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ABSTRACT 

We consider qualitatively robust predictive mappings of stochastic environmental models, where protection against 
outlier data is incorporated. We utilize digital representations of the models and deploy stochastic binary neural net-
works that are pre-trained to produce such mappings. The pre-training is implemented by a back propagating supervised 
learning algorithm which converges almost surely to the probabilities induced by the environment, under general er-
godicity conditions. 
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1. Introduction 

We consider the case where the statistical behavior of 
environmental models must be learned in real time. In 
particular, we focus on learning such behavior predic-
tively, as may be applicable in data compression, hy-
pothesis testing or model identification, while statistical 
qualitative robustness for protection against outlier data 
is sought as well. In this paper, we promote the deploy-
ment of stochastic binary neural networks which imple-
ment predictive model mappings in real time, in interac-
tion with the environment; i.e. supervised learning, while 
they also offer sound protection against data outliers. Our 
approach uses results from stochastic approximation and 
statistical qualitative robustness [1-9]. While powerful 
such results have been in existence for a long time, they 
have not been given attention synergistically, in the light 
of neural network implementations. In this paper, our 
objective is to stimulate interest in the application of the 
existing theories in such implementations, especially 
those addressing environmental models. 

When neural networks operate in stochastically de-
scribed environments, supervised learning corresponds to 
a statistical sequential estimation problem dealt with by 
stochastic approximation methods. There is rich literature 
in such methods represented by the works of Abdelhamid 
[1], Beran [10], Blum [11], Fabian [2], Fisher [12], Ger-
encser [13], Kashyab et al. [14,15], Kiefer et al. [4], 
Kushner [5], Kushner et al. [6], Ljung [7], Ljung et al. 
[8], Robbins et al. [16] and Young et al. [9]. 

In the neural networks literature, supervised learning 

has been basically limited to techniques arising from the 
Robbins/Monro [16] method and its extensions, with 
performance criterion the least squares error. The repre-
sentative works on the subject are those by Barron et al. 
[17], Elman et al. [18], Gorman et al. [19], Minsky et al. 
[20], Rosenblatt [21], Werbos [22], White [23], Widrow 
[24], and Widrow et al. [25]. Literature in the area, when 
the performance criterion is, instead, the Kullback-Lei- 
bler distance (see Blahut [26] and Kazakos et al. [3]) and 
the techniques used do not necessarily arise from the 
Robbins/Monro method, is represented by the works of 
Ackley et al. [27], Amari et al. [28], Pados et al. [29-33] 
and Kogiantis et al. [34]. 

In the domain of stochastic neural networks, some 
more recent results address time-delay issues (Liu et al. 
[35] and Wang et al. [36]), while the book by Ling [37] 
discusses some general aspects in this area. 

The organization of this paper is as follows. In Section 
2, we introduce digital finite memory qualitatively robust 
predictive mappings, as well as the neural network layers 
needed for their implementation. In Section 3, we de-
scribe the operations performed at the predictive neural 
network layer. In Section 4, we present the supervised 
learning algorithm used at the predictive layer. In Section 
5, we draw some conclusions. 

2. Digital Finite Memory Qualitatively  
Robust Mapping 

We consider digital environmental representations. We 
start by letting 1, , nx x  denote a sequence of dis-
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crete-time observations that represent the environment. 
Then, given 1 n, ,x x

1n

, the objective of the digital map-
ping is to predict which one of M distinct regions, the 
observation x   is going to lie in. Denoting these re-
gions  jA ; , let us define the probabilities  1, ,j M 

   1 1 1
1

 , ,  ,j n n j n
j M

x P x A x x  
  



, ,

 n

p x

 1, ,

 which are  

used to map stochastically an observed sequence  
x x  onto each of the regions  jA , with corre-

sponding probabilities . Two problems 
arise immediately: 

  , ,  j nx

 , ,  n

1p x

1) Exploding computational load, due to the increasing 
memory represented by the sequences 1x x . 

2) Statistical information on the sequences  1, ,  nx x

   x

 , ,  

 
needed for the computation of the probabilities  

. 1j n

The first problem is resolved if the increasing memory 
is approximated by finite, say size-m memory. That is, 
the increasing computational load is, instead, bounded if 
the process that generates the observations is approxi-
mated by an m-order Markov process. Then, the informa-
tion loss is minimized when the process is Gaussian (see 
Blahut [26]).  

, ,p x

Thus, to reduce the exploding computational load due 
to increasing data memory, we may initially model the 
process that generates the environmental data or observa-
tions by an m-order Gaussian Markov process, whose 
auto-covariance m × m matrix Q has components identi-
cal to those of the original process. We name this initial 
(Gaussian and Markov) process, nominal process. 

Starting with our nominal process, but incorporating 
then statistical uncertainties in the form of unknown data 
outliers, we are led to a powerful qualitatively robust 
formalization, which results in a stochastic mapping (see 
Papantoni-Kazakos et al. [38]), as follows: 

Given observations 1 nx x , use the m most re-
cent observations for the prediction of the next datum 

1nx  , and defining  1, ,  m x  
Ty xm n n , decide that 

1n jx A  with probability  j mq y , defined as follows, 

   1
j m mq y r y r

M
     1 ,m j my p y  



    (1) 

where j mp y 1n j is the conditional probability of x A ,  

given  1, ,  m n m nx  
Ty x , as induced by the Gaussian  

and Markov nominal process, and where, for some posi-
tive finite constant  , 

 
1

,
T
m my Q y




 
 
  

1 min 1mr y            (2) 

The value of the constant   in (2) represents the level 
of confidence on the “purity” of the data vector ym, in 
terms of it being generated by the nominal Gaussian 
process: the higher the value of  , the higher the level of 

confidence, where as   decreases, increased weight on 
purely random mappings (represented by the probability  

1  per region) is induced.  
M

Robust estimation of the auto-covariance matrix Q 

may be also required. The components of the auto-co- 
variance matrix Q should emerge from the statistics of 
the nominal Gaussian process. A scheme for the robust 
estimation of the matrix Q may arise from robust pa-
rameter estimation techniques, (see Kazakos et al. [3]).  

The robust prediction expression in (1) is based on a 
Gaussian assumption regarding the nominal process 
which generates the data in the environment, where the 
latter assumption is the result of an information-theoretic 
approach to the reduction of the computational load 
caused by increased past memory. The important robust 
effects induced by the mapping in (1) remain unaltered, 
however, when instead, the probability  j m  in (1) 
arises from an arbitrary non-Gaussian process, and when 
its conditioning on ym is substituted by conditioning on 
quantized values of the scalar quantity m m

p y

1Ty Q y

1Q

1Q

1T

. When 
quantized values are involved, the implementation of the 
mapping in (1) requires the following stages: 

1) Preprocessing. This stage corresponds to long-term 
memory and involves the robust pre-estimation (see Ka-
zakos et al. [3]), and storage of the matrix . 

2) Processing. This stage corresponds to short-term 
memory. It uses the matrix  from the preprocessing 
step and the observation vector ym to: a) first compute the 
quadratic expression m my Q y

1T
, b) subsequently repre-

sent m my Q y  in a quantized form comprised of N dis-
tinct values and c) finally, use the quantized values in d) 
to compute the corresponding value of the function r 

 ym  in (2). 
3) Predictive Mapping. This stage involves the estima-  

  j mp y  and the computation  tion of the probabilities 

 of the probabilities q yj m  in (1) using inputs from 
the processing stage, and the subsequent implementation 
of the prediction mappings. 

The three different stages above are performed sequen- 
tially by separate but connected neural structures, named 
preprocessing layer, processing layer, and predictive 
mapping layer, respectively. Our focus in this paper is on 
the latter layer: its structure and its operations. Towards 
that direction, we first note that, due to the quantization 
operations at the processing layer, the expression in (1) 
takes the following form: 

1

1
1 ;

for  ;  1, ,

j jp

T
m m

q r r p
M

y Q y R N

  

 

    

  
       (3) 

p rqwhere j , j , and   denote, respectively, the prob-
abilities      mr y , j mq y  and j mp y  and the number 
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when the quantized value of 1
m
T

my Q y  equals R . 

3. The Neural Predictive Layer 

Consider the integer M in (3), and let s be a unique posi-
tive integer, such that 12 2s sM 

1,j M 

,

. Then, in modulo-2 
arithmetic, each state j,  can be represented 
by an s-length 0 - 1 binary sequence 1 sx x
R

. The state 

  is provided as an input to the prediction layer by the 
processing layer, and the former produces a binary se-
quence 1 sx x  as a prediction mapping. Given the state 
R , the operations of the prediction layer must be such 
that, a given prediction sequence 1 sx x  is produced 
stochastically with probability. 

   11s sq x x p x x RM1
1R r r           (4) 

where expression (4) is the same as expression (3) when 
the binary representation of the positive integer j in the 
latter is 1 sx x , and where  x R1 sp x   is the pre-
diction mapping generated by the nominal process that 
represents the actual data generating environment. Due 
to the stochastic nature of the rule in (4), such is also the 
nature of the predictive mapping layer, whose neural 
representation corresponds then to a stochastic neural 
network, first developed by Kogiantis et al. [17], when 
the response of each neuron is limited to binary. We 
proceed with the description of the latter representation. 

Let us temporarily assume that the probabilities 
 p x x R1 s 

 , ,

 have been “learned” and are known. 
Without lack in generality, let us also assume that M = 2s. 
The original constraint of binary firing per neuron in the 
prediction layer leads us to the digital representation of 
the future states 1 sx x

R

. The design can be accom-
modated easily in a binary tree structure. In detail, given 
the observed state   and the resulting R  value, the 
mapping 1 sx x

r

 can be obtained via a stochastic binary 
tree search, on the 2s-leaves tree, as follows: 1) With 
probability   a fair tree-search is activated, where the 
tree-node x1, x1 = 0, 1 is visited with probability 0.5, and 
each of the two tree-nodes branching off a visited 
tree-node 1 k ,  1 1x x k 

r
s   is also visited with 

probability 0.5; 2) With probability 1   a generally 
biased tree-search is activated, where the tree-node x1 is 
visited with probability  R1p x  , while from a visited 
tree-node 1 k ,  1 1x x k 1 1k ks    the tree-node x x x   
is visited with probability: 

   1 1 ,k k k k kp x x x R p x x x R1 1 1, x x      

where 

     
 

1 1 ,kp x x R p x R x x R

p x x R

  



  

 

R

1 1

1 1,

s k

s s

p x

x





  (5) 

Thus, the predictive mapping layer may be viewed as 

been comprised of a fair-search binary tree and a number 
of biased-search binary trees, each of the latter corre-
sponding to a specific observation state   Given R  
the common fair-search binary tree is activated with 
probability r , while, with probability 1 r

R
, the bi-

ased-search binary tree that corresponds to the state   
is activated, instead; we name the latter tree, the R  
tree. The nodes of each of the above binary trees are 
neurons that “fire,” if the corresponding tree-nodes are 
“visited.” Given R , a specific mapping 1 sx x

r

 is 
generated either equiprobably from the fair-search binary 
tree with probability  , or from the R -tree via the 
sequential stochastic representation in (5) with probabil-
ity 1 r . It is thus in the R -tree that the probabilities 
which generate the data of the environment must be 
“learned” and then used to generate prediction mappings.  

R , consider the Given the observation state R - 
tree in conjunction with the sequential stochastic repre-
sentation in (5) of the corresponding prediction mappings, 
as generated by the process representing the actual envi-
ronmental data. Let 

1 kx xu   represent the bi-
nary random output of the neuron that corresponds to the 
node 

, 1 k s 

k1x x R of the  -tree. 
Then, 

1 kx x 1u   if and only if 
1 ix x 1,u i k  

1 k

 . 
Thus, the output x xu   may be viewed as generated by a 
product, 

1 2 1 1 1k kx x x x x xW W W
 , of mutually independent  

binary random variables  1 1 1i ix x x i k
W

  

R

, whose distri-  

butions at the operational stage of the  -tree must be as 
follows (in view of (5)): 

   
     
     

     

1 1 2 1 1 1

1 2 1 1 1

1 1

1 1 1 1

1

1 1

,

1 1 1 ; 2

1 1 ,

k k k

k k

x x x x x x x x

k k k

x x x x x x

x x

P u P W W W

p x x R p x R p x x x R

P W P W P W k s

P u P W p x R

  









  

 

     

   

 





  



(6) 

where 

   
1 1 1 11 , ; 2

k kx x x k kP W p x x x R k s     

R

  (7) 

The above logical arguments and expressions lead to 
the following neural structure of the  -tree: 1) The 
neuron corresponding to the tree-node x1; x1 = 0, 1 has a 
binary random variable 

1x
W  built in, where 0 1W W1  . 

At the operational stage, the neuron must be activated  

 with probability 1p x R  ; thus, 
1 11xP W p x R    

   1 1 1P W P W1 0then, where     2k ; 2) For , 
the neuron corresponding to the tree-node 1 kx x  has a 
binary random variable 

1 1k kx x x   built in and fires, if 
and only if the latter variable takes the value 1 and si-
multaneously the neuron corresponding to the tree-node 

W

1 1kx x   fires as well. Thus, the binary neural output 
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1 kx xu   is formed as a product 
1 1 1 1k k kx x x x xu W

   , where 

  
 


 

1 1

1 1

1

1 1

k k

k k kx x xW
 







 

R

1 1 1

1 1

1
k kx x x x x x x

x x

P u P u W

P u P

 
 

 

 
   (8) 

and where, at the operational stage of the  -tree, the 
probability  1 1

1
k kx x x 

P W  must be as in (7). We note 
that 

1 1 1 11 01 ,
k k 1 12,  x x x xW W
 
     kk x x        (9) 

and thus 

   1 11 0 1 ,
k kx x 

 

R

1 1

1 1

1 1

2,  

x x

k

P W P W

k x x 

  

   
 

As it is clear from the derivations and arguments in 
this section, the parameters of interest in the  -tree 
neural network consist of the independent binary random 
variables W1 and 

 
2

1
k s

i k
 

 
1 11 ; 0, 1;1

kx x iW x


  , 

whose distributions  1p R  and  

  1 1
2

1 , ;  0,1; 1 1 ,k i
k s

p x x R x i k  
   

R

 

must be “learned” in advance, via interaction with the 
environment. 

4. Learning at the Predictive Layer 

Given the  -tree, we observe that, due to (6), any ad-

aptations of the probability  back-propa-   1
1

sx xP u 

  1
1

sx xP u 

gate to adaptations of each of the other involved prob-
abilities. It thus suffices to focus on the learning of the  

probabilities  for the various binary se-  

quences 1 sx x
R

, which correspond to the responses of 
the output or “visible” neurons in the  -tree network. 
For easiness in presentation, let us now consider a fixed 
sequence 1 sx x

R
 (in conjunction with the fixed ob-

served state   that represents the R -tree). Let then 
p denote the value of the probability  p x x R1 s 

P u

, as 
induced by the environment, and let q denote the value of 
the probability 

1 sx x . Let the natural number n 
denote discrete observation time from the beginning of 
the learning stage, and let  and  denote estimates 
at time n of the probability values p and q, respectively. 
Finally, let the random variable Vn be defined as equal to 
1, if the environmental event 

 
ˆnq

1

ˆnp

 1 s x x R  occurs at 
time n, and as equal to 0, otherwise, and let 

  0;
1 ,

1;  
Z V W W

  1w p r

w p r


   

  





  

 

1̂ 0q 
1p̂ v

. 

In Kogiantis et al. [17], a Kullback-Leibler matching 

criterion between p and q was used, in conjunction with 
Newton’s iterative numerical method, to develop the 
supervised learning algorithm stated below. 

Algorithm 

Initial Values: Select an initial value , while 

1 . Computational Steps: 
1) Given computed value  and , compute ˆnp 1nz 

1ˆnp   as follows: 
1

1

1

ˆ1
ˆ ˆ

1
n n

n n

z r p
p p

n







    


        (10) 

1ˆnpFor some small positive value  , the value   is 
corrected to 1ˆnp  if  , and is corrected to 1    
if 1nˆ 1p 

2) Given computed values  , given 
 

ˆ ˆ,n nq p 1nz
.  

 , 
compute 1ˆnq   as follows: 

   
   

 
   

1 2

21

1

2

ˆ ˆ ˆ ˆ1
ˆ ˆ

ˆ ˆ ˆ ˆ1

ˆ1 ˆ ˆ1

1 ˆ ˆ ˆ ˆ1

n n n n
n n

n n n n

n i n n n

n n n n

q p q q
q q

q p p p

z r p q q

n q p p p









 
 

  

       
     

  

(11) 

where 

1

1

1

ˆ1
ˆ ˆ

1
n n

n n

z r p
p p

n







    


 from (10). 

1ˆnqFor some small positive value  , the value   is 
corrected to 1ˆnq  if  , and is corrected to  1   if 

1ˆ 1nq 

Remarks: 1) Expression (10) is the computationally 
efficient recursive estimation format of the probabilities 
that represent the environment. 2) The expression in (11) 
includes correction terms induced by the Newton’s itera-
tive numerical method, when the latter is applied on the 
Kullback-Leibler matching criterion between environ-
mental probabilities and probabilistic adaptations used in 
the supervised learning process. The last term in (11) 
converges to zero, as the estimate in (10) converges to its 
true value. The second term in (11) converges to zero as 
the estimate of q converges to the estimate of p. 3) The 
small  and  correction biases are used to prevent the 
corresponding probability estimates from diverging to 
the 0 or 1 degenerate values. 

.   

We now proceed with the statement of a theorem first 
proved in Kogiantis et al. [34]. 

Theorem 
Let the process which generates the observed data in 

the environment be ergodic. Let then s denote the prob-
ability of the event  1 sx x R , as induced by the lat-
ter process. Then, the supervised learning algorithm con-
verges to the probability s, almost surely, with rate in-
versely proportional to the sample/iteration size n.  
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Proof Outline 
Here, we present an outline of the Theorem’s proof. 1) 

If the observed data are generated by an ergodic process, 
then the recursive sequential estimate in (10) will con-
verge to the probability s. 2) The pair sequence  ˆ ˆ,q p

ˆ ˆq q ˆ ˆq p s

n n  
is a two dimensional Markov process. The expected 
value of the drift 1n n , conditioned on n n 

q̂ s

 
equals zero, as deduced from expression (11). 3) In view 
of the result in 2), it is then shown that the supremum of 
the conditional expected drift in 2) multiplied by n   
converges to negative values, for all values of the abso-
lute difference q̂ sn that are larger than some given 
positive small value. 4) Using finally Blum’s condition 
[11], the results in 2) and 3) above guarantee almost sure 
convergence.  

We note that in the Theorem, if the process that gener-
ates the observed data in the environment is ergodic, and  

if   1 ss x x R  denote the prediction mappings in- 

duced by the latter process, then, via the learning algo-
rithm and with almost sure convergence, the prediction 
mappings produced by the predictive mapping layer are 
governed by the probabilities 

      1R M r 1 11s sq x x R r s x x   
      

In Kogiantis et al. [34], it was found that the learning 
algorithm converges rapidly to predictive probability 
mappings that are close to those induced by the environ-
ment, even under mismatch network conditions. Specifi-
cally, when past dependence decays fast with distance, 
then, even when the network order is less than the order 
of the Markovian environmental model, convergence to 
almost the true process is attained in less than fifty itera-
tions in most cases. 

5. Conclusion 

We presented a neural network implementation for a 
digital qualitatively robust predictive mapping of envi-
ronmental models. The mapping uses synergistically re-
sults from statistical qualitative robustness and stochastic 
binary neural representation to realize digital real-time 
predictive operations which identify the environmental 
model, while they simultaneously protect the operations 
against data outliers. The supervised learning algorithm 
recommended for the training of the neural network is 
based on stochastic approximation principles applied to 
the Kullback-Leibler matching criterion, in conjunction 
with Newton’s iterative numerical method, and con-
verges almost surely for models generated by ergodic 
processes. The considered predictive mappings have nu-
merous applications, ranging from data compression, to 
model identification to sequential model hypothesis test-
ing.  
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