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ABSTRACT 

Over the past few decades, numerous optimization-based methods have been proposed for solving the classification 
problem in data mining. Classic optimization-based methods do not consider attribute interactions toward classification. 
Thus, a novel learning machine is needed to provide a better understanding on the nature of classification when the in-
teraction among contributions from various attributes cannot be ignored. The interactions can be described by a 
non-additive measure while the Choquet integral can serve as the mathematical tool to aggregate the values of attributes 
and the corresponding values of a non-additive measure. As a main part of this research, a new nonlinear classification 
method with non-additive measures is proposed. Experimental results show that applying non-additive measures on the 
classic optimization-based models improves the classification robustness and accuracy compared with some popular 
classification methods. In addition, motivated by well-known Support Vector Machine approach, we transform the pri-
mal optimization-based nonlinear classification model with the signed non-additive measure into its dual form by ap-
plying Lagrangian optimization theory and Wolfes dual programming theory. As a result, 2n – 1 parameters of the 
signed non-additive measure can now be approximated with m (number of records) Lagrangian multipliers by applying 
necessary conditions of the primal classification problem to be optimal. This method of parameter approximation is a 
breakthrough for solving a non-additive measure practically when there are a relatively small number of training cases 

available ( ). Furthermore, the kernel-based learning method engages the nonlinear classifiers to achieve bet-
ter classification accuracy. The research produces practically deliverable nonlinear models with the non-additive meas-
ure for classification problem in data mining when interactions among attributes are considered. 
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1. Introduction 

Classic optimization-based methods formulate classifica- 
tion problems by modeling data with standard optimiza- 
tion techniques using objectives and constraints. Mathe- 
matical programming provides general solution to the 
zoptimization problem. For example, references [1,2] 
proposed two classification models based on reducing the 
misclassification through minimizing overlaps or maxi- 
mizing the distance of two data points in a linear system. 
A method named Multiple Criteria Linear Programming 
(MCLP) [3,4] has been initialized to compromise the 
objectives of models in [1] and [2] simultaneously and 
achieved a better data separation in a linear system. Al- 
ternatively, a quadratic model can be used to deal with 

linearly inseparable situation [5]. The key idea of those 
approaches is to separate data when they are in different 
classes as well as pull data together when they are in the 
same class. Initiated by [6], another well-known optimi-
zation-based classification method is Support Vector 
Machine (SVM), which mathematically constructs hy-
perplanes by support vectors. Further more, SVM sepa-
rates data nonlinearly by introducing so-called nonlinear 
kernel functions. 

Although these optimization-based methods separate 
data linearly or nonlinearly, they do not consider contri-
butions from the interaction among attributes. In this 
paper, we use a nonadditive measure to model data with 
interactions and propose new nonlinear classification 
models. Nonlinear integrals can be used as tools to ag-
gregate unknown parameters in the non-additive measure *Corresponding author. 
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and values of attributes. As one of nonlinear integrals, 
the Choquet integral [7] is chosen as the aggregation tool 
for data modeling for classification problem. In addition, 
we investigate the direction of constructing nonlinear 
objectives by developing kernel functions in nonlinear 
classification models, a technique taken by SVM. 

The rest of this paper is organized as follows: In Sec-
tion 2, an overview of classic optimization-based classi-
fication methods is provided. Section 3 reviews defini-
tions of non-additive measures and the Choquet integral. 
In Section 4, a new optimization-based classification 
model with a non-additive measure is proposed. Section 
5 describes the Lagrangian optimization approach to 
solve the issue of dealing limited training samples with 
the proposed nonlinear classification model. Section 6 
shows performance of the proposed models in experi-
mental results. Finally, Section 7 provides conclusions 
from this research. 

2. Preliminary 

In this section, we provide an overview of classic opti-
mization-based classification methods. 

Consider that a dataset consists of n attributes and m 
records. Let X = {x1, x2, ···, xn} denote the set of feature 
attributes and y be the class label, where  1,1y  j  
for a two classes dataset. The dataset has a form as fol-
lows: 
 

x1 x2 ··· xn y 

f11 f12 ··· f1n y1 

f21 f22 ··· f2n y2 

  ···   

fm1 fm2 ··· fmm ym 

 
where following elements 
 

fj1 fj2 ··· fjn 

 
are the values of attributes x1, x2, ···, xn for the j-th record 
in the dataset, denoted by fj, j = 1, ···, 2, m. Note that fj 
can be regarded as a vector. In addition, yj is the corre-
sponding class label in the j-th record. 

The mathematical programming or optimization-based 
approach have been widely used for many applications. 
Particularly, numerous mathematical programming me- 
thods based on optimization techniques have been pro-
posed for solving classification problem [1-3,6]. In clas-
sification, the concept of classes is generally expressed as 

jf bw , where w, fj, and b represent attribute weights, 
values, and classification critical value respectively. 
Therefore, wfj is the weighted sum of all the attributes. 
For a dataset with two classes, the decision function for 

the classes are defined as: 

  0j jy f b w

 
=1

Maximize
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0, is unrestricted

m

j
j

j j j

j

y f b
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

 


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w

w

 
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Minimize
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m

j
j

j j j

j

y f b







 





w

w

 

where yj = 1 if the j-th record belongs to class 1 and yj = 
–1 if the j-th record belongs to class 2. 

The two linear classification methods [1,2] based on 
the idea of reducing misclassification by minimizing the 
overlaps or maximizing the sum of distances in a linear 
system. One approach is to maximize the sum of mini-
mum distances (MMD) of data from the critical value. 
Another approach separates the data by minimizing the 
sum of deviations (the overlapped distances between 
classes) (MSD) of data from the critical value. These two 
classic linear classification models can easily be de-
scribed with a standard form of optimization, i.e. 

  (MMD) 

   (MSD) 

where αj denotes the degree of the overlapping of the two 
classes and βj denotes the distances from the observation 
to the critical classification value b. The weights w are 
optimized by linear programming, a typical optimization 
technique. The critical value b is given as a constant 
non-zero real number. 

The above two linear classification models provide the 
basic idea of data separation, which pulls the data apart 
from the boundary (maximize the sum of βj in MMD) or 
to make the smallest data overlapping area (minimize the 
sum of αj in MSD). However there are some optimization 
difficulties in those approaches. For example, the MMD 
model cannot be optimized because the value of βj can 
reach as large as possible since the goal is to maximize 
the sum of βj. Thus, in the implementation of MMD 
model, βj is bounded as βj ≤ β*, where β* is a given posi-
tive constant. The MMD classification model is only able 
to classify linearly separable dataset. Similarly, the αj in 
MSD model has to be bounded to a very small positive 
value α* as αj ≥ α*. 

Efforts have been made to improve optimization-based 
linear classification for better dealing with linearly in-
separable. For example, MCLP approach was initiated by 
compromising two objectives of MMD and MSD simul-
taneously and achieved a better classification within a 
linear system [3]. MCLP model compromises objectives 
as [3]: 
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(MCLP) 

where β* is a positive constant to restrict the upper bound 
of βi. 

Another direction of improving optimization-based 
classification is to develop nonlinear models by con-
structing nonlinear objectives, such as the Multiple Cri-
teria Quadratic Programming (MCQP), a nonlinear opti-
mization classification [5]. 

3. Non-Additive Measures 

A common characteristic of the methods described above 
is that the modeling is based on the assumption that con-
tributions from all attributes toward classification are the 
sum of contributions of each attribute. None of those 
methods considers the interactions among attributes to-
ward classification, which may provide a better under-
standing of the nature of classification and achieve more 
satisfactory results. In addition, the model should be able 
to represent the underlying phenomenon of applications 
such as classification in a more adequate manner because 
attributes are not completely isolated from each other. 
Such a model should have the potential of increased ro-
bustness, defined as the ability of maintaining effective 
performance on both training and testing results on a 
diversity of datasets. Particularly, a classification model 
is said to be robust when the performance of its testing 
results is not significantly distant from training. 

The theory of non-additive measure can achieve in-
creased robustness and better performance in classifica-
tion. The bases of non-additive measures and the nonlin-
ear integrals are briefly reviewed in the rest of this sec-
tion. 

3.1. Definition of Non-Additive Measures 

The attribute interactions can be represented by a 
non-additive measure. The concept of non-additive meas-
ure (also referred to as fuzzy measure theory) was initi-
ated in the 1950s and has been well developed since 
1970s [7-9]. 

Let finite set X = {x1, ···, xn} denote the attributes in a 
multidimensional dataset. Several important types of 
non-additive measure are defined as the followings [8]: 

Definition 1. A non-additive measure μ defined on X is 
a set function  satisfying ,: (    , 
where ( )X

( )
 denotes the power set of X, μ is monotone 

if it satisfies = 0   and  if , where 
E, F are any sets in 

E F E F
( )X . 

Definition 2. A signed non-additive measure μ is de-

fined on X is a set function .  : ( ) ,X   

   

The values of non-additive measure μ are unknown 
parameters. The signed non-additive measure is adopted 
to develop optimization-based nonlinear classification 
models. 

3.2. Choquet Integral 

Nonlinear integrals are used as data aggregation tools to 
integrate the values of attributes with respect to a non- 
additive measure. As one of nonlinear integrals, the 
Choquet integral is more appropriate for applications 
such as classification because it provides very important 
information in interactions among attributes [10]. 

  1 2fNow let the values of = , , , nf x f x f x  
denote the values of each attribute in the dataset; let   
be the non-additive measure. The general definition of 
the Choquet integral, with function  : ,f X   

       0

0
d = d dc f F X F 

, 
based on signed non-additive measure μ, is defined in 
formula 1 as 

     



       (1) 

  where =F x f x  is called α-cut set of f, for 
 ,  

 
2 1

=1

d =
n

, n is the number of attributes in the dataset. 
Choquet integral may be calculated as [11]: 

j j
j

c f z 


             (2) 

where 

  
 

  
: ( ) [0,0.5): 0.5,1

22

min max if > 0 or = 2 1

=

0 otherwise

n
i i

jj i frci frc ij i

f x f x j

z
    
 

  





(3) 

2i

j
frc

 
 
 

 

is the fractional part of    
2i

j
 

and the maximum operation on the empty set is zero. Let 
jn, jn – 1, ···, j1 represent the binary form of j, the i in for-
mula 3 is determined as following: 

   0.5,1 = = 1
2 ii

j
i frc i j
    

  
 

and 

   0,0.5 = = 0
2 ii

j
i frc i j
    

  
 

It is important to emphasize that the concept of Cho-
quet integral is not equal to a nonadditive measure μ. 
Rather, it is a mathematical tool aggregating the values 
of attributes with respect to the signed non-additive 
measure μ; as such, it is similar to the linear weighted 
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sum to aggregate the corresponding attribute with respect 
to the weights in a linear model such as MSD. 

4. Optimization-Based Nonlinear Classifiers 
with Non-Additive Measures 

The idea of using non-additive measure in classification 
problem is not new. In the fuzzy measure community, 
non-additive measures have been utilized for modeling 
attribute interactions for data separation purpose. For 
example, reference [12] used the Choquet integral with 
respect to the non-additive measure on statistical pattern 
classification based on possibility theory, an optimiza-
tion-based classification model was later proposed with a 
non-additive measure [13]. Reference [14] proposed the 
k-Interactive (k = 2) classification with feature selections 
based on a pattern matching algorithm similar to [12]. 
Classification can also be achieved by directly separating 
the date using the weighted Choquet integral projection 
[15] or using a penalized signed fuzzy measure [16]. A 
detailed discussion of geometric meaning of the contri-
butions from feature attributes in nonlinear classification 
can be found in [17]. 

There are limitations on above methods, notably: (a) 
Impractical: Due to the complexity of the non-additive 
measure, the methods were only applicable for datasets 
with small number of attributes, generally less than 5. (b) 
Limited performance: the classification accuracy was not 
promising compared to other popular methods [13] due 
to lack of better learning algorithms for determining un-
known parameters of a non-additive measure. For in-
stance, classification model in [15] with the Choquet 
integral has infinite number of solutions and the pro-
posed method can only determine one of them. To ad-
dress these limitations, this current research intends to 
provide a more practical and powerful solution toward 
nonlinear classification with a non-additive measure. 

In addition, early studies of non-additive measure for 
classification also show limitations on classification ac-
curacy and scalability. For example, although classifica-
tion model in [12] is well developed in theory (similar to 
Bayesian classifier), the classification did not show any 
benefits of using non-additive measure and it is even 
more difficult to obtain good results on small Iris dataset, 
a benchmark dataset from UCI Machine Learning Re-
pository (http://archive.ics.uci.edu/ml/). An optimization- 
based nonlinear classification model [13] with a non- 
additive measure was later proposed and studied. The 
results show it even performs worse than linear classifier 
on iris dataset and only competitive to fuzzy k-NN clas-
sifier on other datasets. The research [13] suggests a bet-
ter non-additive identification algorithm is needed. 

An improvement for nonlinear optimization-based 
classifiers with non-additive measure might be the opti-
mization process of the critical value for classification. 

Inn MCLP model, the classification critical value b is not 
optimized but arbitrarily chosen. A better method to de-
termine b could be updating b with the average of the 
lowest and largest predicted scores [15] during learning 
iterations. Alternatively, the critical value b in MCLP 
also can be replaced with soft-margin b ± 1 similar to 
SVM which constructs a separation belt instead of a sin-
gle cutting line. With this technique, it is guaranteed to 
produce a unique solution to the model because the goal 
of the optimization is to find the cutting line which is 
most close to the misclassified data points on both sides. 
The MCLP model can be extended to a linear program-
ming solvable problem with optimized b and the signed 
non-additive measure, as shown below: 

  
=1

Minimize

Subject to d 1

0; , are unrestricted

m

j
j

j j

j

y c f b

b



 

 

  





  (M1) 

where 1,1y  

2 1nm

i , μ, b and α are critical values to be 
determined. Model M1 can be solved by standard linear 
programming techniques such as the simplex method. 
However, the number of μ, which is 2n – 1, is exponen-
tially related to the number of attributes (n) because of 
power set operation in the Choquet integral. When the 
number of records (m) in the training set is relatively 
small (e.g. 

2 1nm 

), the model is difficult to be 
solved. In the next section, we propose a compromised 
solution to deal with this situation. 

5. Nonlinear Classification with the Signed 
Non-Additive Measure by Lagrangian 
Optimization 

As mentioned, it is hard to optimize the non-additive 
optimization-based classification models when there are 
not enough observations ( ). The existing ap-
proaches such as hierarchical Choquet integral [18] and 
the k-Interactive measure [14] ignored some values of 
non-additive measure μ to some extent. As a solution, the 
Lagrangian optimization theory can be incorporated to 
transform the model into practically solvable form with 
the best approximation of parameters of non-additive 
measure μ. The Karush-Kuhn-Tucker (KKT) conditions 
[19] applied in the Lagrangian optimization process are 
the necessary conditions to guarantee an optimization- 
based classification model to reach optimum. To develop 
a nonlinear classifier which can deal with this situation, a 
quadratic non-additive optimization-based model is con-
structed and transformed. 

5.1. Lagrangian Theory for Optimization 

The Lagrangian theory is intended to provide the neces-
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sary conditions for a given nonlinear optimization prob-
lem to reach an optimal solution. The KKT conditions in 
the Lagrangian optimization provide the necessary con-
ditions for the proposed classification model to have an 
optimal solution. Generally, an optimization problem can 
be presented as [20]: 

Definition 3.  Given functions f, gi, i = 1, ···, k, and hi, 
i = 1, ···, m, defined on vector , the primal 
optimization problem is defined as: 

nw 

 mize f w

0, = 1, ,

 Mini

 Subject to ig w i k

= 0, = 1, ,i m

  
=1

k m

i i
i i

g w h w   

  

 ih w  

The generalized Lagrangian function corresponding to 
the definition 3 is  

    
=1

, , = i iL f ww λ δ  

where 1 2= , , , i  λ , 1 2= , , , i  
, n  

 ize ,

δ  are the 
Lagrangian multipliers and . i i

Instead of solving the primal optimization problem, an 
alternative is to optimize the Lagrangian dual problem, 
which is defined as 

Maxim   

to 0,

, 

Subject  

 w,L  

* *,

 

where , the greatest lower 
bound on Lagrangian function L over Ω. The optimal 
solution for the objective function is called the value of 
the problem. 

  w, = inf   

The following Karush-Kuhn-Tucker theorem Tucker 
1951 gives the necessary conditions for an optimal solu-
tion to general optimization problem. 

Theorem 1. Given an optimization problem as defined 
in definition 3, the necessary and sufficient conditions for 
a point w* to be an optimum are,  

 
, such that 

* * *, ,
= 0

w

 



 

L w
 

* * *, ,
= 0

L w  







 * * = 0, = 1, , .i i

 

g w i k 

0, = 1, , .

 

 *
ig w i k

= 1, , .i k

* 0 

     
=1

, =
k

i i
i

L f w g ww λ

  

* 0,i   

The first two conditions are also the necessary condi-
tions for the optimization problem to reach optimal. The 
third condition is called KKT complementary condition. 
The first two conditions are also the necessary conditions 

for the optimization problem to reach optimal. The suffi-
cient condition is true only if function (L) of w is convex. 
In this research, since the convexity of the primal prob-
lem is yet to be proved, only the necessary conditions can 
be considered. Since the constraints of the primal opti-
mization problem does not have the condition of equality, 
only the first two conditions and i  are to be ap-
plied. Thus, the lagrangian function for this particular 
optimization problem is described as: 

 

A necessary condition for a normal point w* to be a 
minimum of f(w) subject to gi(w) = 0, i = 1, ···, k, is Cris-
tianini2000: 

 * * *, ,
= 0

L w

w

 


 

for some values of λ*. 

5.2. Quadratic Non-Additive Optimization-Based 
Classification 

We extend model M1 to a quadratic programming form 
and rewrite to model M2, as follows: 

  

2

=1

1
Minimize

2

Subject to d 1

0; , are unrestricted

m

i
i

j j

j

C

y c f b

b



 

 


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





μ

  (M2) 

 1,1iy    where 

It is important to note that 
21

2
μ

 

 is a constructed ob- 

jective for modeling purpose. The constant C is normally 
set to be very large to minimize the impact from the con-
structed objective. 

5.3. Nonlinear Classifier with the Non-Additive 
Measure 

The optimization problem M2 can be transformed into its 
corresponding dual problem. Similar to the optimization 
process of Support Vector Machine Cristianini2000, 
firstly, the primal Lagrangian is: 

  

2

=1

=1

1
, , =

2

d 1

m

i
i

m

i i
ii

L b C

y c f b



 



      



 

α μ μ

 

where λi are the Lagrangian multipliers and C is a given 
relatively large positive constant. According to the gen-
eral definition of the Choquet integral: 
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Thus, 

d =c f   k kz μ  

Now the necessary KKT conditions are applied on the 
primal Lagrangian function L by taking the partial de-
rivative of L with respect to μ, α and b to be zero as fol-
lows:  
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where C is a constant vector and is defined as: 
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Therefore, the following conditions hold:  
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Thus, after applying the necessary conditions on L, the 
primal becomes  
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where  denotes the inner product of zi and zj. i j

The primal problem can be transformed into its dual 

problem according to Wolfe’s dual programming theory, 
as the following shows: 
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 1,1y  where i

Since λ = C and elements in C are constants, and the 
model can be further simplified as: 

. 

  
, =1

=1

1
Maximize

2

Subject to = 0

0

m

i j i j
i j

m

i i
i

i

y y

y

 





 







i jz z

 

 1,1y  where i

Model M3 can be regarded as a general optimization- 
based nonlinear classifier with the signed non-additive 
measure. In addition, the inner product can be further 
replaced with kernel functions to deliver more accurate 
classification. 

. 

It is observed that for constructing optimal separation 
in a feature space, one does not need to consider the fea-
ture space in explicit form, but only has to calculate the 
inner products between support vectors and the vectors 
of the future space [21]. Thus, the inner product opera-
tion can be replaced with kernel functions K, the function 
that corresponds to an inner product in the expanded 
feature space. Nonlinear kernel functions are able to map 
the data into hyper space to achieve better classification. 

The three well-known kernel functions have been 
adopted by Model M3. They are linear, Polynomial and 
RBF kernel functions.  

   , = ,linear i j i jK z z z z

   

 (innerproduct/linear Kernel) 

 , = 1 ,
k

Polynomial i j i jK z z z z

 

 (Polynomial Kernel) 

2 22
, =

z zi j
RBF i jK z z e

  
 (RBF Kernel) 

By solving M3 with standard optimization technique, 
the number of parameters to be optimized is reduced 
from level of 2n to m. 

Model M3 with kernel functions can be solved by Se-
quential Minimal Optimization (SMO) [22]. SMO algo-
rithm decomposes the original QP (Quadratic Program-
ming) problem into smaller QP problem by heuristically 
choosing two Language multipliers, which makes the 
smallest possible optimization problem. For each small 
QP problem, an analytic method is used for solving the 
two Language multipliers. Through altering two Lan-
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guage multipliers at each step, the objective function will 
be decreased and the convergence is guaranteed accord-
ing to Osuna’s theorem Osuna [23]. 

attribute interactions because the datasets were created 
based on features of the Choquet integral. 

To better understand this nonlinear classification, we 
visually represent how Model M2 (the primal problem) 
to perfectly classify the two dimensional artificial dataset 
in Figure 1. The example was taken from fold-1 training 
set of the two dimensional artificial dataset. This training 
set contains 160 data points, including 85 in class 1 and 
75 in class 2. Model M2 creates a three dimensional de-
cision space (x1, x2, y), where x1, x2 are the attributes of 
the two dimensional dataset and y is the decision score of 
M2. The model classifies data as class 1 when y > b, oth-
erwise class 2. Figure 1 presents one solution from the 
cross validation. In Figure 1(a) data points belonging to 

In conclusion, we point out that the applied KKT con-
ditions are the necessary conditions for the classification 
model to reach optimum. Model M2 is transformed into 
its dual form M3 during the Lagrangian optimization to 
deal with the case of learning with small training dataset 
( m ). Through this compromised solution, the 2n 
– 1 parameters of the signed non-additive measure can 
now be approximated by m Lagrangian multipliers. 

6. Applications 

The proposed Model M3 has been applied on both artifi-
cial and UCI machine learning datasets for classification 
purpose and compared with performance of other meth-
ods. 

 
Table 1. Classification accuracy on two artificial datasets. 

Methods 3D 2D 

M2 97.2 100 

M3 (Linear) 98.8 96.0 

M3 (Poly) 99.5 98.0 

M3 (RBF) 99.7 99.0 

M3 (Sigmod) 62.9 95.0 

LibSVM (Linear) 97.7 82.0 

LibSVM (Poly) 62.9 95.0 

LibSVM (RBF) 98.8 98.0 

LibSVM (Sigmod) 97.4 67.0 

Decision Tree (J48) 96.3 98.5 

Logistic Regression 97.7 84.0 

Naïve Bayes 94.1 92 

There are two artificial datasets with two classes ran-
domly generated according to the definition of the 
Chouqet integral. One dataset has two dimensions (2D) 
and the other has three (3D). The 5-fold cross-validation 
is used for classification evaluation. Model M3 is also 
compared to other popular classification methods, such 
as SVMs, Decision Tree (J48), Logistic Regression and 
Naive Bayes. The average classification accuracy in per-
centage is summarized in Table 1 for evaluating testing 
sets in all 5 folders. As a result, M3 performs best on 
both artificial datasets when nonlinear kernel methods 
are used although performance of different kernel meth-
ods varies. The results confirm the theoretical assump-
tion that models with non-additive measure can deal with  
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Figure 1. Nonlinear classification by Model M2. (a) View 1; (b) View 2. 
 
two classes are represented by asterisks (.) and dots (.), 
respectively. The data points shown on the bottom of the 
figure depict the original 2D data, which are apparently 
not linearly separable. After applying Choquet integral to 
create a third dimension y, the corresponding 3D data 
points are now located in two different 2D planes, and 
are now linearly separable. Figure 1(b) represents the 
same data set but provides a different perspective to view 
the data. The linearly inseparable two dimensional data-
set x1, x2 is lifted into a hyper space (x1, x2, y) by M2 and 
then can be easily classified by the decision boundary y = 
–14 (value of the critical value b). 

In addition, the data cannot be perfectly classified by 
the linear model MSD as Figure 2 shows. After applying 
MSD model, the corresponding 3D data points are still 
located in one flat surface in the three dimensional space 
and the two classes cannot be linearly separated. In MSD 
model, the critical value b is set to 1 and the MSD classi-
fication model separates data by decision function y = 
w1f1 + w2f2 (y > 1 indicates class 1 and y < 1 for class 2), 
with the solution w1 = 0.92, w2 = 0.70. 

Classification of UCI Datasets 

The UCI’s Pima Indian Diabetes and the Australian 
Credit Approval datasets were classified with model M3. 
The Australian dataset contains two classes (approval or 
not) and it has 14 attributes and 690 instances. Both data-
sets were transformed into [–1, 1] with z-score normali-
zation and the 5-folder cross-evaluation was conducted 
for the application. The constant variable c was set to 

100000 for all the experiments. Table 2 is the summari-
zation of the results compared with the SVM classifier 
with RBF kernel. 

The above results show that M3 outperformed SVM 
with RBF kernel on the Australian credit dataset which 
indicates the model is more robust when the dataset has 
more feature attributes, in the sense of that the perform-
ance of the testing is not significantly worse then the 
training. Our experiences also show that the use of La-
grangian optimization makes it feasible to solve non- 
additive measure when the number of attributes is up to 
14. The use of kernel functions also ensured the classifi-
cation accuracy of the nonlinear model with the signed 
non-additive measure. 

7. Conclusion 

We have proposed a new classification approach based 
on optimization-based models while the attributes inter-
actions are considered. The theory of non-additive meas-
ures were utilized to model the data with interactions. 
 

Table 2. Classification results on two UCI datasets. 

Methods Diabetes Australian Credit 

SVM (RBF) 76.17 78.70 

M3 (RBF) 75.00 84.06 

M3 (Linear) 73.18 84.35 

M3 (Poly) 75.00 84.20 

M3 (Sigmod) 73.96 82.90 

Copyright © 2012 SciRes.                                                                                AJOR 



N. YAN  ET  AL. 372 

 

1.6 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

y 

0 
0.2 

0.4 
0.6

0.8
1

1

0.8 

0.6 

0

0.2

0.4

x2 

x1  
(a) 

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0

0

0
0.2 0.40.60.81

x1 

0.5 

1 

x2

y 

 
(b) 

Figure 2. Linear classification by Model MSD. (a) View 1; (b) View 2. 
 
Traditionally, nonlinear integrals are the aggregation 
tools for non-additive measures. The Choquet integral is 
good for data modeling purpose. We have demonstrated 
the value of using non-additive measure on optimization- 
based classification and proposed a more efficient non- 
linear model M3, which can classify data by solving less 
number of parameters. The 2n – 1 parameters of the 
signed non-additive measure can now be approximated 

by m Lagrangian multipliers. The optimization of the 
dual model M3 is guaranteed by KKT conditions, which 
are the necessary conditions for the nonlinear program-
ming to be optimal. This method of parameter approxi-
mation is useful when the training set has limited number 
of samples. The proposed approach is thus suitable for 
classification applications where training sample is small 
comparing with the number of attributes. The experiment 
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on the artificial dataset demonstrated the geometric 
meaning and profound theory of the nonlinear classifica-
tion models. Applications on UCI datasets have shown 
that this nonlinear approach increases model robustness 
as the classification accuracy is stable and the accuracy 
of testing results is close to that of the training results. 
We are now in the process of applying our approach to 
various data mining applications. 
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