iA x b i s£ £           (1) 

where ( )iA  are arbitrary matrices of order n, and in 
general ( ) ( )i jA A¹  and  for  In spite 
of that, in many practical application the coefficient 
matrices and the right-hand sides are not arbitrary, and 
often there is information that can be shared among the 
coefficient matrices and right-hand sides. Multiple linear 
systems (1) arise in many problems in scientific com- 
puting and engineering application, including recursive 
least squares computations [1,2], wave scattering pro- 
blems [3,4], numerical methods for integral equations 
[4,5], and image restorations [6]. 

( ) ( )ib b¹ j .i j¹

Many authors, see [7,8], have researched to approxi- 
mate the solutions of the multiple linear systems (1) with 
the same coefficient matrix but different right-hand sides, 
i.e.,  

( ) ( )= ,        1 .i iAx b i s£ £        (2) 

Recently, S. Karimi and F. Toutounian proposed an 
iterative method for solving the linear systems (2) with 
the some advantages over the existing methods, see [9- 
11], for more details. In [12], Tony F. chan and Michael 
K. Ng presented the Galerkin projection method for 
solving linear systems (1). They focused on the seed 

projection method which generates a Krylov subspace 
from a set of direction vectors obtained by solving one of 
the systems, called the seed system, by the CG method 
and then projects the residuals of other systems onto the 
generated Krylov subspace to get the approximate solu- 
tions. Note that the coefficient matrices in this method 
are real symmetric positive definite. 

In this paper, we propose a new method to solve the 
linear systems (1) simultaneously, where the coefficient 
matrices and right-hand sides are arbitrary. We define a 
linear operator  to connect all the linear 
systems (1) together. Then we apply the GL-LSQR me- 
thod [13] for the linear operator   and obtain recur- 
sively the approximate solutions simultaneously. In the 
new method, the linear operator  will be reduced to a 
lower global bidiagonal, namely -Bidiag, matrix form. 
We obtain a recurrence formula for generating the se- 
quence of approximate solutions. Our new method has 
certain advantages over the existent methods. In the new 
method, the coefficient matrices 

: n s n s ´   ´




( )iA  and right-hand 
sides  are arbitrary. Also we do not need to store the 
basis vectors, we do not need to predetermine a subspace 
dimension and the approximate solutions and residuals 
are cheaply computed at every stage of the algorithm be- 
cause they are updated with short-term recurrence. 

( )ib

The remainder of the paper is organized as follows. 
Section 2 is devoted to a short review of the global least 
squares( GL-LSQR) method. In section 3, we present a 
new method, namely -GL-LSQR, to solve the multi- 
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ple linear systems (1). we also show how to reduce the 
low-rank approximate solutions to linear operator  . 
The section 4 is devoted to some numerical experiments 
and comparing the new method with the well known 
LSQR method, when it is applied to s linear systems 
independently. Finally, we make some concluding re- 
marks in section 5. 

We use the following notations. For X and Y two ma- 
trices in , we consider the following inner product n s´

( )T, =
F

X Y tr X Y , where  denotes the trace of a 
matrix. The associated norm is the Frobenious norm 
denoted by 

( ).tr

.
F

. The notation FX Y^  means that 
, = 0X Y

F
 and ( ):,X i  means that the i t  column of 

X. Finally, we use the notation * for the following 
product: 

h

=1

* = ,
m

j j
j

y y V å              (3) 

where [ ]1 2= , , , n s
m jV V V V ´Î 

m
 for 1 , and 

.  
j m£ £

y Î
By the same way, we define  

( ) ( ) ( )* = * :,1 , * :, 2 , , * :, ,T T T T m   éë  ùû  (4) 

where T is the  matrix. It is easy to show that the 
following relations are satisfied:  

m m´

( ) ( ) (* = * * ,   * * = * ),y z y z T y T    + + y  (5) 

where y and z are two vectors of .  m

2. The Global Least Squares (GL-LSQR) 
Method 

In this section, we recall some fundamental properties of 
GL-LSQR algorithm [13], which is an iterative method 
for solving the multiple linear systems (2). When all the 

’s are available simultaneously, the multiple linear 
systems (2) can be written as 

( )ib

= ,AX B                (6) 

where A is an  nonsingular arbitrary matrix, B and 
X are an  rectangular matrices whose columns are 

n n´
s
)

n´
(,( ) ( )1 2, , sb b b  and ( ) ( ) ( )1 2, , , sx x x , respectively. 

For solving the matrix Equation (6), the GL-LSQR 
method uses a procedure, namely Global-Bidiag proce- 
dure, to reduce A to the global lower bidiagonal form. 
The Global-Bidiag procedure can be described as follows. 

Global-Bidiag (starting matrix B; reduction to global 
lower bidiagonal form):  

1 1 1 1 1= , = TU B V A Ub a  

1 1

1 1 1 1

=
,    = 1,2, ,

=
i i i i i

T
i i i i i

β U AV αU
i

α V A U β V
+ +

+ + + +

ü- ïïýï- ïþ


n s´

 (7) 

where . The scalars  and  
are chosen so that 

,i iU V Î 0iα ³ 0³iβ
= = 1

With the definitions  

[ ]
[ ]

1 2

1 2

1

2 2

1

, , , ,

, , , ,

,

  

k k

k k

k

k k

k

U U U

V V V

T





a
b a

b a
b +

º

º

é ù
ê ú
ê ú
ê ú
ê úº ê ú
ê ú
ê ú
ê ú
ê úë û





 

 

the recurrence relations (7) may be rewritten as:  

( )1 1 1* =k e B, b+                  (8) 

1= *k k k ,A T  +                   (9) 

1 1 1= * *T T
k k k k k kk 1

T .A T V e  a+ + ++ +   (10) 

For the Global-Bidiag procedure, we have the follow- 
ing propositions. 

Proposition 1 [13]. Suppose that k step of the Global- 
Bidiag procedure have been taken, then the  block 
vectors 1 2  and 1 2  are F- 
orthonormal basis of the Krylov subspaces 

n s´
1,k kU +

T
k

, , , kV V V , , ,U U U
( )1,A A V  

and (1 ,T )1k AA U + , respectively. 
Proposition 2 [13]. The Global-Bidiag procedure will 

be stopped at step m if and only if , 
where  and l  are the grades of 1V  and  with 
respect to 

{ }= ,m min m l
1Um

TA A  and TAA , respectively. 
Proposition 3 [13]. Let k  be the matrix defined by 

[ ]1 2, , ,k U U U ,k º 
= 1, ,i k

 where the  matrices i , 
, are generated by the Global-Bidiag procedure. 

Then  

n s´ U

2
* =k F

. h h  

By using the Global-Bidiag procedure, the GL-LSQR 
algorithm constructs an approximate solution of the form  

= *k k kX V y , where , which  ( ) ( )1 , ,
Tk k

k k ky y yé ù= ê úë û Î 

solves the least-squares problem,  

.min F
X

B AX-  

The main steps of the GL-LSQR algorithm can be 
summarized as follows. 

Algorithm 1: Gl-LSQR algorithm 
1) Set  0 = 0X

2) 1 =
F

β B , 1 1=U B β , 1 1= T

F
α A U ,  

1 1= TV A U α1 . 

3) Set , 1 1=W V 1 1=f b , 1 1=r a  

4) For  until convergence, Do:  = 1,2,i 
5) =i i iW AV αU- i   

6) 1 =i i F
β W+  

i iF F
U V . 
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7) 1 1=i i iU W β+ +  

8) 1 1= T
i i i i  S A U β V+ +-

9) 1i i F
α S+ =  

10) 1 1=i i iV S α+ +  

11) ( )1 22 2
1= +i i iβr r +  

12) =i ic r r  

13) 1=i is β iρ+  

14)  1 1=i i is αq + +

15) 1 1=i i ic αr + +  

16) =i iaf fi  

17) 1 =i i i  cf f+

18) =i i i

1 =i i

cf f

i

 

19) sf f+ -  

20) ( )1= +i i i i iX X Wf r-  

21) ( )1 1 1=i i i iW V Wq r+ + +- i  

22) If 1if +  is small enough then stop 

23) EndDo. 
More details about the GL-LSQR algorithm can be 

found [13].  

3. The GL-LSQR-Like Operator Method 

In this section, we propose a new method for solving the 
linear systems (1). For this mean, we define the fol- 
lowing linear operator  

: n s n s´   ´

,

                (11) 

( ) ( ) ( ) ( ) ( )1= :,1 , , :,sX A X A X sé ù
ê úë û   (12) 

where ( )jA , = 1, ,j s  are the coefficient matrices of 
the multiple linear systems (1). Therefore, the linear 
systems (1) is written as:  

( ) = ,X B             (13) 

where B is an  rectangular matrix whose columns 
are 

n s´
( ),( ) ( )1 2, , sb b  b  the right hand sides of the linear 

systems (1). 
Definition 1: Let  be linear operator (11). Then  

( ) ( ) ( )(1) ( )= :,1 , , :,T T s T .X A X A X séêë  ùúû

},

 

Consider the block operator (13), similar to the well- 
known block Krylov subspace  

( ) { 2 1; = span , , , , m
m A R R AR A R A - R

,

 

where R is the residual of the operator equation (13), we 
define the following block Krylov-like subspace.  

Definition 2: Let  be linear operator (11). Then  

( ) ( ){ }1; = span , ( ), , m
m R R R R-     

where 
 

= ...
i time

i

       and   is the combination of 

two operators. 
Definition 3: Let  be linear operator (11) and 

[ ]1 2= , , , s
m V V V Î n m

m
´ . Then  

( ) ( ) ( ) ( )1 2= , , , n ms
m mV V V ´ .é ù Îë û       

where ,  n s
jV ´Î = 1, 2, , .j s

To approximate the solution of the block operator 
Equation (13), we present a new algorithm, will be re- 
ferred to -GL-LSQR algorithm, which is based on the 
Global-Bidiag-like procedure, will be referred to  - 
Bidiag. The -Bidig procedure reduces the linear ope- 
rator  to the lower bidiagonal matrix form. This pro- 
cedure can be described as follows. 






 -Bidiag (starting matrix B; reduction to lower 
bidiagonal matrix form):  

( )1 1 1 1 1= , = TβU B αV U  

( )
( )

1 1

1 1 1 1

=
,    = 1,2, ,

=
i i i i i

T
i i i i i

β U V αU
i

α V U β V
+ +

+ + + +

üï- ïýï- ïþ





  (14) 

where i i . The scalars  and  
are chosen so that 

, n sU V ´Î 0iα ³ 0iβ ³
= = 1i iF F

Similar to Global-Bidiag procedure, we define  
U V . 

[ ]
[ ]

1 2

1 2

1

2 2

1

, , , ,

, , , ,

.

  

m m

m m

m

m m

m

U U U

V V V

α

β α

T

β α

β +

º

º

é ù
ê ú
ê ú
ê ú
ê úº ê ú
ê ú
ê ú
ê ú
ê úë û





 



  

According to notation * and by using the definition 3, 
the recurrence relations (14) may be rewritten as:  

( )1 1 1* =m β e B+ ,                   (15) 

( ) 1= *m m mT+   ,

1
T
+

)

                 (16) 

( )1 1 1= * * .T T
m m k m m mT V ea+ + ++     (17) 

Proposition 4. Suppose that k step of the -Bidiag 
procedure have been taken, then the block vectors 

1  and 1  are F-orthonormal basis of 
the Krylov-like subspace  and  

, respectively. 



, , mV V

( T
m+ 

1

( 1;T
m V  

, , mU U +

)1 1

The proof of this proposition is similar to that given in 
[13]. 

;U

The quantities generated from the linear operator  
and B by the  -Bidiag process will now be used to 
solve the block least squares problem,  
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( ) .min
FX

B X-  

Let the quantities  

= * ,m m mX y                 (18) 

( )=mR B X-
m

,m

m

             (19) 

be defined, where m . According to linearity of 
the operator, it is easy to show that  

y Î

( ) ( )= *m m .X y    

Also it readily follows from (15), (16) and properties 
of product * the equation  

( )
( ) ( )
( )

1 1 1 1

1 1 1

= *

= * * *

= * ,

m m m

m m m

m m m

R B y

β e T

β e T y

+ +

+

-

-

-

 

 


my  

holds to working accuracy. 
To minimize the mth residual m F

R , since 1m+  is 
F-orthonormal and by using the proposition 3, we choose 

 so that  my

1 1 2
=m mF

R β e T y- ,m          (20) 

is minimum. This minimization problem is carried out by 
applying the QR decomposition [13], where a unitary 
matrix  is determined so that  mQ

[ ]1 1
1

1 1 1

2 3 2

1 1

1

=
0

= ,

0

m m
m m

m

m m m

m m

m

f
Q T β e

f

r q f
r q f

r q f
r f

f

+

- -

+

é ù
ê ú
ê úë û
é
ê ú
ê ú
ê
ê
ê ú
ê ú
ê ú
ê
ê
ê ú
ê úë û

  



ù

ú
ú

ú
ú

d 

 

where   and  are scalars. The above  
factorization is determined by constructing the m th 
plane rotation  to operate on rows m  and 

 of the transforme

,lr lq lf

1+

QR

,m mQ
1m+ [ ]1 1β e  to annihilate 

1mβ + . This gives the following simple recurrence re
mT

la- 
tion: 

1

1 11 m mm + +ë û ë ûë û

where 

1

0
= ,

00
m m mm m m m

m m m

c s

s c β α

r q fr f
r f

+

+ +

é ù é ùé ù
ê ú ê úê ú
ê ú ê úê ú-

 

1 1αr º , 1 1βf º  and the scalars mc  and ms  
are t nontrivial elements of , 1m mQ +  The quantity he mr  
and mf  are termedi   in ate sca  are subsequently 
re d 

With setting 

,

lars that
placed by mr  an .mf  

 
1= *m m my f-  

the approximate solution is given by  

( 1= * * ,m m m m )X y-             (21) 

( )1= * *m m m .f-             (22) 

Letting  

[ ]1
1 2* ,m m m mP P P-º º     

then 

= *m m m .X f  

The  matrix  the last block column of m , 
can be computed from the previous  and , by 
the simple update  

n s´ ,mP 
1mP - mV

( )1= ,m m m m mP V Pq r--       (23) 

also note that, 

1= ,m
m

m

f
f

f
-é ù

ê ú
ê úë û

 

in which  

= .m m mcf f  

Thus, Xm can be updated at each step, via the relation  

1= .m m m mX X Pf- +  

The residual norm m F
R  is computed directly from 

the quantity 1mf +  as  

1= .m mF
R f +  

Some of the work in (23) can be eliminated by using 
matrices  in place of  The main steps of 
the -GL-LSQR algorithm can be summarized as 
follows. 

=m m mW r P .mP


Algorithm 2: -GL-LSQR algorithm 
1) Set  0 = 0X

2) 1 =
F

β B , 1 1=U B β , ( )1 1= T

F
α U ,  

( )1 1= TV U α 1 . 

3) Set , 1 1=W V 1 1=f b , 1 1=r a  

4) For  until convergence, Do: = 1,2,i 
5)  ( )ˆ =i i iW V αU- i

6) 1
ˆ=i i

F
β W+  

7) 1 1
ˆ=i i iU W β+ +  

8)  ( )1 1
ˆ = T

i i iS U β V+ +- i

9) 1
ˆ=i i

F
α S+  

10) 1 1
ˆ=i i iV S α+ +  

11) ( )1 22 2
1= +i i iβr r +  

12) =i ic r r  
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13) 1=i is β iρ+  

14)  1 1=i i is αq + +

15) 1 1=i i ic αr + +  

16) =i iaf fi  

17) 1 =i i i  cf f+

18) =i i icf f  

19) 1 =i i isf f+ -  

20) ( )1= +i i i i iX X Wf r-  

21) ( )1 1 1=i i i iW V Wq r+ + +- i  

22) If 1if +  is small enough then stop 

23) EndDo. 
As we observe, the  -GL-LSQR algorithm has 

certain advantages, we obtain simultaneously the appro- 
ximate solution of the multiple linear systems (1). Also 
the residual norm is cheaply computed at every stage of 
the algorithm. 

As a application of the new method applying it to 
solve the Sylvester equation in a special case. Consider 
the Sylvester equation  

= ,AX XB C-  

where ,  and n nA ´Î n sC ´Î s sB ´Î

=B Q

 are known 
and  is unknown. By using the Schur decom- 
position for the symmetric matrix B, the above Sylvester 
equation is returned to the  linear systems as follows. 
There is a unitary matrix Q such that , where 

 is a diagonal matrix which diagonal elements are the 
eigenvalues of B. So we have  

n s´ÎX

s
TQL

L

ˆ= = ,AXQ XQ CQ C- L  

by taking ˆ = ,X XQ  the Sylvester equation is converted 
to the following s linearsystems  

( ) ( ) ( )ˆ ˆ ˆ= ,    = , ,j j j ,A x c j i  s  

where j
( )ˆ =j ,A A Il-  ( )ˆ jx  and ( )ˆ jc  are the j-th col- 

mun of X̂  and , respectively. Ĉ

4. Numerical Experiments 

In this section, all the numerical experiments were com- 
puted in double precision with some MATLAB codes. 
For all the examples the initial guess 0X  was taken to 
be zero matrix. We consider two sets of numerical ex- 
periments. The first set of numerical experiments con- 
tains matrices of the form  

( ) = ,    = 1, 2,i
i , ,A A I i sl-   

obtained from the Sylvester equation, explained in 
previous section, where  

10 10
= trdiag 1 ,4, 1

1 1
A

n n

æ ö÷ç- + - - ÷ç ÷çè ø+ +
 and  is the ei-  il

genvalue of the matrix  
1

= tridiag 1 ,2, 1
1

B
s s

æ ö÷ç- + - + ÷ç ÷çè ø+
1

1+
. The right-hand  

side matrix C is taken  where the function 
rand creates an  random matrix. The matrices of 
the second set of experiments arise from the three-point  

( ), ,rand n s
n s´

centered discretization of the operator ( )d d

d d

u
a x

x x

æ ö÷ç- ÷ç ÷çè ø
  

in [0,1] where the function a(x) is given by a(x) = c + dx, 
where c and d are two parameters. The discretization is  

performed using a grid size of 
1

=
65

h , yielding matrices  

of size 64 with the values of  
and . The right- 
hand sides of these systems are generated randomly with 
their 2-norms being 1. All the tests were stopped as soon 
as, 

( )= 0.1551 0.9524
k

kc ´
= 1,2, ,k s( )= 7.7566 0.9524 ,

k

kd ´

710 .f -£  
We display the convergence history in Figure 1 and 

Figure 2 for the systems corresponding to the matrices of 
the first set of matrices and second set of matrices, 
respectively. Figure 1 shows that the  -GL-LSQR 
algorithm converges, however, Figure 2 shows slowly 
convergence which can be remedied by using a reliable 
preconditioner. But we did not deal with the precon- 
ditioner techniques in this paper. 

5. Conclusion 

We proposed a new method for solving multiple linear 
systems ( ) ( ) ( )=i i iA x b

( )i
, for 1 , where the coeffi- 

cient matrices 
i s£ £

A  and the right-hand sides  are 
arbitrary in general. This method has certain advantages 
which is applied to the arbitrary coefficient matrices 

( )ib

( )iA  and right-hand sides . Also It is not needed to ( )ib
 

 

Figure 1. Convergence history of the LSQR algorithm and 
the new algorithm for the first set matrices with s = 4 and n 
= 3000. 
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Figure 2. Convergence history of the LSQR algorithm and 
the new algorithm for the second set matrices with s = 2. 
 
store the basis vectors, it is not needed to predetermine a 
subspace dimension and the approximate solutions and 
residuals are cheaply computed at every stage of the al- 
gorithm simultaneously because they are updated with 
short-term recurrence. Applying a reliable preconditioner 
for the linear systems of Equation (1) may increas the 
convergence rate, which has not been dicussing in this 
paper. 
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