
Optics and Photonics Journal, 2012, 2, 173-177 
http://dx.doi.org/10.4236/opj.2012.23026 Published Online September 2012 (http://www.SciRP.org/journal/opj) 

Schrödinger Equation with a Cubic Nonlinearity 
Sech-Shaped Soliton Solutions 

Pierre Hillion 
Institut Henri Poincaré, Le Vésinet, France 

Email: pierre.hillion@wanadoo.fr 
 

Received June 3, 2012; revised July 1, 2012; accepted July 12, 2012 

ABSTRACT 

We first analyze the sech-shaped soliton solutions, either spatial or temporal of the 1D-Schrödinger equation with a 
cubic nonlinearity. Afterwards, these solutions are generalized to the 2D-Schrödinger equation in the same configuration 
and new soliton solutions are obtained. It is shown that working with dimensionless equations makes easy this generalization. 
The impact of solitons on modern technology is then stressed. 
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1. Introduction 

The one dimensional Schrödinger equation with a cubic 
nonlinearity has been known for a long time as well as its 
analytical solutions in terms of sech-shaped functions.Till 
recently, the situation was different for the two dimensional 
Schrödinger equation that we shall discuss here. 

Using general equations, we start with the spatial 
and temporal sech-shaped soliton solutions of the 1D- 
Schrödinger equation with a cubic nonlinearity and it is 
shown that working with dimensionless equations leads 
to further types of solitons. Then, the same process with 
gene-ral and dimensionless equations is applied to the 
2D-nonlinear Schrödinger equation which has sech-shaped 
soliton solutions generalizing 1D-solitons. Finally, because 
the nonlinear Schrödinger equation is a universal model that 
describes many physical non linear systems, the importance 
of solitons in modern technology is stressed. Nonlinear 
Schrödinger equations in (3D) and in cylindrical coordinates 
are succinctly discussed in Section 4. 

2. One Dimensional Sech-Shaped Solitons 

2.1. General Equations 

The one-dimensional, cubic, nonlinear Schrödinger Equation 
[1] intervenes in different physical settings to describe 
wave propagation in fluids, plasmas… nonlinear optics 
[2-6] in one of the three forms (c is the light velocity, k 
the wave number of propagating waves,  is a positive 
dimensionless parameter characterizing the medium in 
which this propagation takes place). 

     22, 1 2 , ,z xi x z k x z k x z       

     22, , , 0    z ti t z t z k t z       0       (1b) 

     22, 1 2 , ,t xi c x t k x t k x t     0       (1c) 

It is known to be one of the simplest partial differential 
equations with complete integrability, admetting in particular 
Nth order solitons as solutions and called spatial and 
temporal when they are solutions of (1a) or (1b). Changing 
the sign of the last term on the left hand side of Equations 
(1a)-(1c) gives a second set of cubic nonlinear Schrödinger 
equations with quasi periodic but no soliton sech-shaped 
solutions. 

It is easy to prove that the first order soliton solution of 
Equation (1a) with amplitude A is [6] 

     0, exp sech x z A i z x x         (2) 

with 
2

0 2 , 1k A x kA           (2a) 

Indeed: 
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   (3b) 

   2 2
02  1 2 sech ,k A x x x z        (3c) 

Substituting (3a) and (3c) into (1a) proves the result 
and, changing z, k into ct, k in (2) gives the first order 0  (1a) 
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soliton solution of Equation (1c) while the solution of (1b) 
is [6] easy to check 

     2
0 0, 1 exp 2 secht z t i z t t t    0   (4) 

These solutions have the remarkable feature that their 
profile does not evolve during propagation. 

2.2. Dimensionless Equations 

Using the dimensionless coordinates  = kz, 2kx  , 
 = kct the Equations (1a) and (1c) take the simple form 
(5a) and (5c) 

22 0i                       (5a) 

22 0z ti                      (5b) 

22 0i                       (5c) 

while the Equation (5b) is obtained with [7] 0z z  , 

0t t  , 2
0 0t z , 0z  . 

But, there exist more general expressions of the first 
order solitons for instance, for the Equation (5c) rewritten 
with the coordinates x, z, t, we have 

   
 

2 2
1

2

, 2 exp

sech 2

x t A iBx i A B t C

Ax Abt C

      
  


   (6) 

in which A, B, C1, C2 are arbitrary real constant with in 
particular [7] 

     
 

1 2 2

1 2

, 2 exp 2 4

sech

x t ivx i v

x vt

   



   
   

t
  (6a) 

Similarly, with Equation (5a) also rewritten with x, z, 
we get as solution in which β is a dimension-less parameter 

     
 

1 2 2

1 2

, 2 exp 2 4

sech

x z i x i

x z

     

 

   
   

z
  (7) 

The higher order soliton solutions have more intricate 
expressions [8] and their profile is no more constant, the 
solutions being rather periodic than stationary. The profile 
of a N = 2 soliton is pictured in [3]. 

The Equation (5b) has the simple solution [6] 

       , 2 exp sech 2q iq q q        0 , 

but, the comparison of (5b) and (5c) shows that changing 
x, t,  into , ,  in (6a) gives another solution of (5b) 

     
 

1 2 2

1 2

, 2 exp 2 4

sech

i i

t

        

 

   
   


 (8) 

where to avoid confusion  has ben used instead of v. 

3. Two Dimensional Sech-Shaped Solitons 

3.1. General Equations 

The situation is somewhat different for the two dimensional 
cubic nonlinear Schrödinger equations (cylindrical coor- 
dinates are used in (9b)) 
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    (9c) 

They where devoted to some domains, mainly hydro- 
dynamics and mechanics [9-11] till that recently nonli- 
nearities became an important topic, specially in optics and 
photonics, with as consequence to boost works on the 
analysis of Equations (9). 

We prove here that Equation (9a) have soliton-shaped 
solutions generalizing (2) 

     0, ; exp sech 0x y z A i z x x y y    (10) 

with 

2 2 2 2
0 02, 1  k A x i y k A2        (10a) 

We first have 
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0 0
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2 1 2sech , ;

zi x y z k x y z
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 (11a) 

and according to (3b) together with the second relation 
(10a) 
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0 0 0 0

1 2 , ; , ;

1 2 1 1 1 2sech

, ;

x yk x y z x y z

k x y x x y y

x y z

 



    
      



 (11b) 

  2 2
0 02 1 2 sech , ;k A x x y y x y z        (11c) 

Substituting (11a) and (11c) into (9a) achieves the proof. 
Changing z, k into ct, −k in (10) gives the soliton-shaped 
solution  , ;x y t  of Equation (9c). 

3.2. Dimensionless Equations 

The two dimensional generalization of Equation (5c), that 
is (9c) with dimensionless coordinates, is 
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     22 2
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, ; , ; 0
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i x y t

x y t x y t



   



     
  (12) 

We look for the solutions of this equation in the form 

   
   

2, ; exp 2 2 4x y

x y

x y t iv x iv y i v t

r x v t s y v t

 



     
     

 (13) 

in which 2 2 2
x yv v v   while , r, s are real parameters 

and, to symplify we write exp(.) the exponential factor. 
Then, a simple calculation gives 
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2 2 2

2 2 2

4 exp .

4 exp .

4 exp .

t t

x x x x x

y y y y y

i v i

v iv

v iv

   

   

  

    

        
        

y

   (14) 

Substituting (13) into (12) gives the equation satisfied 
by  with    0t x x y yi iv iv      

 2 2 3 0x y                 (15) 

and we look for the solutions of (15) in the form 

    , ; sech xx y t r x v t s y v t          (16) 

in which , r, s are real parameters to be determined. 
Writing to simplify  cosh .  , we get 

   3 2cosh . 1 cosh .     2        (17) 

and 

   
   

2

2 2 2

 sinh . cosh .

cosh . 1 2 cosh .

x

x

r

r

 

 

  

    
      (18a) 

   2 2 2cosh . 1 2 cosh .y s            (18b) 

substituting (17) and (18a,b) into (15) gives 

   

     

2 2

2 2 2

cosh . 1 cosh .

cosh . 1 2 cosh . 0r s

  



   
     

  (19) 

implying 
2 2 2, 2r s                 (19a) 

so that the solution (16) becomes with r s     

       1 2
, ; 2 sech r x s yx y t a x v t a y v t      

 
 

(20) 

to be compared with (6a). 
Similarly the two dimensional generalization of (5a), 

that is (9a) with dimensionless coordinates, is 
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   (21) 

with the solutions in which 22 2
1     and 1 2     
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 (22) 

We are left with Equation (9b). Then, using the 
dimensionless coordinates 0r r  , 0t t  , 2

0 0t r , 

0r   in which  and r0 positive. we get 

 

   22

1 , ;

, ; , , 0

i  



    

         

    

  
     (23) 

We look for the solution of this equation in the form 

   , ; exp i if                  (24) 

with  f   satisfying the equation 

 1 0f k k               (24a) 

Substituting (24) into (23) and taking into account 
(24a) give 

     2 0k     3          (25) 

with the solution [7] 

    1 2
2 sechk k v          (25a) 

while the solution of (24a) is 

    2f k               (26) 

substituting (25a) and (26) into (24) we get finally 

     
 

1 2
, ; 2 exp  2

sech

k i i k

k v

      

 

    
   

    (27) 

in which v is an arbitrary real parameter. It does not seem 
that the sech-shaped soliton (27) is known. But, substituting 
the dimensionless coordinate 0z z   to   into (27) 
gives the sech-shaped pulse 

     
 

1 2
, ; 2 exp exp

sech

k i i k

k v

      

 

     
   


 (28) 

4. Two Generalizations 

4.1. 3D-Schrödinger Equation 

Using the index 1, 2,3j   for the dimensionless coordi- 
nates x,y,z together with the sum-mation convention on 
the repeated indices and  , , x y zx , the tridimensional 
cubic nonlinear Schrödinger equation is 

     2
, , ,j

t ji t t t     0     x x x   (29) 
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We look for the solution of this equation in the form 
 2j

jv v v

     2, exp 2j j
j jt iv x i v t x v       x j t (30) 

the exponential term is written exp(.) to simplify and a 
simple calculation gives 

   
 

2

2

4 exp .

4 exp .

t t

j j
j j

i v i

v iv

   
j

j  

    

          
  (31) 

Since , substituting (31) into (30) 
gives the equation satisfied by  

  0j
t jv    

3 0j
j                   (32) 

We look for its solutions in the form with the real 
parameters , j  to be determined 

 sech j
j jx v t     


          (33) 

and writing 1/cosh(.) for sech j
j jx v t  

 
, we get 

 3 2sh . 1 cosh  2co .           (34a) 

and    2sinh . cosh . implyingj
j     

   2 2cosh . 1 2 cosh .j
j             (34b) 

Substituting (34) into (32) gives 

   
   

2 2

2

cosh . 1 cosh .

cosh . 1 2 cosh . 0

  



   
   

2 
      (35) 

implying 
2 2, 2                 (36) 

which achieves to determine (33) and consequently the 
solution (30) of the three dimensional cubic nonlinear 
Schrödinger equation 

4.2. Schrödinger Equation in Cylindrical  
Coordinates 

Using the dimensionless coordinates r, θ, , the Schrödinger 
equation with a cubic non linelarity is  

  , , ;r t     

2
0ti                    (37) 

 2 2 1 sin sin 1 sinr rr r r2 2 2
             (37a) 

For fields that do not depend on , , this equation 
reduces to 

       22, 2 , ,t r ri r t r r t r t          0  (38) 

and assuming    , 1 ,r t r r t  , we get 
2 2 2 2 31 1 , 1 2 2r r r r rr r r r r                (39) 

so that 

 2 22 1r rr r r                (40) 

and Equation (38) becomes 
22

t ri    2 0r                (41) 

We look for the solutions of this equation in the form 

     2, exp 2 4r t ivr i v t r vt         (42) 

and a simple calculation gives, exp(.) representin
exponential term. 

g the 

   
 
  

2
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2 2 2
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t

r r

r r r
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v iv

  

   

   

      

   (43) 

Substituting (42) into (41) and taking into account (43), 
we get

    

 since   0t rv     
2 2 3  0r r             (44) 

We look for the solutions of this equa
with



tion in the form 
 the real parameters β,  to be de-termined 

 cosh r vt              (45) 

Writing  cosh . ,  sinh .  
ves 

for hyperbo
sim

lic functions, a 
ple calculation gi

   
     

2

2 2 2 3

sinh . h . ,r    cos

1 cosh . 2sinh . cosh .r       
  (46) 

Substituting (45) and (46) into (44) gives 

   
   

2 31/ cosh . 2 cosh .   
3 2 2cosh . cosh . 0r   

     (47) 

that is 

   2 3 2 2 21 2 cosh . 1 cosh . 0r         (48) 

We consider an asymptotic approximation o
equat

f this 
ion for 0r r   with 0r r    so that to the 

order  00 2 r  Equation (48) becomes 

   1 2 co . 0 2 3 2 2 2
0sh . 1 coshr       (48a) 

with the solution , 2    0 02 0 2r r   
e spherical solution of the

ödinger equation describes physical 

which achieves to de th  
cubic nonlinear Schrödinger equation. 

5. Conclusions 

termine 

The nonlinear Schr
processes in which nonlinearity and dispersion cancel 
giving birth to solitons. This equation [9-11] can be applied 
to hydrodynamics (rogue waves), nonlinear optics (optical 
solitons in Kerr media), nonlinear aoustics (blood circu- 

Copyright © 2012 SciRes.                                                                                  OPJ 



P. HILLION 

Copyright © 2012 SciRes.                                                                                  OPJ 

177

6,17] as well as surface w
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