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ABSTRACT 

In this paper we discuss about infeasibility diagnosis and infeasibility resolution, when the constraint method is used for 
solving multi objective linear programming problems. We propose an algorithm for resolution of infeasibility, which is 
a combination of interactive, weighting and constraint methods. Numerical examples are provided to illustrate the tech-
niques developed. 
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1. Introduction 

Almost every important real world problem involves 
more than one objective. The multi objective linear pro- 
gramming (MOLP) problem can be formulated as fol- 
lows: 
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POSs and for improving the previous methods [5-7]. 
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where j  are n-dimensional vectors, x is an 
n-dimensional vector, b is an m-dimensional vector and 
A is an m × n matrix. 

Excluding the trivial case in which a point exists in the 
feasible region which maximizes all objectives simulta- 
neously, we must often propose a compromise solution to 
decision maker (DM). In the special case, the point that 
simultaneously maximizes all objectives is called com- 
plete optimal solution. In general, such point rarely exists. 
Thus, instead of complete optimal solution, Pareto opti- 
mal solution (POS) is introduced. x* is a POS for Prob- 
lem (1.1) if there does not exist another x such that 

 for all i and  for at least one 
. 

There are several methods for solving the MOLP 
Problem (1). By the utility function method [1] we obtain 
a compromise solution. The weighting method proposed 
by Kuhn and tucker [2], the constraint method proposed 
by Haimes et al. [3] and the weighted minimax method 
proposed by Bowman [4], characterize POSs. Since then, 
many different approaches are developed for obtaining 

Also, there are several fuzzy approaches for solving 
MOLP problems such as [7-9]. 

In all of the methods and ap
M) has an essential role. However, choosing unsuit- 

able bounds in the constraint method by DM may be oc- 
cur infeasibility in the problem. 

Many published researches h
 infeasibility, [1,10-13], however, there are few papers 

deal with infeasibility resolution [14-16]. One of the 
useful references is [17]. 

In this paper we use th
ter algorithms for isolating IIS (irreducible infeasible 

subsystems) in order to diagnose infeasibility. For resolu- 
tion of infeasibility and obtaining a POS, we propose 
analgorithm which is a combination of interactive, weight- 
ing and constraint methods. Also we recall the fuzzy 
method of Leon and Liern [14] for repairing the con-
straint, in order to attain a feasible space. 

Section 2 recalls the constraint method 
S for the multi objective linear programming problem. 

Section 3 discuses about infeasibility analysis and recall 
two useful filters for isolating IIS. The resolution of 
infeasibility is discussed in Section 4. When the smallest 
cardinality set of constraints to cover all IISs is singleton, 
we have a special case of infeasibility. An interactive 
approach for this case is proposed in Section 4. For the 
other cases we propose a combination of the weighting 
method and the constraint method. Finally we recall the 
approach of Leon and Liern for repairing infeasibility. 
Numerical examples are provided to illustrate the tech-
nique developed in this chapter. 
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2. Solving MOLP Problems 

ing MOLP problems 
g the many possible 

ble bounds is a 
pr

terizing POS is to solve 
d by taking one objec-

, 1, , :

There are several methods for solv
and obtaining the POSs [1]. Amon
ways of scalarizing the MOLP, the weighting and the 
constraint methods are the most famous methods. In  
these methods DM should determine the weights and the 
bounds for every objective, respectively. 

In this section we recall the constraint method. How-
ever, determining good weights and suita

oblem for DM. Therefore, we propose a combination 
method of the weighting and the constraint method. 

2.1. The Constraint Method 

The constraint method for charac
the constraint problem formulate
tive as the objective function and letting all the other 
objective functions be inequality constraints. The con-
straint problem is defined by 
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2.2. A C ination Me

Sometimes, DM has suitable bounds
tentatively, but for the other obje
any assessment. Similarly, in weighting method, it’s pos- 
sible, DM has some weights for comparison of some 
objectives together, but he or she doesn’t know how to 
appropriate some weights for the other objectives. In this 
case the combination of the two methods may be useful. 

Consider Problem (1). Suppose DM has some good 
weights 10,iw i J   for comparison of 1

T
i i Jc x  and 

some suitable lower bounds 2,i i J  for 2,T
i i Jc x , 
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Theorem 2.1. If Problem (3) has a u
lution x*, then x* is a POS for Problem (1). 

nique optimal so-

Proof: Let (contrary) x* be inefficient, then there exist 
x X , such that *c cT T
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irreducible in-
[18]. An IIS has 

till infeasible, go to step 1). 

3.

The deletion filter proposed by Chinneck and Dravnieks 
ation of exactly one IIS after 

he set. 

x , 

3. Diagnosis of the Infeasibility 

All infeasible systems have one or more 
feasible subsystems (IISs) of constraints 
the property that it is itself infeasible, but any proper 
subsystem is feasible. An infeasible set of constraints can 
be rendered feasible by deleting or repairing at least one 
member of every IIS it contains. Finding the smallest 
cardinality set of constraints to cover all IISs is known as 
the minimum-cardinality IIS set-covering problem (MIN 
IIS COVER) [19]. 

There are several practical issues related to IIS isola-
tion. An excellent summary of the recently developed 
algorithmic methods has appeared in [17]. Here we recall 
the deletion filter and the elastic filter. The deletion filter 
guarantees the identification of exactly one IIS, but the 
exiting of the elastic filter is a small infeasible set that is 
not necessarily an IIS, but it has at least one IIS. 

If the number of objectives in Problem (1) is small, it’s 
better we use deletion filter. Else, we use elastic filter 
and then use deletion filter on the exiting of elastic filter 
for obtaining an IIS. 

It may be that there are multiple infeasibilities in the 
model, hence IIS isolation typically is used in a cyclic 
manner 

1) Isolate an IIS; 
2) Determine a repair for this IIS; 
3) If the model is s

1. The Deletion Filter 

[18] guarantees the identific
a single pass through the set of constraints. This is an 
essential property possessed by very few of the IIS isola-
tion methods. In the following algorithm, for diagnosis 
infeasibility of the problems, we use the phase I of the 
simplex method. 

INPUT: an infeasible set of constraints. 
For each constraint in the set: 
1) Temporarily drop the constraint from t
2) Test the feasibility of the reduced set: 
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IF feasible THEN return dropped 

s constituting a single IIS. 
rns exactly one 

II

The Elastic Filter 

Th ally described by Brown and Graves 
 adds nonnegative elastic vari- 

 and minimizes the summation 

constraint to the set. 
ELSE (infeasible) drop the constraint 
permanently. 
OUTPUT: constraint
Theorem 3.1: The deletion filter retu

S. 
Proof: See [18]. 

3.2. 

e method origin
[20]. A fully elastic program
ables ei to every constraint
of these variables as an elastic objective function. This 
allows finding a feasible solution for the original infeasi-
ble model. Namely we solve the following problem: 

1
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The details of the algorith  the follow- 

. 
1) Make all constraints elastic by incorporating non- 

nega
2) Solve the model using the elastic objec
3) IF feasible THEN enforce the constraints in which 

any ei > 0 by permanently rem
ELSE (infeasible) Exit. 
OUTPUT: the set of de-elasticized enforced con- 

straints contains at least one IIS. 

 Resolution of the Infeasibility 

The second major aspect of infe
infeasibility resolution to repair the prob
feasible. However, most published resear
tice results in recent years have focused on the diagnosis 
side. Little investigation has been made in infeasibility 
resolution [13,14,16]. 

4.1. Resolution of Infeasibility in the Constraint 
Method 

The smallest cardinality set of constraints to cover al
IISs is known as the minimum-cardinality IIS set-covering

lem (MIN
rithms for finding MIN IIS COVER [17]. 

In this paper we concentrate on infeasibility in con- 
straint objectives. In almost all of real problems, the 
number of objectives is very less than t

nstraints. It is usual that in many problems, MIN IIS 

COVER for the set of constraint objectives be singleton. 
For this special case our algorithm proposes an interac-
tive method, and for the other cases we use the combina-
tion method mentioned in Section 2.2 or the approach of 
Leon and Liern (Section 4.2) in order to repair the con-
straints and resolve infeasibility. Besides, a POS is ob-
tained. 

The Combination Algorithm 
Consider Problem (2): 
1) Sol
2) Set  1 ; 0iI i e  , 2 ;I i e 0i  , 
3) If 2I   , there is no infeasibility, solve Problem 

(2) and STOP. 
 24) If I t  for some 1 ,t m t j  , and t = w, 

th ever, 
 algorithm. Use Leon and Liern method 

fo g Probl


en, how MIN IIS COVER is singleton, but there is 

a cycling in the
r solvin em (2). 
Else, If  2I t  for some 1 ,t m t j   , and t ≠ w, 

then MIN IIS COVER is singleton, set w: = t, replace  
T
jc x  by T

tc x  in Problem (2), take εj from DM, change 
the role of j and t in ) and go to Ste Problem (4 p 1. 

5) If 2 2I   and 1I    then take  2,i jw i I   
 DM  solve Problem (3), STOP. 

6) If 1I
from and

  , then use Leon and Liern method for 
so roblem

roblem: 
lving P  (2). 
Example 4.1 Consider the following p

1 2 3min 3 3 3x x x   

1 2 3min 2 2x x x   

1 2 3min 4 4 2x x x 

1 2 3min 6 5

 

x x x 

1 2 3. .4 2 4 1s t x x x

 

8    

1 2 3, , 0.x x x   

Let DM chooses the first objective as the main and ε2 
= 18, ε3 = 6, ε4 = 14 as the upper b und of the other ob-
jectives. So the problem of findi  POS changes to 
so

o
ng a

lving the following problem: 

1 2 3min 3 3 3x x x   

1 2. .2 2s t x x 3 18x    

1 2 34 4 2 6x x x  

1 2 36 5 24x x x

 

    

1 2 34 2 4 18x x x  

1 2 3, , 0.x x x   

The last problem is infeasible. By solving Problem (4) 
we obtain * *

2 4 0e e

 

  , but *
3e  . Namely MIN IIS 

COVER is singleton. Thus we take 4x  + 4x  + 2x  ≤ 14 
as

blem is 

0
1 2 3

 the main objective. Suppose that DM chooses ε1 = 14. 
The new pro
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2. Resolution of Infeasibili zy  
 Approach

In this section we recall the fuzzy method prop
Leon and Liern [14] for repairing the constraints

The main idea is that the fuzzy membership function 
expresses the degree to which a particular point satisfies 
a given constraint. The membership function makes use 

of Roodman’s limits [1
ws: 
So as to obtain a feasible solution, let us reformulate 

the system 

, 1, , ; , 0T i k i j   c x ε x ,       (5) 
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So we solve the auxiliary crisp problem: 

(AP)    min  

. .. 1 0j   ，α  
) has feasible solu-

tio nction 
value. 

Theorem 4.1. (AP) is feasible and its optimal value α* 

a  when w  the constrain od for 
solving multi objective linear programming. We used 
el deletion nding IIS. We pro-
p ation method for obtaining In the 
in airing the objectives, and for 

and A. W. Tucker, “Nonlinear Program-
ming,” In: J. Neyman, Ed., Proceeding of the 2nd Berke-
ley Symposium stics and Probabil-

 

 

 

, 1, , ; ,0T
i i is p i k it    c x ε 

The next theorem proves that (AP
x

n and provides a lower bound for objective fu

verifies that *1 1k   , where k is the number of non- 
null shadow prices of (PI). 

Proof: see [14]. 
In fact β* = 1 – α* is the degree of feasibility. 
Example 4.3. Consider Problem 4.2. Let DM choose 

the first objective as the main with the same value for the 
bo bjectivunds of the other o es. As mentioned in Example 
4.2, the problem is infeasible.  

* *Solving (PI) and (DPI) lead to z  = 4.25, 2  =1, *
3  

= 0, *
4  = 1, *

5  = 0.25. Therefore, p2 = 4.25, p3 = 0, p4 
= 4.25, p5 = 17. So we must solve the following problem: 

1 2 3. . 2 3 2s t x x x  

1 2 3

1 2 3

3 2 4 0 6

2 1 4.25 8

4 17 18

x x x

x x x

x x x




     

   

   

 

1 2 3

1 2 3, , 0x x x 

4.25 6  

The optim    *
3, 0, 2. ,0 with α

= 0.5647. 
In order to compare the obtained solutions by two 

methods described in Examples 4.2 and 4.3, we compute
the satisfaction degree of the objectives with th

ns (4.3). The results a

Table 1. A comparison between use of the combin
on and Liern method in Examples 4.2

 The combination method Leon and Liern method

al solution is * *
1 2 ,x x x

 
8 * 

 
e mem-

bership functions in equatio re sum-
marized in the following Table 1. 

According to Table 1, the summation of satisfaction 
degree in our algorithm is better than the Leon and Liern 
method, however, the minimum degree in the Leon and 
Liern method is better. 

5. Conclusion 

In this paper we discussed about infeasibility, diagnosis 
 

ation 
 method and the Le

and 4.3. 

Second objective 0.8235 0.4353 

Third objective 1 1 

Forth objective 

faction degrees 
2.

0.1765 0.4353 

Fifth objective 1 1 

The sum of satis-
3 8706 

nd resolution, e used t meth

astic filter and  filter for fi
osed a combin
terest of rep

POSs. 
 constraint 

resolution of infeasibility, we proposed an algorithm, 
which was a combination of interactive, weighting sum 
and constraint method. We solved some numerical ex-
amples and compared our method with Leon and Liern 
method. 
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