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ABSTRACT 

In this paper, we mainly aim to compute the optimal inventory in the phase wise supply chain for queued customers in 
the interval of lower and upper bounds with particular life of the items. Important performance measures such as total 
optimal cost of the system and total expected delivery have also been computed by applying the dynamic programming 
and Drichlet theorem. Finally, numerical demonstration and sensitivity analysis have also been presented to gain the 
better perspective of the model. 
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1. Introduction 

When an item is produced at any manufacturing centre, 
these items have to pass through different locations from 
the supply before reaching the items at final selling point. 
These locations are known as various phases of supply 
(these phases are not accessible by the end consumers or 
customers). For example, exploration of crude oils which 
is not readily available for the consumers and this has to 
pass though different phases of supply because of geo- 
graphic inaccessibility due to terrain features such as 
mountains or lakes etc.; inability to purchase lease right- 
of-ways, and due to restricted wildlife areas. Similarly, 
other inventory items whose manufacturing can be easily 
accomplished because of easily available raw materials 
in that region but it has to go though different supply 
phases because of reasons as stated above before reach- 
ing the end consumers, for example, production of tea in 
India. Since these items have to under go various supply 
phases, their life times as well as their availability at par- 
ticular time and at particular phase are subject to change 
due to time and climatic factors etc. In this situation 
analysis of optimum inventory resulting availability of 
inventory and their life times at any time is an interesting 
phenomenon to investigate by the researchers engaged in 
this field. Chen and Lin [1] employed the replenishment 
problem for deteriorating items with normally distributed 
shelf life, continuous time-varying demand, and short- 
ages under the inflationary and time discount environ- 
ment. Abdel [2] elaborated three mechanisms, namely 
food availability, food affordability and food accessibility. 
According to him in many other state-capitals, availability 

of food is not major constraint in the dynamics of the 
food system in supply chain. Shunji [3] illustrated briefly 
the concept of life time and the reliability of any operator 
which is working in various fields and the concept of 
availability is also correlated with the concept of reliabi- 
lity and its life time. Maike et al. [4] derived stationary 
distribution of joint queue length and inventory process 
in explicit product form for various M/M/1 systems with 
inventory under continuous review and different invento- 
ries management polices, and with lost sales. 

Demand is Poisson, service times and lead times are 
exponentially distributed. These distributions used to 
calculate performance measures of the respective sys- 
tems in case of infinite waiting room the key result is that 
the limiting distributions of the queue length process are 
the same as in the classical M/M/1/∞. Gerard et al. [5] 
discussed a queueing model in which two strategic serv- 
ers based on their performance; the faster a server works, 
the more demand the server is allocated. The buyer’s ob- 
jective is to minimize the average lead time received 
from servers. They found the considerable variation in 
the performance of allocation policies and concluded an 
effective procurement strategy for a buyer as long as the 
buyer explicitly accounts for the server’s strategic be- 
haviour. Mishra and Yadav [6] dealt the profit optimiza- 
tion of a loss queueing system with the finite capacity 
and computed total expected cost (TEC), total expected 
revenue (TER) and total optimal profit (TOP) of the system. 
Mishra [7] discussed the cost analysis of G/M/C/K/N 
model including service rate and hyper geometric func- 
tions of other parameters in order to get optimal cost. 
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Ravindran and Philips [8] solved a problem in oil trans- 
port technology in which the Black Gold Petroleum 
Company had found large deposits of oil on the North 
Slope of Alaska by considering the simple transportation 
networking and solving the problem for the optimum 
cost. Viswanathan and Mathur [9] considered a distribu- 
tion system with a central warehouse and many retailers 
that stock a number of different products. Deterministic 
demand occurs at the retailers for each product. The 
warehouse acts as a break-bulk center and does not keep 
any inventory. The products are delivered from the 
warehouse to the retailers by vehicle routes used for the 
delivery, so as to minimize the long-run average invent- 
tory and transportation costs. Iravani and Teo [10] con- 
sidered the processing of M jobs in a flow shop with N 
stations in which only a single server is in charge of all 
stations. Their objective was to minimize the total setup 
and holding are cost, a class of easily implement able 
schedules is asymptotically optimal. Bellman [11] elabo- 
rated the theory of dynamic programming to solve the 
different type multi-echelon decision making problem of 
the management. We get fair motivation from Amitrajit 
[12], John [13], Mishra and Singh [14,15] and Sudhir et 
al. [16] in this field of investigation. Leonid and Luis [17] 
addressed that problem from a dynamic optimization of 
local decisions point of view, to ensure a global optimum 
for the supply chain performance. This is done under the 
frameworks of Collective Intelligence (COIN) theory and 
Multi-Agent Systems (MAS). By COIN, a large MAS 
where there is no centralized control and communication, 
but also, where there is a global task to complete the 
global supply chain network optimization. The proposed 
model focuses on the interactions at local and global lev- 
els between agents in order to improve the overall supply 
chain business process behavior. Besides, collective 
learning consists of adapting the local behavior of each 
agent (micro-learning) to the optimization of the beha- 
vior globally (macro-learning). Carrying cost which 
represents a large chunk of a company’s total supply 
chain costs so it has prominent role in the supply chain 
management. Inventory carrying costs are expressed as a 
percentage of the average dollar value of inventory over 
a fixed period usually a year. As a rule of thumb, invent- 
tory carrying cost is 25% of a company’s average invent- 
tory investment, but when you tally up all the relevant 
carrying costs, it can run as high as 40% or more. A 
while back a client asked me just how much it was cost- 
ing him to carry inventory. I get this question all the time, 
and my answer is always the same: a company’s inven-
tory carrying cost is, on average, 25% of its annual on 
hand inventory investment. From a financial point of 
view, understanding and managing inventory carrying 
cost will have an impact on your company’s operating 
income. It will also help you balance your operating ex- 

pense with inventory levels. In operations, when pur- 
chasing and inventory control staff replenish an item, 
they ask themselves two basic questions: how much 
should we order, and when these aren’t trivial matters. 
Order more frequently, and your order cost increases 
while carrying costs decrease; less frequently, and you 
trade off lower order costs with a larger average invent- 
tory. The most efficient way to figure out “how much” is 
to use the economic order quantity model. This model 
minimizes the total variable costs required to order and 
hold inventory. Inventory ordering cost, also known as 
purchasing cost or set-up cost, includes the clerical work 
required to prepare, release, monitor, and receive orders. 
In manufacturing, inventory ordering cost includes pro-
duction scheduling time, machine set-up time, and in-
spection. Shaul et al. [18] illustrated an EOQ-type in-
ventory problem where the demand rate is a function of 
the inventory level. It has been noted by marketing re-
searchers and practitioners that an increase in a product’s 
shelf space usually has a positive impact on the sales of 
the product. In such a case, the demand rate is no longer 
a constant, but it depends on the amount of on-hand in-
ventory. Erel [19] exulted the sensitivity of the basic 
economic order quantity (EOQ) model to continuous pur-
chase price. The phenomenon of continuous price 
changes exists in several countries and it is not likely to 
improve. Wu and Low [20] exulted that the currently 
available economic order quantity-just-in-time (EOQ-JIT) 
cost indifference point models suggest that the JIT pur-
chasing approach is always preferred to the EOQ ap-
proach when the JIT purchasing approach can capita- lize 
on physical plant space reduction. It was found that these 
models did not empirically study the capability of an 
inventory facility to hold the EOQ-JIT cost indifference 
point’s amount of inventory. In addition, some important 
cost components under the inventory management sys-
tems were ignored by the models, for example, the 
out-of-stock costs and the impact of inventory policy on 
product quality, production flexibility. By developing the 
JIT purchasing threshold value (JPTV) models, it sug-
gests that the advantages of JIT purchasing may have 
been overstated in theory. The JPTV models of this study 
overcome the two limitations of the existing EOQ-JIT 
cost indifference point models. Denis [21] used the infor- 
mation managerial techniques to solve the logistic prob- 
lems which included the supply chain. Timo and Matti 
[22] examine the current state of inventory management 
in Finland by reviewing fifteen case studies made at the 
Lappeenranta University of Technology and several as-
pects of inventory management are considered by them. 
In greater detail, we have tried to answer questions such 
as: what is the role of inventory management in corporate 
planning, and how are inventory decisions made in ma- 
nufacturing organizations? In addition particular atten- 
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tion is directed at the goal setting and performance 
measurement in inventory management. We have found 
out that important decisions concerning inventories are 
usually made at a low level in the organizational hierar- 
chy with out any guidelines from top or middle manage- 
ment. Furthermore, companies lack accurate real time 
and suitably aggregate information of material flow and 
stock levels. This makes setting precise quantitative 
goals for inventory management difficult. Some com- 
panies have had financial pressure to decrease inven- 
tories and because of the lack of proper inventory control, 
this had led to both external and internal stock outs. 

In the practice of phase wise supply chain model 
where customers are queued invite serious attention of 
professionals to compute the overall effectiveness of the 
model having normal life time of the inventory. Previ- 
ously, this kind of model was not attempted for model 
had solution complexity because of use of multiple solu- 
tion techniques. In this paper, performance measures 
related to the system has been analyzed and computed 
numerically. The total optimal cost of the system includ- 
ing inventory and queueing both systems, total optimal 
revenue and profit, optimal inventory in lower and upper 
bounds, and total expected waiting time of the customers 
to meet the inventory (total expected delivery time), have 
been discussed and finally computed. A set of multiple 
techniques such as dynamic programming, transportation 
networking and non-linear quadratic equations including 
an important Drichlet theorem have been used to ana- 
lyze and compute performance measures of the system. 
Computing algorithm has been developed in order to 
compute performance measures. Observations have been 
drawn to discuss the sensitivity analysis related to vari- 
ous parameters of variations. The whole paper is organ- 
ized in various sections such as introduction, description 
of the model, mathematical analysis, computing algo- 
rithm, numerical demonstration, observations and con- 
clusion. Carrying costs are expressed as a percentage of 
the average dollar value of inventory over a fixed period 
usually a year. As a rule of thumb, inventory carrying 
cost is 25% of a company’s average inventory invest- 
ment, but when you tally up all the relevant carrying 
costs, it can run as high as 40% or more. A while back a 
client asked me just how much it was costing him to 
carry inventory. I get this question all the time, and my 
answer is always the same: a company’s inventory car- 
rying cost is, on average, 25% of its annual on hand in- 
ventory investment. From a financial point of view, un- 
derstanding and managing inventory carrying cost will 
have an impact on your company’s operating income. It 
will also help you balance your operating expense with 
inventory levels. In operations, when purchasing and 
inventory control staff replenish an item, they ask them- 
selves two basic questions: how much should we order, 

and when these aren’t trivial matters. Order more fre-
quently, and your order cost increases while carrying 
costs decrease; less frequently, and you trade off lower 
order costs with a larger average inventory. The most 
efficient way to figure out “how much” is to use the 
economic order quantity model. This model minimizes 
the total variable costs required to order and hold invent- 
tory. Inventory ordering cost, also known as purchasing 
cost or set-up cost, includes the clerical work required to 
prepare, release, monitor, and receive orders. In manu- 
facturing, inventory ordering cost includes production 
scheduling time, machine set-up time, and inspection. 
Shaul et al. [18] illustrated an EOQ-type inventory prob- 
lem where the demand rate is a function of the inventory 
level. It has been noted by marketing researchers and 
practitioners that an increase in a product’s shelf space 
usually has a positive impact on the sales of the product. 
In such a case, the demand rate is no longer a constant, 
but it depends on the amount of on-hand inventory. Erel 
[19] exulted the sensitivity of the basic economic order 
quantity (EOQ) model to continuous purchase price. The 
phenomenon of continuous price changes exists in sev- 
eral countries and it is not likely to improve. Wu and 
Low [20] exulted that the currently available economic 
order quantity-just-in-time (EOQ-JIT) cost indifference 
point models suggest that the JIT purchasing approach is 
always preferred to the EOQ approach when the JIT 
purchasing approach can capitalize on physical plant 
space reduction. It was found that these models did not 
empirically study the capability of an inventory facility 
to hold the EOQ-JIT cost indifference point’s amount of 
inventory. In addition, some important cost components 
under the inventory management systems were ignored 
by the models, for example, the out-of-stock costs and 
the impact of inventory policy on product quality, pro- 
duction flexibility. By developing the JIT purchasing 
threshold value (JPTV) models, it suggests that the ad- 
vantages of JIT purchasing may have been overstated in 
theory. The JPTV models of this study overcome the two 
limitations of the existing EOQ-JIT cost indifference 
point models. Denis [21] used the information manage- 
rial techniques to solve the logistic problems which in- 
cluded the supply chain. Timo and Matti [22] examine 
the current state of inventory management in Finland by 
reviewing fifteen case studies made at the Lappeenranta 
University of Technology and several aspects of invent- 
tory management are considered by them. In greater de- 
tail, we have tried to answer questions such as: what is 
the role of inventory management in corporate planning, 
and how are inventory decisions made in manufacturing 
organizations? In addition particular attention is directed 
at the goal setting and performance measurement in in- 
ventory management. We have found out that important 
decisions concerning inventories. 
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2. Description of the Model 

Here, it is assumed that inventory items demanded in the 
market follow normal availability as well as normal life- 
time.The reasons of choosing normal are twofold: it is 
one of the most important probability phenomena in the 
real world due to the classical central limit theorem, and 
it is also one of the most commonly used lifetime 
distributions in reliability contexts and Moreover, uncer- 
tainties inherent in customer demands make it difficult 
for supply chains to achieve just-in-time inventory re- 
plenishment, resulting in loosing sales opportunities or 
keeping excessive chain-wide inventories. Here, supply 
chain consists of one supplier and multiple retailers. The 
inventory-control parameters of the supplier and retailers 
are lead time and stocks. Customer-demand pattern is 
supposed to be proportional to the arrival of the custom- 
ers at selling point which follows Poisson distribution. 

Also supply chain of items is considered from firm to 
the selling point of inventory items and supply time of 
the inventory items is exponential distribution to fulfill 
demand and interarrival time of demand follows expo- 
nential distribution at different phases. This shows that 
supply of inventory initially passes through different 
channels, and from each channel it passes through dif- 
ferent phases to reach the selling points. Further, it is 
assumed that l is the numbers of channels and m is the 
partial integral quantity of the inventory available at one 
channel, is required at the selling point. Hence, partial 
amount of availability of items, at a selling point is f = lm. 
The partial quantity which is to reach selling point (last 
phase) of the average available quantity at the firm is 

given by           
 tq t

f

  

 
   . 

This average availability of inventory 
 tq t

f

  
  
 

 rolls 

through all the locations (phases) in one chain of supply. 
This will be the average availability at the selling point 
(last phase) and customers (consumers) come at the sell-
ing point to get inventory with rate λ and follow Poisson 

Probability Distribution. At least 
 tq t

f

  
  
 

 amount is 

supplied by one phase to another phase till last phase 
(selling point). Since arrival of consumers at selling point, 
with rate λ follows Poisson distribution and service rate μ 
at selling point follow exponential distribution. Assum-
ing that supply rate of inventory is R, inter supply time of 
inventory is also follow exponential distribution. Due to 
aforesaid assumptions consumers have to wait in queue 
in front of the selling point to get inventory items. 

The following notations have been used throughout the 

paper 
 qt = Available quantity at time t such that 0,tq  , 

 τ = Lifetime of inventory item such that 0,   , 
μ1 = Mean of available quantity, 
μ2 = Mean of lifetime, 
σ1 = Standard deviation of available quantity, 
σ2 = Standard deviation of lifetime Here, 

 tq t   = Average available quantity of given life- 
time τ = t, 
β = Correlation coefficient between availability and 

lifetime of inventory items, 

( / )tq t

f
  

 
 

 = Partial amount of availability of items, 

at a selling point, where f shows a positive integral quan- 
tity which is chosen by a selling point as per its require- 
ment and this amount passes through n phases, 

h = Holding cost per unit time per unit quantity at each 
phase, 

PC0 = Cost of raw material invested by Producer, 
PCn = Purchasing cost per unit quantity at the nth 

phase, 
r% = Profit earned by each seller at every phase, 
Lq = Waiting length of customer to find service at 

selling point (at last phase), 
ω = Waiting cost per customer in queue, 
oi = Ordering cost per order at ith phase, 
O = Total ordering cost per cycle of whole system, 
R = Quantity received per order i.e. supplied quantity 

per order, 
λ = Arrival rate of customer at last phase, 
μ = Service rate at last phase to serve customers, 
Q = Average quantity demanded by per customer, 
si = Setup cost of ith phase, 
Tpi = Transportation cost from (i − 1)th phase to ith 

phase per shipment, 
T = Total lead time of inventory from producer to last 

seller. It is also assumed one cycle time. 
The n-phases are ascertained after solving supply 

chain networking; vide a sample networking in graph by 
using the concept of dynamic programming as discussed 
below in brief. Here, customers are arriving with Poisson 
rate λ at nth phase (a selling point for the customers) and 
receiving items with service rate μ. We here only discuss 
about the quantity which will reach at the last point of 
selling available for the consumers. The problem is 
solved by using dynamic programming if μ1 = 3σ1, μ2 = 
3σ2 and a ≅ 0.9987, b ≅ 0.9987 and if μ1 = 2.5σ1, μ2 = 
2.5σ2, a ≅ 0.9938, b ≅ 0.9938 In practice, if μ1 ≥ 2.5σ1, 
μ2 ≥ 2.5σ2 we assume a ≅ 1, b ≅ 1. For 0 < qt < ∞ and 0 
< τ < ∞, where σ1 > 0, σ2 > 0 and ρ < 1. To study this 
joint probability, let us first show that parameter μ1 and 
μ2, σ1 and σ2 are the means and standard deviations of the 
two variables qt, τ. To begin with, we integrate on y from 
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0 to ∞ getting points so, it appears like network of supply 
of inventory. In this network we have to search the 
shortest route of supply of items. To find out minimum 
transportation cost route in this network by using Dy- 
namic Programming.  

We present some sample networking to illustrate the 
model and which can further be generalized as per re- 
quirement of the supply chain we consider seven regions 
and seven stages to complete the chain from selling 
points to the point of origin (manufacturing point). Re- 
gion and stages refer to various areas of operation and 
distance from the origin respectively. For example 
stage-I refers to last point of selling of customers level 
and region VII stands for a particular area if operation/ 
distribution related to end consumers. Further, region VII 
and stage I constitute the concept of phase (here last 
phase). 

While solving, to find out shortest route (shortest chain 
of supply), we assume all the selling points under re- 
gion-VII, and in stage-1, because we start from the sell- 
ing point in the search of shortest route. After this we 
reach under region-VI, and in stage-2, the process of 
sorting is continue until we reach at the firm which is 
under region I and in stage-7. In each region, we assume 
that at least, there are three routes in three directions at 
each phase (location).These directions are Forward, Left 
and Right denoted by F, L, and R respectively. Taking 
decision at each Phase to choose the minimum value 
among F, L & R weights which is denoted by i  After 
choosing minimum weighted path, we have to move in 
that direction. This process is continued until we have to 
reach in Region-I. This type of technique is also used in 
Graph Theory to find out the minimal weighed spanning 
tree. It is called Prim’s Algorithm. According to this al- 
gorithm we start from any vertex of graph and at that 
vertex we have to choose minimum length edge among 
the incidence edges. We traverse on it and reach at other 
vertex, again we employed the same procedures as afore 
said until we traverse at all vertices of graph. 

*d

Network of Supply Chain 
 

 

Minimum Transportation Route 
Stage 1 (REGION VII) 

*
id  *

1 1 Si/di R L F f s

A 18 - 25 F 25 
C 14 - - R 14 
E 21 20 15 F 15 
F 20 23 18 F 18 
G - 18 16 F 16 
H 19 - - R 19 
I - 16 32 L 16 
J 28 - - R 28 

 
Stage 2 (REGION VI) 

*
id  *

1 1 Si/di R L F f s

A 26 - 17 F 17 
B 18 20 25 R 18 
C 17 20 15 F 15 
D 20 12 24 L 12 
E 18 20 32 R 18 
F - 26 25 F 25 

 
Stage 3 (REGION V) 

Si/di R L F *
1d  *

1 1 f s

A - 17 15 F 15 
B 25 10 15 L 10 
C 24 24 12 F 12 
D 23 10 22 L 10 
E 24 16 24 L 16 
F - 20 19 F 19 

 
Stage 4 (REGION IV) 

*
1d  *

1 1 Si/di R L F f s

A 17 - 37 R 17 
B 22 20 10 F 10 
C 23 16 9 F 09 
D 23 12 16 L 12 
E 20 17 18 L 17 
F - 20 23 L 20 

 
Stage5 (REGION III) 

Si/di R L F *
1d  *

1 1 f s

A 35 - - R 35 
B 20 - 10 F 10 
C 18 20 15 R 15 
D 17 19 9 F 9 
E 24 15 22 L 15 
F - 15 24 L 15 

 
Stage 6 (REGION II) 

*
1d  *

1 1 Si/di R L F f s

A 15 - - R 15 
B 30 - - R 30 
C - - 17 F 17 
D - 18 - L 18 
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



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 
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2

1
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  

 

  



 

 

For marginal density of qt, then temporarily making  

the substitution      1

1

tq
u





  

to simplify the notation and changing the variable of in-
tegration by letting 

2

2

v
 



 , 

we obtained as 

 
 

 
   

2
1

1

2

2 2 duv v







 
 
 

 

2

2

1

2 1

1 2

1

2 1

0

2 1

tq

t

e
g q

e v





 











 



 

After completing the square by letting v2 – 2βuv = (v – 
βu)2 – β2u2 and collecting terms, this becomes (after 
identifying the quantity in parentheses as the normal 
density integral from 0 to +∞), we can equalize it to one. 
It consequently gives us 

 

 

 

2

2

1

2 1

2

d

2 1

v u

e v







   
  

 
 
 
 
 

  
 
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2
0

1 2

u

t

e
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


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
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2
1
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 
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21

2
u

tg q



 

Accordance with definition and letting 

1

1

tq
u





  and 2

2

v
 


 
  
 

 

 

to simplify the notations, we get 

 

Then, expressing the term in original variables, we 
obtain 
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2
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t
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w q q


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  


 

           

 
 

 

In this section, we have to make a simple model of 
route of transportation from firm to the selling points 
which are situated at different locations. Since there are 
number of routes from firm to sell. 

Shortest Supply Chains (different phase wise sup-
ply routes) 
 

 
 

Analogously, state k can enter only from state k − 1 
since there is no state k + 1. 

We now solve Equations (2)-(4) in terms of the sta-
tionary probability that the manager is idle, i.e. in terms 
of P0. 

We get 
2

1 0 2 0 0, , ,
k

kP P P P P P
  
  

     
       
     

     (5) 
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We can now us hat 
0

1kP


  to sol

explicitly. We get  

e the fact t ve for P0 

0 1P




        (6) 


 
 

       

Let us assume that hi is holding cost per unit item at ith 
phase. Tpi is the transportation cost
phase. Pci is the purchasing cost of per unit item for ith 
ph

.   

 from i − 1 to ith 

ase. Si is the service cost per unit time to deliver ser- 
vice at ith Phase. It is assume that capacity of system is K. 
Thus the state space of the queue can be indexed by k, 
where k =1, 2, 3, ···, K. 

That is when there are K customer in the system, 
Manager will not provide inventory to any more custom-
ers in certain time period

So, 

0 1P P                     (2) 

w λ and μ are the parameters of the two exponential 
distributions, we get 

he rate equality principle gives me 
the following balance equation 

Using Equations (5) and (6), we get 

here 

  1 1k k kP P P             (3) 

Finally for state k t

1
k

Pk

 
 

    
 ; k =1, 2, 3, ···  (7)     

    
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





 

where   0    , 
nstruct the total cost as We co

0

1 1

1
100

/

/

n
q t

n

i
i

n n

i i q
i i

h r
T Pc

q t
Tp

fR

q t
O S L

fR



 

  





 

          
 

  
 
 
    
 
 



 

.  (8) 

Here, we assume that demand of item is linear func- 

tion of arrival i.e. D =Qλ where Q is aggregate quantity 
demanded by per customer, and   Q td t Q e

1

Total Cost

  and 
inventory item is supplied from firm to the first whole 
seller of each channel and thereafter this it will p
through number of k-phases at each phase possesse

2 f  

ass 
s 

tq t
q

f
  

  
 

 

quantity but the last seller possesses approximate avail-
able quantity  

tq t

lm
  

 
 

 

where l is the number of channels and m is partial inte- 
gral quantity of availability at one channel reached at last 
seller. Since both l, m are constant values so we consider 
lm = f. Hence 

t tq t q t

lm f
      ; 

    

   

Since this quantity will also roll through various phases 
of k. In case of inventory system there exist mainly two 
types of contrary costs, one is carrying cost and another is 

supply chain system of inventory. In this 
supply chain system there are mainly four types of costs 
out of these costs, carrying cost and service costs are of the 
same nature, ordering cost and waiting cost, both are also 
of

, 

ordering cost. In case of queuing system, it also has mainly 
two contrary costs. These are waiting cost and service cost. 
When we consider inventory system with queuing system 
then we get a 

 same. But sum of these pairs are contrary to each other. 
The intersection point of the contrary costs, which is found 
after sum, gives the optimal point for inventory as well as 
for optimal cost, it is given as below. 

Carrying cost of items + Service cost (to serve items) 
= Ordering cost on inventory+ Waiting cost of customer 
in queue 

0 1
2 100 100

t

t

n
q t

q
q t

h r r
T Pc

f

Q T
O L

f







 






             
      

 
 
 
 

 

Let us consider    tq t
q

f
  

   , 
 

This implies that 

)1(100100
1
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
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
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


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
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q

TOQrr
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where     , λ is the arrival rate of customer and μ 
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is service rate of inventory. It finally turns out to yield
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bvious that From above it is o
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It further gives us 
2
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n
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
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OQ T    
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and finally. 


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According to the above inequality, we have to study 

   

about “q” in following two cases. 

When 
Case I 
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It implies that as 
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Proof: 
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[Since   kRT
iP T kR e ]. 

Now applying Drichlet’s theorem of multiple integrals, 
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Substituting the value of qopt in Eq
total optimum cost 

uation (1), we get 

f h
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and so,        

*

*

2tq t

h
f f

OQ
   

Let Oi is ordering cost invested by ith phase and ω is 
waiting cost per customer. 
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It finally gives total optimal cost as 

S L







 



     
  

 
  

 

 

 



 

0

min
1

+ i
i

n

Tp O
R h R h

1

2
T OC 1

2 100

1 2 1 2

1

n

n

i
i

h OQ r
T Pc

h

OQ OQ

S



 




        
  

 


We can also compute the total optim profit as 
Total optimal profit for one seller = Total optimal 

ptimal cost; 
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 distributed variables with 
a common mean 
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0
1 (1 ) 100i

i 
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Thus we have delivery times T1, T2, T3, ···, Tk in k 
phases which are exponentially

1 kR , and then T = T1 + T2 + T3 + ··· + 
Tk e (Gamma) distribution with k phases and pa-
ram . 

Hence expected lead time to deliver item from first to 
last phase is given as 
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; 

3. Computing Algorithm 

Step 1: Begin, 
Step 2: Input all the incident edges at one node, 
Step3: Input all the parameters which are necessary to 

compute EOQ, TOC, TOP, and TEDT, 
Step 4: Compute shortest edge from the incident edges, 
Step 5: Compute the minimum transportation cost 

from firm to selling point, 
Step 6: Compute the average availability, 
Step 7: Compute average life-time of inventory, 
Step 8: Compute the optimal partial amount, 
Step 9: Compute the maximum quantity which may 

available at selling point, 
Step 10: Compute the minimum quantity which may 

be demanded at selling point,  
Step 11: Compute the TOC, 
Step12: Compute TOP, 
Step 13: Compute TEDT, 
Step 14: Stop.  
Various numerical demonstrations are given on the 

basis of hypothetical data base system to study the varia-
tio

esearch: 

s independent of average life time, 
total optimal cost and also total expected delivery time. 

Table 2, shows that when life-time of the inventory is 
increased then optimal partial amounts also increase. 

e- 
tween life time and availability decreases then average 
availability, average life-time and optimal partial amount 
will also decrease. 
 

available in terms of qt 

qt 9 

n of one parameter on the others. 

4. Observations and Conclusions 

The following important observations are drawn from the 
conducted r

From Table 1, it is obvious that probability of quantity 
available in the store i

From Table 3, we observe, that when correlation b

Table 1. Probability of quantity 
Vers TEDT Variables. es TOC, TOP and 

0.5 0.7 0.

Av

2 1.2 

qma

40 

To 36 

Op 0.00925 

To

7500 7500 7500 

erage availability 0.37 0.37 0.37 

Aver. life-time 1.2 1.

x 107.45 107.45 107.45 

qmin 112.96 112.96 112.96 

Optimal quantity 40 40 

tal optimal cost 6636 6636 66

timal partial amount 0.00925 0.00925 

tal optimal price 1354.27 1354.27 1354.27 

Total expected delivery time
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Ta
0.1, ρ = 0.7, Ch = 100, Cp = 

20  = 3, μ = 50, λ = 40, R = 10, 

0 = 50. 

ble 2. Lifetime τ verses TOC, TOP and TEDT qt = 0.8, 
0.5

tq  , μτ = 0.3, σ1= 0.2, σ2 = 

0, r = 30, n = 10, ω = 90,000, t*

ρ = 0.7, Q = 40, 100iS  , C
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Aver. Avail. 0.37 0.37 0.44 

Aver. lifetime 1.2 1.2 1.2 

1193.82 

 40 40 

qmax 1193.82 1193.82 

qmin 1199.33 1199.33 1199.33 

qopt 40

f* 0.007 0.009 0.011 

TOC 6636 6636 6636 

TOP 13547.27 13547.27 13547.27 

TEDT 7500 7500 7500 
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1i
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Table 3. Correlation coefficient r verses total optimal 
profit, total expected delivery time τ = 0.7, 0.5

tq  , μτ = 

0.3, σ1 = 0.2, σ2 = 0.1 Cp = 200

50, λ = 40, R = 10, ω = 90,000, t* = 3, Q = 40, 
10

100iS  , C0 

Correlation between l  availa 0.9 0.

Average availability 0.35 33

ge life 1 

al partial amount 0.00 8

 6636 36

me 7500 0

0.39 0.

Avera 1.4 0.8 

Optim 0.010 7 0.00

Total optimal cost 6636 66

Total expected delivery ti 7500 750

 
It is also evident from 4 th  transporta- 

en  optim st as as 

ability, o

ro
oint deceas timal quantity, total 

optimal cost and Total optimal profit will decrease but 
optimal partial am will incr  and other things 
rem

ows hen ser rate at selling de-
c nly to xpected t will also rease 
and a r param main u d. 

We can concl m Ta that w tal 
demanded quantity at selling point increases then total 
optim ost will in se but total optimal profit of the 
system mains constant. 

In  of Table e can say hen wa me 
increases then maximum quantity as well as minimum 

Tabl otal cost verses total ost, total optimal 
prof .8, τ = 0. 0.5 , μ , σ1= 0.2, .1, ρ 

 0.7, Ch = 100, Cp = 200, r = 30, n = 10, μ = 50, λ = 40, R = 

 Table at when
tion cost is increased th  total al co  well 
total optimal profit will also increase and average avail- 

ptimal quantity and optimal partial amount will 
remain unaffected. 

It is obvious f m Table 5, that arrival rate of custom- 
ers at selling p es then op

ount ease
ain unaltered. 

Table 6 sh that w vice 
eases then o tal e ime dec

nothe eters re nchange
ude fro ble 7, hen to

al c crea
 re

 view  8, w  that w iting ti

e 4. T optimal c
it qt = 0 7, 

tq τ = 0.3 σ2 = 0

=

10, ω = 90000, ρ = 0.7, Q = 40, 
10

1

100i
i

S


 , C0 = 50. 

Min. transportation cost 84 105 115 

Aver. availability 0.37 0.37 

Optima

0.37 

l quantity 40 40 40 

0092 0092

6636 6720 6760 

13547.27 1353 527.

Optimal partial amount 0.00925 0. 5 0. 5 

Total optimal cost 

TOP 3.99 13 66 

 
Table 5. Total arrival rate λ verses tota st l 

 qt = 0.8, τ = 0.7, τ = 0.3,  

Ch = 100, Cp = 2  =  

 
10

l optimal co , tota
optimal profit, TEDT 0.5 , μ

tq 

σ1 = 0.2, σ2 = 0.1, ρ = 0.7, 00, r = 30, n  10, μ

= 50, R = 10, ω = 90,000, ρ = 0.7, Q = 40, 
1

100i
i

S


 , C0 = 

50. 

Arrival rate of customer at selling point 45 30 10 

Aver. availability 0.37 0.37 0.37 

00 7500 

Aver. life 1.2 1.2 1.2 

Optimal quantity 42.43 34.64 20 

Optimal partial amount 0.008721 0.01068 0.0189

Total optimal cost 7032.47 5760 3368 

TOP 4542.37 1349.5 5345.05

Total expected delivery Time 7500 75

 
Table 6. Service rate μ verses total optimal cost, total opti-
mal profit and TEDT qt = 0.8, τ = 0.7, 0.5

tq  , μτ = 0.3,  

σ1 = 0.2, σ  = 0.1, ρ = 0.7, C2 h = 100, Cp = 200, r = 30, n = 10, λ 

= 40, R = 10, ω = 90000, ρ = 0.7, Q = 40, 
10

100iS  , C0 = 
1i

50. 

Service rate of customer at selling point 80 70 12 

Aver. availability 0.37 0.37 0.37 

Aver. life 0.00925 0.00925 0.00925

0.00 0.00925 25

6636 6636 6636 

13547 13547.27 7.27

me 1 0

Optimal partial amount 925 0.009

Total optimal cost 

TOP .27 1354

Total expected delivery ti 4400 1190 10725

 
quantity also increases. hat range of 

ed at selling poin re e 9 s 
It means t quantity 

need t will inc ase. Tabl , justifie
that when availability as well as optimal partial amount 
remains unchanged for insignificant changes in standard 
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Table 7. Quantity Q verses total optimal tal optimal 
profit and TEDT qt = 0.8, τ = 0.7, 0.5

tq  , μτ = 0.3, σ1 = 

2 h p

 cost, to

0.2, σ  = 0.1, ρ = 0.7, C  = 200, r = 30, n = 10, ω = 

90,000, λ= 40, R = 10
10

1

100i
i

S


 , C0 = 

50. 

antity Q at selling point  

C  = 100, 

, ω = 90,000, Q = 40, 

Total demanded qu 20 30 45 

Aver. availability .37 7

9. 13589. 1193.8

8

3 

0 0.3 0.37

TOP 

q

1358

max 1193.

q . 1199.

 258.10

263.62

325.39

330.90min

TEDT (thousands) 25 25 25 

 
Table 8. Waiting cost ω verses pt cos l 

ptimal profit and TEDT, qmax, qmin qt = 0.8, τ = 0.7, 

ing cost ω (in thousands) 90 10 15 

total o imal t, tota
o

0.5
tq  , μτ = 0.3, σ1 = 0.2, σ2 = 0.1, ρ = 0.7, Ch = 100, Cp = 

200, 
10

1

100i
i

S


 , r = 30, n = 10, λ = 40, R = 10, ρ = 0.7, Q = 

40, C0 = 50. 

Wait

Aver. availability 0.37 0.37 0.37 

 40 4

t 0.0092 .009 0.

6368 6368 

13589.6

1193.82 1. 19

1199.

25 25 

Opt. quantity 40 0 

Opt. partial amoun 0 2 0092 

TOC 6368 

TOP 5 1359.65 13589.65

qmax  12 54 0.39 

qmin 33 127.055 195.9 

TEDT (thousands) 25 

 
Table 9. Purchasing cost Cp verses total optimal cost, total 
optimal profit and TEDT, qmax, qmin qt = 0.8, τ = 0.7, 

0.5
tq  , μτ = 0.3, σ1 = 0.2, σ2 = 0.1, ρ = 0.7, Ch = 100, r = 30, 

n = 10, ω = 90,000, λ = 40, R = 10, ρ = 0.7, Q = 40, 
10

1

100i
i

S


 , C0 = 50. 

Cp purchasing cost 100 40 20 

Aver. av. 0.37 0.37

qmax 110.

 0.37 

30 112 112.56 

q  113.05 113.1 113.12 

0. 5 009

6644 6720 6760 

13546.01 5

min

Optimal partial amount 0.00925 0092 0. 25 

Total optimal cost 

TOP 13533.99 13 27.66 

 
deviations increase. In Table 10, a  

timum partial amoun cre  and -
 

From Table 11, it is obvious that when ordered quantity 

amount f

0.1, ρ = 0.7, Ch = 100, C  = 200, r = 30, n = 10, ω = 90,000, λ = 

40, R = 10, ρ = 0.7, Q = 40, 
1

100i
i

S


 , C0 = 5. 

s standard deviation
increases the op

mal quantity. 
t de ases  op

ti

Table 10. Standard deviation of life σ1, Standard deviation 
of availability σ2 verses optimal quantity, Optimal partial 

* qt = 0.8, τ = 0.7, 0.5
tq  , σ1 = 0.2, μτ = 0.3, σ2 = 

p
10

Standard deviation of life time 0.1 0.3 0.5 

Standard deviation of availability

 5 3 0  

al partial amount  0

al quantity 

0.2 0.4 0.4 

Aver. life time 0.07 0.76 .937

Aver. availability 0.58 0.49 0.41 

Optim 0.0145 .012167 0.0103 

Optim 40 40 40 

 
Table 11. Ordered qiamtotu 0 b x, d 

qt = 0.8, τ = , 
tq  , μτ = 0 1 = 

.2, σ2 = 0.1, ρ = 0.7, Ch = 100, Cp = 200, r = 30, ω = 90,000, λ 

 R, m, C erses qma qmin an
TOC, TOP, TEDT  0.7 0.5 .3, σ

0

= 40, R = 10, ρ = 0.7, Q = 40, 
10

1

100i
i

S


 , C0 = 5. 

Ordered quantity in each phase 20 50 100 

Number of phases 10 20 20 

Ordering cost 50 10 10 

107.96 42.004 42.004 

112.97 118.02 

9.6 13589.6 6

82 54 

3 05 

 

Max. quantity 

 Min. quantity 118.02 

TOC 6368 6368 6368 

TOP 1358 13589.

qmax 1193. 121. 190.39 

qmim 1199.

 (Thousands)

127. 55.90 

TEDT 25 25 25 

 
is increased then total optimal profit as well as total 
expected delivery time also increases but when number 
of phase increases then maximum quantity decreases as 
well as minimum quantity also decreases but total 
optimal cost as well as total optimal profit and total 
expected delivery time increase. 

In this paper a fresh attempt been made to compute 
the upper and lower bounds of the inventory items which 
can easily contribute to the management level of the or- 
ganization. Decision on av s well as 

 has 

ailability a life time of 
inventory can efficiently enhance the managerial deci- 

 of r pape with o 
ne is supply of i nt- 

eu ste  cons  
s beneficial in th d of cine y 

s other expiry s whose life ti l-
n 

anization ry to t 
transportation ro  for th ptimum ost 

f the transportation. This part of problem is well-dwelt 

sion makings, which are part
systems simultaneously o

 ou
the 

r deals 
 chain 

 tw
nve

tories and another is the qu eing sy m of umers.
This model i e fiel  medi  suppl
chain as well a  item me fo
lows the characteristics of 
practice for any org

the norm
 it is ve

al distribution. I
 critical find ou

the minimum ute e o  c
o
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 to supp

to the customers in more-planned way. 
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