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“Mathematicians have tried in vain to this day to discover some order in the sequence of 
prime numbers, and we have reason to believe that it is a mystery, into which the human 
mind will never penetrate.” 

Leonard Euler 

ABSTRACT 

Prime integers and their generalizations play important roles in protocols for secure transmission of information via open 
channels of telecommunication networks. Generation of multidigit large primes in the design stage of a cryptographic 
system is a formidable task. Fermat primality checking is one of the simplest of all tests. Unfortunately, there are 
composite integers (called Carmichael numbers) that are not detectable by the Fermat test. In this paper we consider 
modular arithmetic based on complex integers; and provide several tests that verify the primality of real integers. 
Although the new tests detect most Carmichael numbers, there are a small percentage of them that escape these tests. 
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1. Introduction 

Large prime numbers are at the core of every modern 
cryptographic protocol. These protocols rely on multidigit 
large primes to ensure that the cryptanalysis of an encrypted 
message is too complicated to break in any relevant time. 
Therefore, the efficiency of primality tests is important 
[1]. 

Primality testing has a long history. Paul Erdös, re- 
phrasing Einstein’s famous statement, expressed his view 
as “God may not play dice with the Universe, but something 
strange is going on with the prime numbers”, [2]. I be- 
slieve that maybe the following proposition explains the 
views of L. Euler and P. Erdös: 

Conjecture: If there exists an algorithm that describes 
an order in the sequence of primes smaller than n, it has 
complexity  f n 

1 1pa  

  , where f(n) is a monotone non- 
decreasing function of n, [3]. 

There are many ways to test an integer for primality. 
The Sieve of Eratosthenes, although able to detect all 
primes, has a time complexity in the order of n, [4]. Fer- 
mat’s Little Theorem (FLT) can be used to test for pri- 
mality. Although the Fermat test is very simple, there 
exists an infinite set of composite integers, {called Car- 
michael numbers or CMNs, for short}, that are not de- 

tectable by the Fermat test, [5]. 

2. Basic Properties of Primes 

Euclid Lemma: If p is a prime number and p divides a 
product ab of integers, then p divides a or p divides b. 
This is used in some proofs of the uniqueness of prime 
factorizations. 

Fermat Little Theorem (FLT): If p is a prime that 
does not divide an integer a, then  is divisible 
by p, 

 pa a  mod p = 1.               (2.1) otherwise 

Wilson Theorem: provides a necessary and sufficient 
condition for primality testing: an integer  is a 
prime if and only if 

2p 

 1 ! 1p  is divisible by p.         (2.2)  

However, since the Wilson Theorem has complexity 
O(p), it is not computationally efficient. 

Prime Number Theorem: The number of primes smal- 
ler than x is asymptotic to  O lnx x

, , 2 ,.., ,..a a q a q a kq

 [6].        (2.3) 
Dirichlet Theorem: In every arithmetic progression 
  

1q 
 where the positive integers a 

and  are relatively prime, there are infinitely many 
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primes. This property can be applied to generate large 
primes (greater than 10100), which are important com- 
ponents in public-key cryptography. 

Existence of Generator: For every prime p there ex- 
ists an integer 1 g p 

1 1b p  
, moddb g p



, called a generator, such that 
every integer  can be expressed as 

.              (2.4) 

Here d is called a discrete logarithm of b modulo p. 
This property plays an important role in the ElGamal 
cryptographic algorithm [7] and in elliptic-curve cryp- 
tography, [8]. 

3. Generalizations 

The concept of prime numbers is so important that it has 
been generalized in different ways in various branches of 
mathematics. For example, we can define complex primes. 
Notice that 5 is not a complex prime, because it is the 
product of two complex integers  and 1 2i  1 2i . 
Another observation: 

      1 2 1 2i i 

mod 4 3

n

R c di 
)di m wi  

w ad bc 

(c ab ;S bd

5 2 2i i    ; 

which means that complex factorization is not unique. 
However, integer 3 is a complex prime. In general, every 
real prime n that satisfies n  (called Blum 
prime) is also a complex prime. Yet, every real prime n 
that satisfies  is the complex composite, [9]. 
A public key cryptographic algorithm based on complex 
moduli is described in [10]. 

mod 4 1

4. Arithmetic Operations on Complex  
Integers 

Modular arithmetic with modulus n, unlike the “school- 
grade” arithmetic, operates on a finite set of integers in 
the interval [0, n – 1]. 

4.1. Multiplications of Complex Numbers 

Let ; and ; consider  L a bi 
( )(LR a bi c  ; 

where  and . Hence, the com- 
putation of m and w requires four multiplications of real 
numbers, where integers in a cryptographic scheme might 
be of size 10100 or larger. However, [11] describes an al- 
gorithm that computes LR using only three multiplica- 
tions. Indeed, let ; Q and

m ac bd 

( )P a b  )d    
then  and . m Q S  w P Q

abi m wi  

b b q ab
2w q

S
Consider now the squaring of a complex integer:  

 2 2 2 2a bi a b   ;  

and , , and . r a 
m 

p a 
rThen ; and , where the latter can be 

performed by left shift, if integers are in binary form. 
Therefore, squaring is done using two multiplications and 
two additions. 

p

If each integer A and B has s decimal digits, then alge- 
braic addition A B  requires ( )s  digital operations 
and multiplication AB has complexity 2( )s

mod 1bd n

. 

4.2. Modular Multiplicative Inverse of Complex 
Integer 

Definition4.1: Let b and d be complex integers, where 
 ; then b and d are called mutually multipli- 

cative inverse modulo n. 

b c fi d g hi and Let   
2 2

;              (4.1) 

compute s c f 1s and t .              (4.2) 
If gcd(s,n) = 1, then the inverse of s can be computed 

using either the extended Euclid algorithm, [12] or the al- 
gorithms in [2,13,14]. 

Finally, g ct  and .           (4.3)  h n f t 

2 2p u w

4.3. Complex Primes 

It is known that for every prime p congruent to 1 modulo 
4 (non-Blum prime) there exists two real integers u and 
w such that 

.               (4.4)  

Thus, every such prime can be presented as two prod-
ucts of two factors each: 

     p u wi u wi w ui w ui      .  (4.5) 

Therefore, there are no complex primes among non- 
Blum integers. 

However, every Blum prime is also a complex prime, 
since it cannot be presented as a product of two complex 
integers except as    p pi i  , [6]. 

In the following consideration we are using the notation: 

 , :a b a bi .              (4.6)  

5. Fundamental Identity 

Proposition 5.1: If p is a real prime, then for every com- 
plex integer (a,b), 

 2 2gcd , 1a b pwhere  

   
2 1

, mod 1,0 1
p

a b p
  

( , ) (0,0)a b 

;                    (5.1) 

the following identity holds 

.        (5.2) 

Proof: First of all, if ; then 

      , , , , moda b u v a b x y p ;      (5.3) 

   implies that , , modu v x y p

   

.             (5.4) 

Indeed, there exists a complex integer 

   
11 2 2, , moda b a p b a b p


       (5.5) 
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  mod 1,0p 
  1

,a b
such that .   1

, ,a b a b
 6. Major Results 

By multiplying both parts of (5.3) with 


 we 
prove (5.4). 

Proposition 6.1: Let (a,b) be a complex integer, satis- 
fying (5.1), and p be a Blum prime {pmod4=3}; then 
Proposition5.1 implies the following identity for every a, 
b and p: 

Let’s consider a product A of all complex numbers (j,k) 
with components 

0 , 0j k 

 
1

, mod

1j k p    and ,        (5.6) 

yright © 2012 SciRes.     

i.e., at least one of the components is strictly positive: 

 
0 ,

, 0

:
j k p

j k

A j k p



2 1

, mod
p

k a b p


 



, mod

, mod

j k p

k p

 
 
 
 
 
  

 mod

 


  .         (5.7) 

Consider now 

 
 

0 , 1

, 0

: ,
j k p

j k

B j
  



  ;     (5.8) 

then

 .       (5.9) 

 
 

 
 

2 1

0 , 1

, 0

0 , 1

, 0

: ,

= ,

p

j k p

j k

j k p

j k

B a b

a b j



  


  


 



Since every (j,k) satisfying (5.6) is an element of a cy-
clic group, then all (a,b) (j,k) are a permutation of the 
elements of the same group. 

Hence, 

 
0 , 1

, 0

: ,
j k p

j k

A j k
  



  p B

2 1
, mod 1p




 od 1,0 .p 

 

.         (5.10) 

Therefore, (5.7), (5.8) and (5.10) imply that 

  p
a b . Q.E.D.      (5.11) 

Remark5.1: If p is not a prime, then there exists (a,b), 
for which neither (5.1) holds, nor (5.3) implies (5.4). If 
p=qr, then 

   2 21 1
, m

q r
a b

 
       (5.12) 

Proposition 5.2: For every real prime p there exists a 
complex integer G, called a complex generator, such that 
every complex integer (a,b), where (5.1) holds, can be 
expressed as 

 , modb p

    1 2
, mod ,

p
a b p d e




0.d e 

;          (6.1) 

where either d = 0 or e = 0, but  

 2 2 moda b p  exists, then Furthermore, if 

 2 2 modd e a b p    ;        (6.2) 

otherwise 

 2 2 modd e a b p     .        (6.3) 

2 2a b

1 1q p  

2 2 2a b c

Remark6.1:  is the absolute value of (a,b). 
The alternative in (6.3) is based on the following obser- 
vation: if p is a Blum prime, and ; then from 
the Euler criterion of quadratic residuosity either q or p – 
q, but not both, is a quadratic residue modulo p [6]. 

The identity (6.1) in the following text is called the 
BV-3 primality test. Thousands of computer experiments 
have demonstrated that this test detects the overwhelm- 
ing majority of CMNs {see Section 7 for details}. 

Definition 6.1: A triplet {a, b, c} of positive integers 
where a and b are co-prime and satisfy 

;                (6.4)  

  

is called a Pythagorean triplet. 
Proposition 6.2: For every Pythagorean triplet {a,b,c}, 

and every Blum prime p the following identity holds 

 1 2
, mod

p
a b c p




 1006
5,12 13mod 2011  2 2 25 12 13 

.       (6.5) 

Example 6.1: Let p = 2011; a = 5 and b = 12; then  
; where . More 

examples are provided in Table 2. 

7. Carmichael Numbers 

Carmichael numbers {CMNs} are composite integers 
that nevertheless satisfy Fermat’s Little Theorem [15]. 
Carmichael found that 561 is the smallest integer that 
escapes the primality test of Fermat’s Little Theorem [5]. 
Indeed, for every 0 < a < 561, co-prime with 561, holds: dG a ;         (5.13) 

 561 mod561 0a a   here d is called a discrete logarithm of (a,b) modulo p. 
 

Table 1. Classification of integers and Fermat Test (FT). 

n nmod4=1 nmod4=3 

Primes Pass the Fermat test Pass the Fermat and BV-3 tests 

Ordinary composites Detectable by FT Detectable by FT 

Carmichael numbers Non-detectable by FT; Highly likely detectable by the BV-1 test Non-detectable by FT; Highly likely detectable by the BV-3 test
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Table 2. BV-3 test with primes and Pythagorean triplets (3,4); (5,12) (8,15) and (21,20) as testing seeds. 

Primes (3,4) (5,12) (8,15) (21,20) Primes (3,4) (5,12) (8,15) (21,20) 

499 (5,0) (13,0) (–17,0) (29,0) 827 (5,0) (13,0) (-17,0) (29,0) 

503 (5,0) (13,0) (17,0) (29,0) 863 (5,0) (13,0) (17,0) (29,0) 

563 (5,0) (13,0) (–17,0) (29,0) 1031 (5,0) (13,0) (17,0) (29,0) 

647 (5,0) (13,0) (17,0) (29,0) 1051 (5,0) (13,0) (–17,0) (29,0) 

727 (5,0) (13,0) (17,0) (29,0) 1063 (5,0) (13,0) (17,0) (29,0) 

739 (5,0) (13,0) (–17,0) (29,0) 1999 (5,0) (13,0) (17,0) (29,0) 

823 (5,0) (13,0) (17,0) (29,0) 2011 (5,0) (13,0) (–17,0) (29,0) 

 
According to Richard Pinch, there are 585,355 CMNs 

smaller than 1017. Moreover, there are 8241 CMNs smaller 
than 1012; 19,279 smaller than 1013; 44,706 smaller than 
1014; 105,212 smaller than 1015; and 246,683 smaller 
than 1016. 

For the experiments provided in this paper, CMNs num- 
bers smaller than 1016 [16] are used. An algorithm that 
generates large CMNs is provided in [17]. 

Proposition 7.1: Since every CMN is a product of at 
least three primes, i.e., 1 2 3CMN p p p , therefore at least 
one of these factors is smaller than the cubic root of the 
this CMN: 

3 CMNkp  .               (7.1) 

Therefore, (2.3) and (7.1) imply that the complexity to 
find the smallest factor f of a CMN is of order 

 3 3/ lnf n n              (7.2) 

The smaller factors of each CMN are shown in the 
left-most column of Table 5. 

Example 7.1: If n = 612816751 {see Table 3} is a 
CMN, then in order to find its smallest factor it is suffi-
cient to check whether n is divisible by at most one of the 
first 140 primes. It is easy to verify that f = 251. 

Computer experiments indicate that for numerous CMNs 
the smallest factor of a CMN does not exceed 4 CMN

0 a n  0 b n  n 

 

 
{see Tables 5 and Table A.1 in the Appendix}. 

8. Primality Tests 

BV-3 test: If n is a Blum prime, a and b are distinct posi-
tive integers , , and a b , then 
for every complex (a, b) holds that 

   1 2
,

n
c d



0 a n  b n  a b n

, mod n a b ;        (8.1) 

where either c or d, but not both, are equal zero. 
BV-1 test: If n is a non-Blum prime, a and b are dis- 

tinct positive integers , 0 ,and   , 
then for every complex (a,b) holds that 

    ,n c d
1 2

, mod
n

a b


   280
2,3 mod 561 16, 459

2 2 2 1;

; ; ;

; ; .

i j k

ij k jk i ki j

ji k kj i ik j

   
  

;        (8.2) 

where either c or d, but not both, are equal zero. 
Example 8.1: Let n=561 and (2,3); then 

. 

Therefore, 561 is not a prime, because (8.2) does not 
hold. 

For more numeric examples see Table 5. 

9. Primality Testing with Quaternions 

For integers congruent to 1 modulo 4 we introduce a pri- 
mality test based on quaternions  

(a,b,c,d): = a + bi + cj + dk;            (9.1) 

where

         

     

   1
, , , mod ,0,0,0

n
a b c d n h

 

2 2 2 2c d h

        (9.2) 

Conjecture 10.1: If n is a prime, then for every seed 
(a,b,c,d) holds 

,       (9.3) 

where       a b   

12 modp p 1 odp p

2 2 2a b c

.            (9.4) 

10. Computer Experiments 

The goal of the experiments is to verify the correctness 
of the primality tests. 

The inputs for the experiments included all 246,683 
Carmichael numbers smaller than 1016. For other inputs 
we only considered complex primes to verify the tests, 
see Proposition 5.1. Table 1 provides the classification 
of integers. 

In parallel we tested various types of inputs using the 
Fermat test: in the two right-most columns of Tables 3-5 
are computed  and 5 m . 

Table 2 displays results of Pythagorean triplets, {see 
Proposition 6.2}. Each seed represents (a,b) and the re-
sult is c of the Pythagorean triplet 

.            (10.1)  
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Table 3. BV-3 test with CMNs and testing seeds (3,2); 2; 5. 

CMN n (3,2) 2 5 

612816751 (166608777,8114326) 1 1 

7689096933451 (711030612716,887774073594) 1 1 

42057129199051 (30876218159239,23205152153739) 1 1 

160754105325451 (157881729352807,112064545099932) 1 1 

236807688261991 (30786938340319,53087149566046) 1 1 

3256635189018331 (493659725299301,3009342191292109) 1 1 

7655741140594051 (5285004092343118,512008698445306) 1 1 

9849406894481251 (1060236062683878,5602999134151296) 1 1 

 
Table 4. BV-1 test with CMNs and seeds (4,7); 2; 5. 

CMN n (4,7) 2 5 

1742169256201 (1722693465525,772900186399) 1 1 

33812972024833 (27880593218382,28911607645602) 1 1 

74243421107857 (56003783964933,54351804989873) 1 1 

6876256816044001 (5628728581599734,1975253037870091) 1 1 

9996906808980001 (6555953650183133,1380686298748699) 1 1 

9997112118840001 (298421257278807,9251058975642986) 1 1 

9999568870200001 (7972930190493543,5790396227732740) 1 1 

9999731048186881 (4457231781813884,5226353781905389) 1 1 

9999924433632001 (746295025284997,8421553345672929) 1 1 

 
Table 5. BV-1 test with CMNs and testing seeds (2,1); (3,2); (3,4); (3,5); (8,3); 2; 5. 

CM n (2,1) (3,2) (3,4) (3,5) (8,3) 2 5 

3 561  (544,327) (16,102) (511,102) (280,393) (34,429) 1 1 

5 1105  (833,429) (696,425) (443,884) (586,325) (391,650) 1 1 

7 1729  (1275,1638) (995,763) (729,1365) (729,364) (1275,1638) 1 1 

5 2465  (1973,1479) (1,0) (1973,1479) (2321,1885) (1,0) 1 1 

7 2821  (2028,317) (2203,1902) (833,2197) (26,2501) (26,1230) 1 1 

1 5411  (1,0) (0,2989) (1,0) (5440,0) (0,2989) 1 1 

7 6601  (2254,4346) (6027,3312) (2092,0) (0,2715) (2828,2829) 1 1 

 
Remark 10.1:    

 and ; are the Pythago-
rean triplets.  

2 2 23 4 5 ;  2 2 25 12 13 ; 
229

2 2 2 22 ; :gh c g h 

12 mod 1n n 
1 mod 15n n

2 2 28 15 17 ;  2 221 20 

More generally, for every pair {g,h} of positive inte- 
ger parameters and 

: ; :a g h b   ;     (10.2) 

holds (10.1). For instance, if {g,h} = {5,2}, then a = 21; 
b = 20; and c = 29. 

Thousands of computer experiments show that the 

BV-3 test detects every CMN; several examples are pro-
vided below in Table 3. 

Indeed, in the Fermat tests ; and  

  1 2
3,2 mod

n
n


; however,  does not sat-  

isfy (8.1). 
The BV-1 test detects CMNs congruent to 1 modulo 4; 

several examples are provided below in Table 4. 
However, the BV-1 test is not reliable in all cases. In- 

deed, Table 5 shows the instance (CMN = 2465) where 
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the BV-1 test fails. Numerous computer experiments de-  
tected CMNs in 95% of cases with the BV-1 test; more 
details on the experiments are provided in [18]. 

Remark 10.2: Table 3 shows the cases where every 
CMN is detected by the BV-3 test using one seed (3,2) 
only. 

Remark 10.3: Table 4 shows the cases where every 
CMN is detected by BV-1 with one complex seed (4,7) 
only. 

Remark10.4: n = 2465 in Table 5 is a strong CMN 
since it escapes the BV-1 test with seeds (3,2) and (8,3); 
n = 6601 is another strong CMN since it escapes this test 
with seeds (3,4) and (3,5). Yet, n = 5441 is a prime; these 
cases are shown in bold in Table 5. 
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Appendix 

Table A1. Smallest factors f(m) of CMN m {see Table 3}. 

m f(m) exp(m) m f(m) exp(m) 

9164559313 7 0.0848 9584174881 17 0.1232 

9166911601 71 0.1858 9593125081 331 0.2524 

9167487781 499 0.2708 9595140409 103 0.2016 

9172425601 157 0.2204 9624742921 1171 0.3073 

9237473281 223 0.2356 9653421961 53 0.1726 

9261585313 337 0.2536 9701285761 433 0.2639 

9294465601 31 0.1496 9793709857 29 0.1463 

9371873281 241 0.2388 9891283585 5 0.0699 

9410913721 11 0.1044 9907185601 37 0.1568 

9423125713 89 0.1954 9973625581 163 0.2212 

9434224801 23 0.1365 9983803921 7 0.0845 

9558334369 67 0.1829 9999109081 13 0.1113 

 
Legend: 
  3: largest prime smaller than or equal to  c m m 

 
 ; 

   exp : log lnmm f m  lnf m m

9 1010 ,10

;    (A.1) 

ExampleA1: if m=612816751; then f(m)=251;  
ln251= 5.525; ln612816751=20.234. 

Therefore, exp(m)=0.2731. 

 
 Table A2. Frequency distribution of exp(m) for CMNs m on interval  . 

[.03,.06] (.06,.09] (.09,.12] (.12,.15] (.15,.18] (.18,.21] (.21,.24] (.24,.27] (.27,.3] (.3,1/3] 

12 230 252 139 64 38 45 63 34 2 

 
RemarkA1: Among Carmichael numbers m on the in- 

terval    there are no f(m) with the correspond- 
ing exp(m)<0.03. 

Average value of exp(m) is equal 0.137, therefore,  
9 1010 ,10     0.137f m m  .         (A.2) 
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