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ABSTRACT 

Under study is the optimization problem of line structure (primarily railroad) routing. The improved mathematical 
models and algorithms of vertical alignment by set versions of the route plan are offered. The problem is solved in some 
stages in interrelation with other design problems. The original algorithm of descent is given for solving the arising 
problem of nonlinear programming. Structural features of constraints are used and so it is not required to solve any sys- 
tems of linear equations.  
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1. Introduction 

Advisability of optimizing such costly projects as rail- 
ways and road is obvious. In a complex relief and geology 
the total cost of construction can be significantly reduced 
by selecting the optimal variant of the alignment on the 
terrain. This problem was firstly considered about 50 
years ago. Great expectations were associated with the 
method of dynamic programming for route optimization 
as a 3D curve. However, at present, even in the most 
advanced systems computer-aided design of roads, such 
as CARD-1 [1] or its Russian equivalent Topomatik 
Robur [2] options of the route in the plan and longitudinal 
profile are set manually. The computer is used for routine 
operations, but not as a regular tool to generate the optimal 
route options. It is known that in the same conditions, 
having the same information, various experts offer various 
design decisions. But consideration of limited number of 
intuitively appointed options of the route doesn’t guar- 
antee proximity of received decisions to an optimum. And 
any small change in the alignment, will result in a sig- 
nificant change in the total cost [3]. Therefore develop- 
ment of models, algorithms and programs for optimization 
remains actual. 

In this article we will try to answer the following ques- 
tions: 1) Why we can not apply a dynamic programming? 
Our response is significantly different from the answer 
given in [3,4]. 2) What are the features of the problem 
make it difficult to develop adequate mathematical mod- 
els? 3) What difficult to use of modern optimization 
methods, such as nonlinear programming? Unlike other 
authors [3,4] we will not abandon the search for a 

mathematically correct algorithms, and will not consider 
various heuristic methods, such as genetic. The appear- 
ance of such methods in increasing numbers indicates the 
absence of a mathematically correct algorithms for solv- 
ing this complex problem. As a first step, we will con- 
sider a more simple problem: optimal vertical alignment 
for the given variants of horizontal alignment. Its solu- 
tion gives the possibility of objective quantitative com- 
parison of variants of horizontal alignment. Unlike other 
developments [5], the problem is considered not as geo- 
metric but as technical and economic. We will find its 
solution in conjunction with other project tasks. To solve 
the problem we use nonlinear programming. But unlike 
the standard algorithms the new algorithm does not re- 
quire solving systems of linear equations to compute the 
descent direction at each iteration. This provides a rea- 
sonable time of vertical alignment on custom computers 
within railroad haul. The purpose of this article is to 
analyze the experience of optimum railways routes de- 
sign and the presentation of new ideas to improve the 
mathematical models and algorithms that are imple- 
mented in the new generation of CAD. Details of realiza- 
tion aren’t given because of restriction on article volume. 
In future articles we will consider the possibility of gen- 
eralizing the results to the case of joint optimization of 
horizontal and vertical alignment.  

2. Substantional Statement of the Problem 

Traditionally route as three-dimensional curve is repre- 
sented in the form of two flat curves: horizontal and ver- 
tical alignment (later: plan and profile) (Figure 1). The  
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(a) 

 
(b) 

Figure 1. Route representation: (a) Plan; (b) Longitudinal 
profile. 
 
plan is a projection of the route to the coordinate XOY 
plane, and a longitudinal profile is dependence coordinate 
z from length of the curve in the plan s.  

Position of the route is influenced by an earth relief, 
geological, hydrological, climatic and other conditions. 
The optimum route corresponds a minimum of the 
weighted sum of expenses for construction and the sub- 
sequent operation of railway. Thus, the route is an ex- 
tremal of some functional, and searching of the optimum 
route should be considered as a problem of variational 
calculus. First of all, we will note that it is not possible to 
express the functional in an explicit form, or to write down 
the route equation, that is to formalize the problem. The 
requirements to railway route include the following.  

Plan. Elements of the plan are pieces of straight lines 
and the circles, interfaced by clothoids. Thus lengths of 
elements should be not less set sizes, radiuses of curves 
and parameters of clothoids are limited too. The corre- 
sponding constraints on the plan of the route are expressed 
by nonlinear inequalities concerning the decision vari- 
ables defining the plan [6].  

Profile. Elements of the longitudinal profile are pieces 
of straight lines, so the design line is a broken line on 
which elements constraints also are imposed. Basic fea- 
ture of a considered problem is following: the number of 
elements of the plan, and number of elements of the pro- 

file, i.e. dimension of the problem aren’t known that 
complicates use of nonlinear programming. 

3. Experience in Developing Programs for 
Route Optimization  

Attempts to ignore or somehow to average ground relief 
in several areas in order to reduce the problem of search- 
ing a space curve (the route) to searching its projection 
on the horizontal plane (the plan) have not resulted, and 
could not lead to practical results. In this regard, the ex- 
amples of finding the optimal route as the best way on 
two-dimensional grid [7] should be viewed as educa- 
tional, not having anything to do with the real problem.   

Designing of 3D route was proposed to regard as 
searching of the best way on the three-dimensional grid 
using dynamic programming, with consistently decreas- 
ing the “corridor” of search. Such an approach did not 
lead to acceptable results for the following reasons: 1) 
We can’t compare the options which arrive at a network 
node and remove some of it, since a sets of their exten- 
sions do not coincide. Compare options should have 
common last element, not a point. This important feature 
dramatically increases the computational difficulties. 2) 
We must use a fine grid spacing (approximately 10 m in 
plan and 0.01 m in profile), otherwise there is an accu- 
mulation of errors, and we obtain routes that are far from 
optimum. Indeed, circular curves and straight insertion 
length of 20 m to 30 m with discreteness of change 1 m 
and clothoides of the same length with discreteness of 
change 10 m. are allowed in plan. Obviously, the grid 
spacing should not exceed these values. 3) The resulting 
route as a broken line should be transformed into a se- 
quence of elements of the required form with a suffi- 
ciently small deviations, which is a serious problem.   

These difficulties were not immediately understood. In 
the 60 - 70 years of last century it seemed that enough to 
create digital relief models, and then it is all about dy- 
namic programming. Now even in the most advanced 
CAD route options are set by experts, as mathematical 
models and algorithms for designing the optimal route, as 
a space curve, acceptable for practical purposes, has not 
yet been created.  

In this regard, as a first step, we consider the problem 
of the optimal vertical alignment for the given variants of 
plan. This problem is much simpler, since several com- 
ponents of the construction and operating costs are fixed 
and it is possible to formalize the problem using as an 
objective function the cost of construction. Moreover, the 
problem of optimal vertical alignment has independent 
significance, since in the inhabited areas the plan is de- 
termined by the conditions of land use and there is no 
possibility to change it.  

Dynamic programming was proposed for vertical 
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alignment too [8]. However, the soils of cuts generally 
are used for construction of fills when designing the 
roadbed of railways. So to compute the objective func- 
tion it is necessary to know the ratio of the volume fills 
and cuts, which are constructed together. Inability to 
calculate the objective function for individual elements 
of the profile does not allow to use dynamic program- 
ming for optimization of construction costs. For this rea- 
son, dynamic programming has limited application for 
vertical alignment.  

More successful was development of program for pro- 
file design on the basis of nonlinear programming. The 
first of them, was put into practice in the 70-s [9]. It 
based on simple mathematical models: 
 The ground cross-sections were considered mono- 

pitch. 
 Design construction of cross-sections were fixed, then 

there was no co-design of the longitudinal and trans- 
verse profiles. 

 The presence of several layers of soil did not taken 
into account. 

 Longitudinal profile of the ground was smoothed in 
order to reduce the dimensionality of the problem. 

 The program could design the local sites (up to 5 km). 
These simplifications have been forced due to the 
limited computing power at that time. 

Problem was reduced to: Find  

 Ф ,x cmin Ax b with , 

where x is unknown vector, c is the vector of parameters, 
the matrix A and vector b define a system of linear con- 
straints. 

To solve this problem we used the gradient projection 
method [10]. Modern computational capabilities have 
allowed to create a system instead of a separate program. 
In this system the longitudinal and transverse profiles 
designed together within railroad haul (25 - 30 km). The 
system uses a more advanced models and optimization 
algorithms. 

4. Vertical Alignment as the Problem of 
Nonlinear Programming 

If we denote the longitudinal ground profile  H s
 

, and 
the projected line of Z s

 
, then the problem is the 

following. For a given H s  to find a broken  Z s

  , , d

, 
that satisfies all the constraints and gives  

 
0

0

min
s

F Z s H s s s

 

         (1) 

Realistic models must take into account the structure 
of the transverse profiles of roadbed, the presence of cul- 
verts, small bridges, equalization of banks and cuttings, 
methods of excavation, etc. The problem of variational 

calculus (1) we reduce to a problem of nonlinear pro- 
gramming, which has many interesting features is not 
dependent on the specific form of function F.  

The number of elements required broken is unknown. 
Therefore, we believe that its nodes and nodes of the 
ground profile have the same abscissa. The ground pro- 
file is always represented as a broken with uneven step, 
and this assumption makes it possible to fix the number 
of elements n (the dimension of the problem) and si—the 
length of the elements (Figure 1). Then we obtain a bro- 
ken line with more than we need, the number of elements, 
but its deviation from required Z s  is small due to 
numerous constraints and the small differences of adja- 
cent slopes [9]. The idea is to find the broken line by 
solving the optimization problem, and then convert it into 
a line with elements whose length is at least acceptable, 
thereby defining the real dimension of the problem and 
the initial approach, and the last stage to perform opti- 
mization on all constraints and the necessary revisions to 
the objective function.  

4.1. The System of Constraints 

If we know the number and length of required elements, 
we can analytically express all constraints on  Z s

 1, 2, ,z i n 

max
i iz z

min
iz z

, if 
we take as decision variables i —the or- 
dinates of nodes. These constraints are divided into three 
groups.  

1) On the ordinates at certain points  or 
  i

2) On the slopes of the profile elements  

   1 1, 2, , 1i i i i iu z z s v i n     , 

here si—the length of the elements. This is a discrete 
analogue of the constraints on the first derivative. In 
view of the smallness of the slope length of element and 
its horizontal projection is almost the same.  

3) On the difference between the slopes of adjacent 
elements:  

     2 1 1 1  1, 2, , 2i i i i i i i iw z z s z z s t i n           

This constraint is a discrete analogue constraints on 
the profile curvature.  

The system of constraints has a clearly defined struc- 
ture: Limits of 1 corresponds to the matrix in which each 
row contains only zero elements, except one, which is 
equal to 1 or −1, and in each column at most two nonzero 
elements. Limits of 2 corresponds to bidiagonal matrix 
(two blocks with different signs), and group 3-tridiago- 
nal matrix (two blocks with different signs). Using this 
structure we can solve arising nonlinear programming 
problem whose dimension in the design of real objects up 
to 1000 variables and 4000 of constraints, respectively, 
in acceptable time on public computers. Leaving aside 
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the question of concrete models of the objective function 
and hence the algorithm for computing its gradient, we 
consider how the new algorithm uses the structure of 
system constraints.  

The well-known algorithms of nonlinear programming 
with linear constraints consist of the following steps:  

1) Construction of allowed initial approach z0; 
2) Calculation of the gradient of the objective function 

f 0; 
3) Defining a set of active constraints; 
4) Construction of the descent direction p0 in the 

bounding hyperplane;  
5) Checking conditions for termination of accounts 

and, if they are satisfied then stop else following step; 
6) Calculate step  and a new iterative point  

1k k k  z z p

  1Т Т 
А АА А f

–  Тр СС f

 , 0Тf 0

 and to item 2; 
For a convex objective function process terminates in 

the neighborhood of minimum point. Known algorithms 
differ in the construction of descent direction [10,11]. 

If as descent direction we accept the projection p of 
antigradient −f, then the standard algorithm requires 
solv- ing systems of linear equations of large dimension. 
The duration of an iteration process for large-scale prob-
lems is unacceptable. 

By Rozen formula [10] 

   p E          (2) 

Here E is the identity matrix and A consists of rows 
original matrix corresponding to the active (at a given 
iteration) constraints and the icon T denotes transposition. 
In the previously developed software several systems of 
linear equations of small dimension solved to calculate 
the projection p, instead of one system with the matrix 
ААТ [9].  

However, the features of constraints allow to construct 
a basis in the corresponding bounding hyperplane and 
find a descent direction without solving systems of linear 
equations at all. It can be done with any combination of 
active constraints. The new algorithm is based on this. 

Indeed, suppose that we know this basis, and its 
columns form a matrix C. Block structure matrix of con- 
straints often allows to calculate the descent direction 
sequentially by groups of variables, since some variables 
may be free in the current iteration and therefore the 
matrix of active constraints contains non-overlapping 
blocks.  

As descent direction in the new algorithm adopted 
—that is reduced antigradient [10,11]. 

For its calculation is enough to construct only the basis 
vectors, to calculate СТf, and then multiply С on the 
result. 

   , ,     Т Тр f СС f f С С f  if f

р

 , 0T a b

. 

Consequently,  is a descent direction, which can 

be used instead of antigradient projection. 
In item 4 of the algorithm, we check the possibility of 

removing some of the constraints from active set. For 
this purpose the standard algorithm [10,11] requires 
solving the systems of linear equations. In the new algo- 
rithm, instead, we consistently construct vectors, each of 
which breaks one and only one constraint. 

These vectors (matrix B) form a basis in the orthogo- 
nal complement to the null space of A, and together with 
the vectors of C gives a complete basis. In this basis the 
matrix of active constraints is diagonal, which simplifies 
the problem. For example, for the i-th constraint a vector 
bi is constructed. Since the scalar product i i , 
then this constraint can be removed from the active set if 
 , 0b fi  [12]. Here ai-i-th row of the matrix of active 
constraints, and f-gradient of the objective function. 

This rule should be applied to all vectors, each of 
which breaks one and only one constraint. Once we have 
found a constraint that can be removed, a further search 
can be stopped. We add the vector bi in the matrix C, 
recalculate reduced antigradient and continue the opti- 
mization process.  

Characteristically, the recalculation of the reduced an- 
tigradient does not require working with matrices. Just 
out of each of the j-th component of the existing reduced 
antigradient subtracted  ,ib bj i f . It is not difficult, es- 
pecially since  ,b f

 1, , 1z z v s i r

i  is calculated by analyzing the pos- 
sibility of removing i-th constraint from the active set. 

It is important to note that in this construction of 
additional basis vectors we have the ability to remove no 
one, but several constraints from active set [12]. If we 
take measures to prevent the “zigzags” [13], this opens 
up the possibility of quickly generate the required set of 
active constraints, to accelerate convergence and reduce 
computation time.  

Let us return to the analysis of constraints and show 
how to construct a basis and remove the constraint from 
active set, as in the rest of the algorithm standard. 

Let the active set is composed of second types of con- 
straints (on the slope), i.e. on a railway section is the 
limiting slope. Then 1i i i i     . In this 
case, the dimension of the null - space M matrix of active 
constraints is equal to 1. For a basis vector с M  we 
have  1 1, ,i i r  с

1

r

. This is shift site. Thus, if p is  

reduced gradient, then j i
i

p f


  , but if p is the projection 

of the gradient, then 
1

r

j i
i

p f r


   1, 2, ,j r 

1k k k kz z v s

 . 

The base vector b, which violates only   , 
has the form:  i  and b i . 
The constraint is removed if 

0 1, ,b i k    1 1, ,i k r   

 
1

, 0
r

i
i k

b f f
 

  
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For the three types of constraints (on the difference in 
slope), the dimension of the null-space of the matrix of 
active constraints is equal to 2. As a basis vector we can 
take the same vector with equal components. It corre- 
sponds to a shift of the design line on the axis z. 

The second basis vector corresponds to a rotation the 
line with the center at the initial (or any other) point. In 
this case all slopes will be equal to the increment, and 
their differences will not change. By setting this incre- 
ment slope   (for example 1 

 
 

1 2

1

 ; ;

.

s s

s

  

 i i

), consistently calcu- 
late the components of the basis vector c. 

1 2 1 3

1 2

0;  ;  

r r

c c s c

c s s

 

 

 

   
 

Here the numbering is conditional. In reality, the first 
number corresponds to the begin site of maximum cur- 
vature. 

We can take another basis, for example, two vectors 
corresponding to rotations centered at different points. 
This is site of the rotation. The presence of one active 
constraint from group 2 at the site where all active con- 
straints are from group 3, leads to the fact that all com- 
ponents of vector of the descent in this site should be 
equal. The site of rotation turning into the site of shift. 

There may be more complex combinations of active 
constraints. But in any case the basis vectors can be con- 
structed by analyzing the shift sites (constraints on slopes 
are active) or rotation sites (constraints on the difference 
between the slopes are active). The presence of active 
high-altitude constraints (group 1) at some point in the 
rotation site leaves only one basis vector corresponding 
to the center of rotation at this point.  

The presence of two such points fixes the entire site, as 
well as the presence of one such point on the shift site. 

There may be cases of degeneracy. For example, more 
than one fixing points on the shift site or more than two 
such points on the rotation site. In these cases, the right- 
hand side of the inequation corresponding to the “extra” 
fixing point is changed by a small amount (the program 
made 0.001 m). This does not affect the accuracy of the 
result, but it avoids the looping algorithm and complete 
the optimization process. 

It remains to consider how to construct a model of the 
objective function. 

4.2. Models of the Objective Function 

If the problem can be solved in a minimum volume of 
earthworks, the integrand in (1)—is a cross sectional 
square of the subgrade, which depends on the ground 
cross-section and construction of the project cross-sec- 
tion. In the general case (Figure 2) for real ground cross- 
section and real structures of design cross-sections we 
obtain piecewise quadratic dependence h , of the 

square on the working mark hi.  

F

–i i ih z H .                 (3) 

The volume of earthwork V is calculated by the square 
using the formula of numerical integration (by the trape- 
zoidal rule). 

    At the i-th element 1 1 * 2i i i i i ih F h s  
2, ,  1i n

V F . 
Consequently for   

 1 2i
i i

i i

FV
s s

h h 


 
 

 

            (4) 

If h1 is not set, then in (4) for i = 1 we must take s0 = 0, 
while for i = n sn = 0. 

Formula (3) and (4) allow us to calculate the gradient 
of the volume of earthwork under certain i iF h . 

In the first calculation, we use the simple design of 
cross-sections in the form of trapezoids, and ground 
cross-sections as a horizontal straight lines. In this case, 

 iF ih -convex piecewise parabolic function [9]. 
The resulting design is regarded as the axis line of the 

search area for further improvement. 
Real cross-sections of the subgrade depend on geology. 

The system uses a set of typical design cross-sections of 
fills and cuts (library) for different soils (another library). 
The search area we divide with the given step  at each 
point of the longitudinal ground profile and receive a set 
of values for each hi. For each value of hi computer 
design subgrade cross-section (Figure 2) and calculates 
the square of fills and cuts. Approximate dependence of 

 i iF h  are obtained by the parabolic approximation of 
the resulting values and used for further optimization. If 
necessary, the calculation is repeated for narrowing the 
search area and decreasing the step . If the objective 
function corresponds to the construction costs, rather 
than the volume of earthworks, the soils are classified 
into 4 types according with the possibilities of their use 
for the construction of fills:  

1) unusable; 
2) ordinary; 
3) draining;  
4) hard rock ground. 
The squares are computed for each type of soil sepa- 

rately. 
In addition, for each type of soil are given per 1 m3: 

q1—the cost of construction of fills from cuts, q2—fills  
 

 

Figure 2. Cross-section. 1: fill, 2: fill-cut, 3: cut.  
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from borrow pits (reserves), q3—development unsuitable 
or excessive soil. 

The cost of subgrade construction K are calculated 
through the volumes of fills vf and cuts vc depending on 
the ratio vf, vc. 

1) f cv v

 2 1 2f c

. Then  

 1 2  c f cK q v q v v q v    q q v   

2) f cv v

 1 3 3

. Then  

 1 3f с f f cK q v q v v q    q v q v   

Development of unsuitable soils is taken into account 
separately. 

Characteristically, the coefficients of vf, vc (reduced 
unit value) vary from iteration to iteration, if the ratio of 
volumes change. Therefore, at each iteration, we com- 
pute the corresponding squares and volumes in the whole 
site and determine the appropriate reduced unit costs for 
different types of soils. If we specify a reduced unit cost, 
based on f c , it usually turns out the project line for 
which 

v v
f c  and inversely. That’s why we can’t use 

dynamic programming. Costs of engineering structures 
(pipe-culvert, small bridges, etc.) are included in the ob-
jective function. For each structure we set the depend- 
ence of its cost from the working mark (hi). We take into 
account the possibility to change the types of structures 
with large changes of the working marks. 

v v

Thus, in the cost model takes into account the rela- 
tionship of design problems and computer simultane- 
ously with the design of the longitudinal profile designs 
cross-sections, and provides a choice of types of engi- 
neering structures. 

The calculations are repeated with refinement of the 
input data. 

The project line as a result of optimization does not 
satisfy the constraints on the minimum length of the ele- 
ment minis L . But we have reduced limit difference 
between the slopes of adjacent elements in proportion to 
reduction of half the sum of their lengths with respect to 
Lmin. Therefore possible deviations in its transformation 
to the final form in the current design standards do not 
exceed 0.4 m. This transformation in a given band of 
deviations with steps of 0.02 m is performed using the 
dynamic programming algorithm [14]. The objective 
function in this case corresponds to the volume of earth- 
works. 

The resulting line is needed only as an initial approach. 
All the calculations were needed only to establish the 
number of elements (the dimension of the problem) and 
the initial approach for the final stage of optimization. At 
this stage, the new decision variables are the ordinates of 
the project nodes, through which it is easy to calculate 
project ordinates at all points of the longitudinal ground 

profile (old variables). Amount of new decision variables, 
about an order smaller than the old ones.  

At this stage, we use the same optimization program. 
We added only conversion of the derivatives of the ob- 
jective function with respect to the original variables into 
derivatives with respect to new variables. 

5. The Main Results 

The main results are as follows: 
1) We have overcome the difficulties: the unknown 

dimension of the problem, the lack of analytical expres- 
sions of the optimality criterion, etc. and formalized the 
optimal vertical alignment, as a nonlinear programming 
problem; 

2) The proposed mathematical models allow us to de- 
sign the longitudinal profile simultaneously with the de- 
sign of the subgrade and the choice of types of pipes and 
bridges; 

3) It is necessary to repeat the calculations with the 
specification of the model parameters. Therefore need a 
fast optimization algorithm; 

4) The proposed algorithm uses the features of the 
system of constraints and allows to design the railway 
haul (25 - 30 km) for 2 - 3 minutes on a standard PC with 
2 GHz and 512 MB. 

6. Conclusions 

The developed mathematical models and optimization 
algorithms allows to solve the problem comprehensively, 
in the presence data with various completeness and detail, 
using various criteria. 

New mathematical model and algorithm co-design of 
the longitudinal and transverse profiles are the basis of 
the corresponding subsystem of a new generation of 
CAD Railway. They can be used for the design of real 
objects, as well as for research purposes.  

These models and new algorithm can be used for 
highways design after a slight modification. 
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