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ABSTRACT 

Many concrete real life problems ranging from economic and business to industrial and engineering may be cast into a 
multi-objective optimisation framework. The redundancy of existing methods for solving this kind of problems suscep-
tible to inconsistencies, coupled with the necessity for checking inherent assumptions before using a given method, 
make it hard for a nonspecialist to choose a method that fits well the situation at hand. Moreover, using blindly a me-
thod as proponents of the hammer principle (when you only have a hammer, you want everything in your hand to be a 
nail) is an awkward approach at best and a caricatural one at worst. This brings challenges to the design of a tool able to 
help a Decision Maker faced with these kinds of problems. The help should be at two levels. First the tool should be 
able to choose an appropriate multi-objective programming technique and second it should single out a satisfying solu-
tion using the chosen technique. The choice of a method should be made according to the structure of the problem and 
to the Decision Maker’s judgment value. This paper is an attempt to satisfy that need. We present a Decision Aid Ap-
proach that embeds a sample of good multi-objective programming techniques. The system is able to assist the Decision 
Maker in the above mentioned two tasks. 
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1. Introduction 

Mathematical programming is an important tool in the 
arsenal of means at a Decision Maker’s disposal. Indeed, 
many real-life problems such as product mix, transporta- 
tion and blending (see for example in [1-3]), may be cast 
into a mathematical programming framework. Theoreti- 
cal underpinnings for mathematical programming, par- 
ticularly for linear programming, are now well estab- 
lished [4,5]. As a result, a broader array of techniques has 
been developed. We mention, without any claim to ex-
haustivity, the simplex algorithm [6], the ellipsoid me-
thod [7] and the Karmarkar’s method [8,9] for linear 
programming; the cutting-plane methods [7] and the pe-
nalty methods [10] for nonlinear programming. Soft- 
ware with powerful computational and visualisation ca- 
pabilities like LINGO [11] and XPRESS have also been 
developed. All the above-mentioned methods and soft- 
ware rely heavily on the assumption that there is only 
one economic (utility) function to optimize and that all 
involved parameters have well-known fixed values. In 
many concrete real-life problems like in public deci- 
sion-making, water quality management, portfolio opti- 
mization to mention but a few, the Decision Maker has to 
incorporate simultaneously several conflicting economic 

functions in an optimization. 
Setting (see for example in [12,13]. The simplistic ap- 

proach, consisting of substituting arbitrarily a single ob- 
jective function to several conflicting ones, often leads to 
a bad caricature of the reality. Such an approach has no 
other option but to churn out meaningless outcomes. The 
purpose of this paper is twofold. Firstly, it aims at raising 
awareness of the most important techniques used to sin-
gle out satisfying solutions for a mathematical program 
with several conflicting goals. Secondly, it describes a 
Decision Support System (DSS) for multi-objective pro-
gramming problems (DSS4MOPP) able to help a user 
confronted with such a problem. The system should as-
sist at two levels. Firstly, to choose an appropriate tech-
nique for solving the problem at hand and secondly to 
single out a satisfying solution that meets the Decision 
Maker’s needs. The remaining of this paper is organized 
as follows: The next section introduces basic concepts on 
multi-objective section, we describe the most used meth- 
ods for solving multi-objective programming problems. 
Section 3 is devoted to the design of our DSS for multi- 
objective programming problems. Finally, we make 
some concluding remarks along with suggestions for 
further developments in the field of multi-objective pro- 
gramming. 
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2. Multi-Objective Programming Problems 

2.1. Problem Formulation 

A multi-objective program is a problem of the type: 

    , 2kf x k 

*

1Min , ,

subject to

f x

x X



 



       (P) 

where fi(i = 1, 2, ···, k) are real-valued functions of Rn 
and X is a nonempty and bounded region included in Rn. 

2.2. Solution Concept 

In multi-objective optimisation context, unless the objec-
tive functions are not conflicting, the optimum optimrum 
does not exist. So we should make explicit the meaning 
of optimality in this context. Several solution concepts 
are discussed in the literature. For our purpose we restrict 
ourselves to the notion of Pareto optimality which is lost 
used in this context. 

Definition 1. x X  is said to be Pareto Optimal 
solution for (P) if there does not exist another x X  
that is at least best as x* for all objective functions and 
that is best to x* for at least one of them. 

Definition 2. A vector *x X is said to be locally Pa-
reto optimal for (P) if it is Pareto optimal for (P) in a 
neighborhood of x*: That is, *0 x  is Pareto optimal 
for (P) in  * ,xX B  , where 

   * *n x x,B x x R    . 

2.3. Example of a Concrete Problem That May  
Be in the Form of Multi-Objective  
Programming Problems 

2.3.1. Problem Description 
The Nyarutarama Lake, located in Kigali City, is famous 
for its flora which attracts migratory birds and fish. The 
lake is connected to many rivers. The most important 
ones: Karenge, Kimisagara and Nyabarongo are controlled 
by reservoir. These reservoirs are managed by Rwanda 
Water and Sanitation Corporation (RWASCO). They 
provide drinking and irrigation fresh water to the 
Nyarutarama lake. The problem consists of determining 
optimal release from different reservoirs while meeting 
drinking and irrigation water needs. 

2.3.2. Mathematical Formulation of the Problem 
For this problem we can consider as decision variables: 
water releases, from different reservoirs, for irrigation, Ii,t, 
Di,t for drinking, Di,t and for the Nyarutarama Lake Li,t 
where i and t are reservoir and time indices respectively. 
Moreover the following parameters variables must be 
introduced in order to solve the problem Mi,t. Estimation 

of releases for drinking, irrigation and the lake from res-
ervoir i at period t: MRLt: Minimum releases for the lake 
at period t specified by the Environment Ministry. DD,i,t: 
Maximum demand for drinking water from reservoir i at 
the end of period t: DI,i,t: Maximum demand for irrigation 
water from reservoir i at the end of period t: In this prob-
lem, the period t is equal to one month and the index I is 
equal to 1 for Karenge reservoir, to 2 for Kimisagara 
reservoir and to 3 for Nyabarongo reservoir. The optimi-
sation problem corresponding to the water management 
in subsection 2.3.1: 

 , ,Max , ; 1,3i t i tD I i 

, , , , ; 1,3i t i t i t i tD I L M i

 

subject to 

   

, , ; 1,3i t i tL MRL i 

, , ,, , 0; 1,3i t i t i tD I L i 

         (1) 

             (2) 

.           (3) 

where (1) are constraints on maximum releases, (2) are 
constraints on lake releases and (3) non-negativity cons- 
traints. 

3. Methods for Solving Multi-Objective 
Programming Problems 

In the literature (see for example [1,14]), the most used 
methods for solving multi-objective programs are grouped 
in five categories, namely No-preference methods, a Pri-
ori methods, a Posteriori methods, Interactive methods 
and Metaheuristics. In what follows we briefly discuss 
each category. 

3.1. No-Preference Methods 

The No-Preference methods do not need any inter objec-
tive or subjective preference information from the Deci-
sion Maker once the objectives of the problem have been 
defined. The methods in this category include Compro-
mise Programming [15-17] and Multi-objective Proximal 
Bundle method [3,18]. 

3.2. A Priori Methods 

Unlike No-preference methods, the general principle of a 
Priori methods is to first take into consideration the 
opinions and preferences of the decision maker before 
solving the multi-objective program. The Analyst solve 
the resulting problem by methods such as Goal Program- 
ming and Lexicographic goal programming [19] and 
present the solution to the Decision Maker.   

3.3. A Posteriori Methods 

A Posteriori methods are concerned with finding all or 
most of the Pareto optimal solutions of a given multiob- 

Copyright © 2012 SciRes.                                                                                AJOR 



M. J. RANGOAGA  ET  AL. 333

jective program. These solutions are then presented to the 
Decision Maker who has to choose one of them. The 
most important a Posteriori methods described in the 
literature include e-constraint method [16,17], Adaptive 
search method [17], Hybrid method [16,20], Benson’s 
method [1] and the Weighting method [21]. 

3.4. Interactive Methods 

With interactive methods the Analyst starts with an intial 
solution, discuss with the Decision Maker and obtain a 
new solution or a set of new solutions if the Decision 
Maker is not happy with the current one. Here are among 
others some interactive methods: Step method ([17], [22, 
23]) Sequential Proxy Optimization Technique (SPOT) 
[24], Interactive Surrogate Worth Trade-off (ISWT) 
method [17] Geoffrion-Dyer-Feinberg (GDF) method 
([17,25]), Reference Point(RP) method [26] and Non- 
differentiable Interactive Multi-objective BUndle-based 
optimization System(NIMBUS) method [17]. 

3.5. Meta-Heurestics 

Most of the methods described before apply for convex 
multi-objective programs. In the case of non convex 
multi-objective programs metaheuristic methods may be 
considered [27,28]. A meta-heuristic is a method that 
seeks to find a good solution to a problem at a reasonable 
computational cost. A meta-heuristic often has an intuit- 
tive justification and therefore a mathematical proof 
cannot be constructed to guarantee the Pareto optimality 
of the solution found [28]. The most used meta-heuristic 
methods are Simulated Annealing [29], Tabu Search [30] 
and Genetic Algorithm (GA) [28]. 

4. A Decision Support System for 
Multi-Objective Programming Problems 

In this section we present our own decision support 
system for multiobjective programming problems. This 
system is named DSS4MOPP [31]. 

4.1. Components for DSS4MOPP 

DSS4MOPP has three main components, namely a data- 
base, a modelbase and a software system. In the follow- 
ing subsections we briefly describe each of these compo- 
nents.  

4.1.1. Database 
DSS4MOPP database stores a collection of data files. 
These data files contain a combination of numerical and 
alphabetical data. Although some of the data is stored 
directly in the computer, some of it may be stored on the 
internet. The files are protected by a security code acti- 
vated by the Decision Maker.  

4.1.2. Modelbase 
The modelbase of DSS4MOPP consists of the following 
multiobjective programming methods: the compromise 
programming method, the genetic algorithm, the goal 
programming method, the lexicographic goal programing 
method, the method for generating efficient solutions, the 
multi-objective proximal bundle method, the NIMBUS 
method, the reference point method and the weighting 
method. These methods are the most realistic used me- 
thods. The tools used to develop DSS4MOPP are Linear 
Interactive Discrete Optimizer (LINDO) [11], non-dif- 
ferentiable interactive multi-objective bundle-based op- 
timization system (NIMBUS) [12] and Multi-Objective 
Programming Envelopment (MOPEN) [15]. These tools 
were chosen due to their availability and afford-ability.   

4.1.3. Software Subsystem 
The software subsystem of DSS4MOPP consists of three 
components: data base management software (DBMS), 
model base management software (MBMS) and Dia- 
logue Generating Management Software (DGMS). 
Through these components, the interface with the analyst 
is realised by a sequence of windows, with each window 
being regarded as a step. The dialogue generating man- 
agement system ensures that there is interaction between 
the DSS4MOPP, the analyst and the operating system.  

4.2. Functioning of DSS4MOPP 

The inputs into DSS4MOPP are the problem (P) and the 
views of the Decision Maker about this problem. From 
these inputs, DSS4MOPP chooses a method and use that 
method to solve the problem. The detail of the way 
SS4MOPP works is given in Figure 1. For instance, if (P) 
is non convex DSS4MOPP solves (P) by Genetic algo- 
rithm. If (P) is convex and the Decision Maker has spe- 
cial preferences in a specific order, DSS4MOPP solves 
(P) by Lexicographic goal programming. If (P) is convex 
and the Decision Maker has no special preferences in a 
specific order, DSS4MOPP solves (P) by Proximal bun- 
dle method, provided the objective functions are not dif- 
ferentiable. Otherwise, if the objective functions are dif- 
ferentiable, DSS4MOPP solves (P) by Compromise pro- 
gramming method. Figure 1 shows how the rest of the 
methods are chosen and used by DSS4MOPP. 

4.3. Implementation of DSS4MOPP 

To build DSS4MOPP we used TextPad [32] program. 
TextPad is able to edit files up to the limits of virtual 
memory. Sensitivity analysis is also possible with 
DSS4MOPP. It also has standard Microsoft Windows 
applications menu and functions such as “File”, “Edit”, 
“View”, “Window” and “Help”. These functions facili- 
tate interaction between DSS4MOPP and the analyst. 
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Figure 1. DSS4MOPP functioning flowchart. 
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Different tools (such as LINGO and MOPEN) for solv- 
ing problems in DSS4MOPP have been integrated, which 
provides the analyst with the potential to set the DM’s 
preferences for the most preferred solution. The interface 
of DSS4MOPP facilitates the operation of the analyst by 
offering different alternatives. 

5. Example 

For the sake of illustration, let us consider the problem 
described in subsection 2.3. As the targets DD
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,i,t and DI,i,t 
are provided by the Decision Maker, for each economic 
function, the DSS4MOPP will choose Goal Program- 
ming method (see Figure 2) and the system solve the 
following mathematical program (see Figure 3) to obtain 
the solution (see Figure 4) of the problem under consid- 
eration. 
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where , ,D i t , , ,e I i t , , ,e D i t , , ,
e I i t  are positive and nega- 

tive deviations between Di,t and DI,i,t and between Ii,t and 
DD,i,t respectively. For January 2010 (the month un 



der investigation), we have the following data expressed 
in millions of liters of water, have been collected from 
RWASCO [33]. 

With above data and by denoting positive and negative 
deviations by EDITIV, EIITV, EDITU and EIITU re- 
spectively, the system will use the tool to solve this rob- 
lem. 

Minimise ED1TV + EI1TV + ED1TU + ED2TV + 
EI2TV +ED2TU + EI2TU + ED3TV + EI3TV + ED3TU + 
EI3TU, subject to D1,t + ED1TU – ED1TV = 2.9, D2,t + 
ED2TU – ED2TV = 0.185, D3,t + ED3TU – ED3TV = 
0.787, I1,t + EI1TU – EI1TV = 1.613, I2,t + EI2TU – 
EI2TV = 0.216, I3,t + EI3TU – EI3TV = 0.517, D1,t + I1,t 
+ L1,t ≤ 3.2, D2,t + I2,t + L2,t ≤ 3.2, D3,t + I3,t + L3,t ≤ 3.2, 
L1,t ≥ 1.8, L2,t ≥ 1.8, L3,t ≥ 1.8. 

The solution obtained is D1,t = 0:000, D2,t = 0:0.185, 
D3,t = 0:0.787, I1,t = 1:400, I2,t = 1:216, I3,t = 1:517, L1,t = 
1:800, L2,t = 1:800, L3,t = 1:400. 

6. Concluding Remarks 

Many concrete real-life situations may be cast into a 
mathematical programming framework. In most of these 
situations, one has to combine evidence from disparate 
sources and as a result grapple with conflicting objective 
functions. Therefore, multi-objective mathematical pro- 
gramming is a relevant issue. Unfortunately, a multi- 
objective mathematical program is an illdefined problem. 
As a matter of fact, the notion of “optimum optimorum” 
does not apply in this case due to the presence of con-
flicting utility functions. Lines for further developments 

e

 

 

Figure 2. Form-based input page of DSS4MOPP. 
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Figure 3. Data is entered in DSS4MOPP. 
 

 

Figure 4. The solution from DSS4MOPP. 
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in this field include: Enrichment of the system by allow-
ing it to help the Decision Maker throughout the entire 
decision-making process. Use of language of Fuzzy sets 
theory to allow some leeways in the constraints satisfac-
tion and to incorporate imprecise data. Severe limitations 
on objectivity are encountered in solving the above men-
tioned problem. In such a turbulent environment, the 
mainstay of rational choice cannot hold and it is virtually 
impossible to provide a truly meaning of optimal deci-
sion in this context. One then resort either to notion of 
strong, weak, proper Pareto optimality or to satisfying 
solutions based on the bounded rationality principle. 
Many methods have been proposed to single out appro-
priate solutions of a multi-objective programming prob-
lems and a Decision Maker may get lost in face of such a 
pletora of techniques. The purpose of this paper was to 
discuss how to help a Decision Maker using an appropri-
ate tool for dealing with his problem. In order to achieve 
this, we have presented a Decision Aid tool called Deci-
sion Support System for multi-objective programming 
problems (DSS4MOPP). This tool helps in two levels. 
Firstly, it chooses an appropriate multi-objective pro-
gramming method. Secondly, it singles out a satisfying 
solution using the chosen method. For the sake of illus-
tration, we have presented an example of water manage-
ment borrowed from dissertation of [33].  
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