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ABSTRACT 

We report on molecular dynamics simulations performed using microcanonical ensemble to predict the melting of argon 
particles in nanometer size range 10 nm and to investigate the effect of the time step integration. We use the Lennard- 
Jones potential functions to describe the inter-atomic interactions, and the results are evaluated by using caloric curves 
of the melting phenomenon. Thermodynamic properties, including the total energy, Lindemann parameter, kinetic and 
potential distribution’s functions, are used to characterize the melting process. The data shows bimodal behavior only in 
a certain interval of integration time step Δt, while the internal energy increases monotonically with the temperature. 
For the other time step values, the back bending disappears. We claim that negative specific heat is related to a possible 
decrease of entropy in an isolated system; this can be interpreted as a result of the internal interactions, especially 
attractive process and specific relaxation time. 
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1. Introduction 

One of the great challenges in cluster physics in recent 
years has been the identification and the characterization 
of critical behaviour and phase transitions, including solid- 
to liquid and liquid-to-gas phase transitions. Since clus-
ters are particles of finite size, one is confronted with the 
general question of how to detect and/or characterize such 
a transition in a finite system, a question of interest for 
many microscopic or mesoscopic systems such as, for 
instance, melting and vaporization of metallic clusters, 
Bose condensation of quantum fluids, and nuclear liquid- 
to-gas transition [1-5]. 

Haberland and co-workers [6] reported the first experi-
mental determination of a caloric curve for the solid-to- 
liquid like transition (melting) of a small cluster, i.e., a 
sodium cluster ion consisting of 139 atoms. A beam of 
cluster ions was generated with a canonical distribution 
of internal energy thus fixing the temperature. One clus-
ter size was selected (thus switching to microcanonical 
system), irradiated by photons and the photofragmenta-
tion pattern (whose positions can be related to the energy) 
is measured as a function of cluster temperature. Simi-
larly, Bachels et al. [7] reported a caloric curve for a free 
tin cluster distribution (without mass selection) imping-

ing on a sensitive pyroelectric foil. The interpretation of 
their experiment was, however, later questioned [8]. 

Furthermore, Haberland and colleagues [9,10] were able 
by extending their method to map out the energy distri-
bution of the fragments, demonstrating, by the bimodal 
shape observed, a possible existence of a negative heat 
capacity for melting a 147-atom sodium cluster. Haber-
land and colleagues had, in addition, constructed the ca-
loric curve across the liquid-to-gas like transition [11] 
using known data of the atomic gas. 

M. Farizon and colleagues [12-16] reported experimen-
tal measurements of caloric curves for solid or liquid to gas 
like transition of small charge selected hydrogen clusters. 
On the other hand, some theoretical and numerical simula- 
tions are reported concerning first order transition of 
argon clusters. In fact, K. L. Nierholz reported the struc-
tural and thermodynamic properties of Ar clusters, and 
derived many thermodynamic properties like caloric heat 
entropy and internal energy. The obtention of the caloric 
curves for the microcanonical and the canonical ensem-
ble by molecular dynamics simulations and histogram 
methods exhibits bimodal behavior (back bending). 

The analysis shows that this bimodal behavior is ob-
served only in the case of microcanonical ensemble, while 
in the case of canonical description, the internal energy *Corresponding author. 
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increases monotonically with the temperature. 
All the reported papers related to the caloric curves 

present the back bending as a specific property of micro- 
canonical description. For finite size systems, the thermo- 
dynamic ensembles are not equivalent. 

For macroscopic objects, melting occurs at some well 
defined temperature; however, this is no longer true for 
small particles or clusters. At low temperatures, the 
atoms in a cluster or in a large piece of matter make only 
small amplitude vibrations around a fixed position. It takes 
a lot of energy to push an atom from its position in a solid. 
If the temperature increases, atoms in the cluster can af-
fect neighboring sites and start a diffusive motion. 

All properties change with the size of a cluster. The 
transition from the atom or molecule to the bulk is often 
quite smooth and the asymptotic behavior well under-
stood. This is not the case for some thermal properties. 
Large and irregular fluctuations are observed, e.g. in the 
melting temperature, even for clusters containing several 
hundred of atoms. 

2. Theoretical Approach 

According to the Boltzmann’s definition, for an isolated 
system in equilibrium in microcanonical ensemble (NVE), 
the entropy is given by [17] 

 lnBS k NVE Ω               (1) 

where kB is the Boltzmann constant and Ω(NVE) is the 
number of discrete microstates in the configurational Г- 
space consistent with (NVE). 

The entropy of any thermodynamic system in equilib-
rium is given by [18] 

lnB i
i

S k p p   i                (2) 

where pi is the probability of the microstate i, and the 
summation is over all possible microstates compatible 
with the system. 

In 1988 Tsallis introduced a new definition for entropy 
[19,20] 
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where 0 ≤ q ≤ 1 (q = 1 in the sense of q → 1). 
The non extensivity of the entropy observed for small 

systems is not a consequence of the Tsallis definition. 
The entropies investigated [21] are all in the framework 
of the Boltzmann-Gibbs definition. Indeed, all of the non 
extensivities and non intensities observed in this paper 
are triggered by conversion of some of the external po-
tential energy into the internal potential energy of the 
system, an effect that is significant only in small systems. 

Entropy, like internal energy, becomes non extensive in 

small systems. However, there are two differences here: 
 First, the non extensivity in the entropy is not as pro-

found as in the internal energy. 
 Second, while the internal energy decreases (becomes 

more negative) due to non extensivity, the entropy 
increases and, hence, is super extensive. 

When two systems are combined, the entropy of the 
combination of the combined system, Sq(A + B) is given by 

         1
q q q q

q
S A B S A S B S A S B

k


    q   (4) 

If two systems A and B are independent in the sense of 
the theory of probability, then q = 1 and the entropy is 
simply the sum of the entropies of its constituents; there-
fore, the entropy should be an extensive parameter. How-
ever, when the systems A and B are dependent, then q < 1 
and the entropy as defined by Equation (4) is non exten-
sive, regardless of the size of the system. 

Yi-Fang Chang [22] reported that, according to the 
Boltzmann and Einstein fluctuation theories, all possible 
microscopic states of a system are equally probable in 
thermodynamic equilibrium and the entropy tends to a 
maximum value finally. It is known from statistical me-
chanics that fluctuations of the entropy may occur [23], 
while fluctuations always decrease the entropy [24]. 

When internal interactions exist among subsystems, the 
statistical independence and equal-probability are unavail-
able. If fluctuations are magnified [23,24] and the order 
parameter comes to a threshold value, phase transition 
will occur. In this case, the entropy may decrease in an 
isolated system, at least within a certain time. A self-orga- 
nized structure whose entropy is smaller will be formed. 

The Internal Energy of a system is [25] of a system is 

1 1

2 2i s ss s s ss s s
ss ss ss

E U n W n n U n n           (5) 

where S  is the additive part of the particle energy in 
the state s, in most cases it and E are the kinetic energy; 
W′ss and U′ss are the absolute values of the attraction and 
repulsion energies of particles in the states s and s′, re-
spectively. 

When the probability changes with time, the entropy 
of a system composed of two subsystems changes also 
with time, and the entropy would be defined as [26]: 

    1S S S 2                (6) 

where 1 1 2 2      . This shows that the entropy de-
creases with the internal interaction. Not only is this con-
clusion the same with the conditioned entropy on ρ1 and 
ρ2, but also it is consistent with the systems theory in 
which the total may not equal the sum of parts. 

3. MD Simulation 

The melting-like transition of ArN has been investigated 

Copyright © 2012 SciRes.                                                                              WJCMP 



Melting of Argon Cluster: Dependence of Caloric Curves on MD Simulation Parameters 141

through micro-canonical MD simulations using a Lennard- 
Jones potential, 
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where rij is the distance between the particles, and ε and σ 
are the potential parameters of the LJ potential chosen 
appropriately to represent particular system of interest, 
which would be appropriate for solid argon. 

The calculations are performed in dimensionless vari-
ables by scaling the energy in ε, length in σ, mass in M, 
temperature in ε/kB, pressure in ε/σ3, time in (Mσ2/ε)1/2. 

Here we have chosen M = 0.66 × 10−22 g is the atomic 
mass, and kB is the Boltzman constant. ε/kB = 120 K, σ = 
3.84 Å, ε = 1.65324 × 10−14 erg, ε/σ3 = 287 bar and 
(Mσ2/ε)1/2 = 2.44 ps. 

Initially we assign a face-centred-cubic lattice to the 
positions of the atoms. To start the algorithm, velocities 
are all set to zero. Sometimes, instead of the velocities 
being scaled, they are in any case, one has to check the 
velocity distribution after the equilibration phase has been 
reached to make sure that it has the equilibrium Max-
well-Boltzmann form. At the end of this equilibration 
period, all memory of the initial configuration should have 
been lost. 

In the present work, we adopt the latter approach to 
perform molecular dynamics simulations of melting-like 
transition of ArN, employing the velocity form of the 
Verlet algorithm [27]. 
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The important parameter to choose in an MD simula-
tion is the time increment Δt [28]. In a microcanonical 
ensemble simulation, the total energy of the system must 
be conserved. If Δt is too large, steps might become too 
large and the particle may enter the classically forbidden 
region where the potential energy is an increasing func-
tion of position. This can occur when two particles col-
lide or when a particle hits the “wall” imposed by the 
external potential. Entering the classically forbidden re-
gion means that the new potential energy has become 
higher than the maximal value allowed. In this case, the 
total energy has increased, and this phenomenon keeps 
occurring for large step sizes until the total energy di-
verges. So, depending on the available total energy, Δt 
should be chosen small enough so that the total energy 
remains constant at all times, but not so small that it would 
require an extremely large number of steps to perform 
the simulation. The optimal value of Δt is usually found 
by trial and error. One femto (10−15) second is a good 
trial guess, but the optimal value really depends on the 

initial energy and the kind of potential considered. 
For the micro-canonical ensemble (constant energy), 

the mean kinetic energy for different total energies is 
determined. Then the temperature T is defined by the 
equipartition theorem; then for practical purposes, it is 
common practice to define an instantaneous temperature 
T(t), proportional to the instantaneous kinetic energy 
EK(t) by a relation analogous to the one above. 

   2 3BT EK k N 6            (9) 

With the kinetic energy EK and the number of atoms N, 
and KB is the Boltzmann constant, and 3N − 6 represents 
the total number of internal degrees of freedom. 

The total internal energy of a system can be written as 
a sum of kinetic and potential energy contributions, and 
the temperature of the system is proportional to its aver-
age kinetic energy.  

The cluster’s configuration has a lower configurational 
energy EP which nearly compensates the effects of the 
potential truncation at 2.5σ. 

Temperature changes are usually achieved by enabling 
a device in the code that brings the system to the desired 
temperature TD by rescaling the velocities. In the velo- 
city verlet algorithm discussed at the end of this may be 
accomplished by replacing the equation 

       2 1 2V t t V t a t t            (10) 

by 

         2 1 2DT
V t t V t a t t

T t
        (11) 

where TD is the desired temperature, and T(t) the instan-
taneous temperature. 

Switching to liquid-like state it is increasing its con-
figurational energy; hence the kinetic energy has to be 
reduced to keep the total energy constant. Because of this, 
the same mean kinetic energy can be obtained at different 
total energies. 

An observable commonly studied in the context of 
melting transitions is Lindemann’s parameters <δ> [29], 
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where N is the number of molecules in a cluster and rij is 
the distance between ith and jth Argon atoms. 

This parameter measures the root mean square of the 
distance between two atoms averaged over all pairs. 
Even short isomer fluctuations with a subsequent return 
to the ground state can leave the cluster reordered; i.e., a 
previously nearest neighbour pair rij may become a se- 
cond- or third-neighbour pair after the fluctuation. Such a 
reordering leads to a notable increase in i , allowing 
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for the clear identification of a melting transition. Note  
that the Lindemann criterion of melting, which measures 
the atomic fluctuations with respect to their equilibrium 
positions, is usually employed for bulk systems but is 
less well suited for cluster systems. 

The second observable of interest is the specific heat, 
which can be obtained from the thermodynamic averages 
of the potential energy EP and its square. 

The second observable of interest is the specific heat, 
which can be derived from the total energy expression. 

4. Simulation Results 

During the first 2500 MD steps, for N = 256 Argon 
atoms, positions are defined on a lattice assuming CFC 
crystal structure witch correspond to the most stable one 
at T = 0 with Leonnard Jones potential. Initial velocities 
have been taken to be zero, or are assigned taking them 
from a Maxwell distribution at a certain temperature T. 

To ensure a reasonable numerical stability, the basic 
time increment is taken to be Δt = 0.008. The actual time 
will be fairly small since only a limited number of inte-
gration steps are possible. 

Of course, such an initial state will not correspond to 
an equilibrium condition. However, the steady state is 
reached after a time of the other of 500 time steps Δt (Δt 
= 0.008), and one should wait for the system to reach 
equilibrium under clean constant energy conditions be-
fore collecting data. 1000 additional time steps are needed 
to determine the mean values of the calorific curve, heat 
capacity, root-mean-square (RMS) bond length fluctua-
tions, and melting temperatures corresponding to the 
desired temperature TD = 1.3476. The system is driving 
to this desired temperature by rescaling the velocities in 
the velocity Verlet algorithm in order to keep the system 
under control. All quantities are given in reduced units. 

For Δt = 0.008 and at the indicated desired temperature 
TD, the kinetic energy distribution of the N Ar atoms is 
plotted in Figure 1. This curve exhibits Maxwell distri- 

 

 

Figure 1. The figure shows the distribution of the kinetic 
energy values during the simulation at indicated desired 
temperature. 

bution shape. 
For a step of integration Δt = 0.008 and then by vary-

ing the temperature ΔTD = 0.5, for each value of the tem-
perature TD are averaged physical quantities such as tem-
perature, kinetic energy, potential energy, total energy, 
specific heat, and Lindemann factor. Then we draw for 
integration step Δt = 0.008 in Figure 2 the evolution of 
the average kinetic energy, potential, and total according 
to the desired temperature. 

Starting from T = 0, the caloric curve increases roughly 
linearly, but near the melting temperature there is an 
acute change in slope characterized by a sudden jump 
analogous to bulk melting behavior. This jump is expected 
to be smoothed to a finite with small systems [27-30]. 

In our case, we observe that this jump occurs at the 
reduced temperature Tmelt (Tmelt =1.45) which corres- 
ponds to 174 K considered as the liquid-solid transition. 

According to the study by Lutsko et al. [31], a factor 
should be introduced between the simulated structure of 
an isolated cluster and the actual (thermodynamic) melt-
ing points when periodic boundary conditions are en-
forced for bulk materials. The thermodynamic melting 
point is approximately 1.4 - 1.5 times its structural coun-
terpart. 

For a given same values of the integration time step, 
we observe, in addition, that the microcanonical internal 
energy exhibits an S-shaped curvature in the coexistence 
region where both solid-like and liquid-like states can 
occur. This can be understood by considering the con-
stant energy ET = EP + EK, the cluster switches between 
solid and liquid along time scale. In solid-like state, the 
configuration of the cluster has a lower configurational 
energy. Switching to a liquid-like state, it is increasing its 
total energy; hence, the kinetic energy has to be reduced 
to keep the total energy constant. Because of this, the same 
mean kinetic energy can be obtained at different total 
energies. 

 

 

Figure 2. Shows the kinetic (EK), potential (EP) and total 
energy (ET) as function of the cluster temperature. 
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With , we have three re-
gions; 

melt melt1.5 and 0.2T T  

Region I melt
melt 2

T
T T


   

Region II melt melt
melt melt2

T
T T T


   

2

T
 

Region III melt
melt 2

T
T T


   

The potential curve is characterized by two distinct 
parts, where the solid part corresponds to Region I and 
the liquid part to Region III. Those two parts are sepa-
rated by a gap melt  in which the cluster fluctuates 
between the two phases; this region of coexistence of 
solid and liquid phases represents two behaviors where 
the potential energy distribution has a dent with an in-
verted curvature, and shows a bimodal structure. 

T

Then the change in the potential energy can be inter-
preted as responsible for this back bending phenomenon.  

Then we draw for integration step Δt = 0.008 in Fig-
ure 3 the evolution of the average specific heat according 
to the desired temperature. In the transition region, we 
observe a double peak structure that also can be inter-
preted by the coexistence of the solid and the liquid phase. 

In our simulations of melting, we monitor the phase 
changes of clusters using atom-resolved root-mean-square 
(RMS) fluctuation of the interatomic distances. 

For the solid state, in which atoms are fixed in lattice 
sites, the value of this parameter is typically smaller than 
0.1, considerably smaller than that for the liquid state 
with its mobile atoms. This parameter corresponds to a 
time scale in which atomic transitions between sites for 
the solid cluster state are improbable, while these transi-
tions for the liquid cluster state are effective.  

Figure 4 demonstrates this for the 256-atom Lennard- 
Jones cluster with the argon pair interaction parameters.  

 

 

Figure 3. Shows the corresponding heat capacity obtained 
by the derivative of the total energy on the temperature. 

One can see that the (RMS) curves increase slowly with 
the temperature but beyond the point melt melt 2T T   
increases fastly and fluctuates before reaching the mean 
value corresponding to the liquid steady state. So this 
parameter has a jump in the vicinity of the cluster melt-
ing point melt , and the point of inflection of this jump 
may be used as the definition of the melting point. How-
ever, because the “jump” clearly takes place over a finite 
temperature interval, the melting point of the cluster be-
comes more subjectively defined; e.g., the point of in-
flection of this curve, or the point of equal chemical po-
tentials of the two phase-like forms. Often, the term 
“melting point” of a cluster is taken to be the condition at 
which the free energies of the two phases are equal. 

T

In this (RMS) fluctuating region, the global cluster 
system can be interpreted as subdivided into two arbi-
trary interacting subsystems. The total internal energy of 
the cluster is not simply the sum of individual internal 
energy of the subsystems. We have to take into account 
an additive term due to the interaction between the sub-
systems that makes that internal energy at the melting 
point not an extensive quantity. 

5. Caloric Curves Dependence on MD  
Simulation Parameters 

To test the effect of varying the time increment Δt, the 
value of physical quantities, so for a definite value to the 
desired temperature, the simulations were performed for 
different values of the time increment from 0.01 to 0.009 
with an infinitesimal change in the order of 0.0005. Each 
simulation was performed for the same total time of 1500 
time steps or stages, and the raw sampled data for the 
quarter of the initial time interval of the simulation was 
excluded from subsequent analysis. In order to monitor 
the equilibration process, the overall temperature kinetics, 
heat capacity, Lindmann factor, and the energy (kinetic, 
potential, and total) were recorded. 

 

 

Figure 4. The RMS as function of temperature. 
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Figure 5: In this figure, we note for all values of inte-
gration step Δt with (Δt = 0.0076; 0.0078; 0.008) that all 
curves of kinetic energy are superposed and proportional 
to the values of temperatures, so the evolution of the ki-
netic energy function is independent from a different 
values of Δt.  

On the other hand, all curves of total energy are su- 
perposed in two regions I and III; however, between 
them, curves exhibit an S-shaped curvature in the coexis- 
tence region where both solid-like and liquid-like states 
can occur depending on the integration time step Δt. 

For Δt = 0.0078 and Δt = 0.008 we observe back 
bending (S-shaped curvature). 

For the other values like Δt = 0.0076 the total energy, 
or in similar manner the potential energy, increases mono-
tonically with temperature and the back bending disap-
pears. 

In the same manner, the heat capacities in Figure 6 
show a bimodal behavior that is missed by changing the 
values of integration time step Δt. 

 

 

Figure 5. The kinetic, and total energy as function of tem-
perature at different values of time of integration step Δt. 

 

 

Figure 6. Shows the corresponding heat capacity obtained 
by the derivative of the total energy on the temperature. 

The curves in Figure 7 effectively show that the dis-
tance between atoms increases slowly with the tempera-
ture; when the temperature becomes greater then the dis-
tance increases swiftly until a value where the system 
becomes unstable. At this point, the system can be sub-
divided into arbitrary subsystems, between which inter-
actions must be taken into account, regardless of their 
small size. Energy between these systems is not an ex-
tensive quantity because the total energy is not simply 
the sum of the energy of the subsystems. 

Considering its non-extensitivity, to avoid partly mol-
ten states, a reduced system prefers to convert part of its 
kinetic energy into potential energy in its place. Conse-
quently the cluster can become colder, where its total 
energy increases; the distance then decreases to find sta-
bility before quickly increasing. 

In Figure 8, we draw the curve representing the dis-
tribution of particle number according to kinetic energies 
during the simulation at different values of temperature. 
We note that all curves are superposed and have a shape 
of a centered Maxwell distribution. 

 

 

Figure 7. The RMS as function of temperature at different 
values of time integration step Δt. 

 

 

Figure 8. Shows the Maxwell distribution of the kinetic en-
ergy values during the simulation at different values of de-
sired temperature. 
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In Figure 9, the curve represents the distribution of 
particle number according to potential energies during 
the simulation at different values of temperature. 

We distinguish two different cases: 
 When the internal energy is monotonic, or similarly, 

when the heat capacity exhibits one peak, all the po-
tential energy distributions are superposed. 

 When the internal energy is monotonic or similarly. 
When the heat capacity exhibits bimodal behavior 

(back bending), the potential energy distributions are 
shifted to higher energy value that corresponds to a de-
crease of the (RMS) and signals the occurrence of attrac-
tive interaction governing the process.  

Note that all curves are superposed and have a shape 
of a centered Maxwell distribution, but the curve corre-
sponding to TD = 1.4463 is higher, decaled, and not 
symmetric like the other curves.  

We conclude that upon melting, the kinetic energy, 
and thus the temperature, remains constant. A small sys-
tem tries to avoid partly molten states and prefers to 
convert some of its kinetic into potential energy instead. 
Therefore, the cluster can become colder while its total 
energy increases. 

6. Discussion 

In the equilibrium thermodynamic, all possible microscopic 
states of a system are equal probable and the entropy 
tends toward a maximum value; finally, many fluctuations 
occur, decreasing the entropy. 

The internal interactions in certain conditions can mag-
nify these fluctuations. 

In this study, simulations have been performed with an 
integration step Δt, which is good enough to maintain the 
energy constant for relatively short runs of about 1000 
integration steps. Because we need long runs to observe 
dynamical coexistence, we have tested the ability of this 
algorithm to maintain the total energy as a function of the  

 

 

Figure 9. Shows the Maxwell distribution of the potential 
energy values during the simulation at different values of 
desired temperature. 

time step Δt of integration. For longer runs, the accuracy 
rapidly decreases. A very small Δt would maintain the 
energy much better, but the computation time would be-
come unrealistically long, and, worse still, the truncation 
errors start to play an important role. Hence, the choice 
of Δt should simultaneously satisfy two requirements: 
 To be much shorter than the characteristic time; 
 And to be large enough to make the computations 

efficient. 
A straightforward argument makes clear why and how 

the effective heat capacity of a microcanonical ensemble, 
defined in terms of the mean kinetic energy, may be 
negative. The phase-like forms of clusters are interpreted 
in terms of states where clusters reside depending on 
their surface potential energy. 

Clusters in liquid states reside on a sort of large hol-
lows with small barriers, so that the atoms can move 
rather readily through many conformations. In this later 
case, the mean potential energy is high relative to the 
bottom of the well corresponding to the solid. At low 
energies, the system cannot escape the deep minimum, 
and is therefore solid. This situation means that at high 
enough energies, the cluster moves between these two 
forms of potential essentially as readily as it moves po-
tential surface of liquid. 

The question now is: at which ranges of energy (or 
temperature) are the solid and liquid states recognizable? 

The response is that the systems must spend intervals 
long enough in each region to develop properties charac-
teristic of each state. Hence, there must be enough of a 
barrier that separates the solid and liquid regions of the 
potential surface to yield those sufficiently long dwelling 
times. 

As the total energy of the cluster increases, it spends a 
larger fraction of time in the liquid region, which has 
high potential energy and low kinetic energy. 

Increasing the energy allows the system to climb into 
regions of ever-increasing potential energy, while the 
average kinetic energy of the liquid may remain low, 
even as its total energy increases. This explains clearly 
the situation in which increasing the energy of the system 
lowers the mean kinetic energy, and thereby lowers the 
kinetic temperature. 

We believe that the potential type and the transition 
time between different configurations that are principally 
related to the dwell time of the system in a given con-
formation are responsible of the back bending behavior. 

According to Yi-Fang Chang [32], attractive process is 
one of internal interactions that can magnify a fluctuation. 
For example, in an isolated system of n constituents which 
are in different states of energy. Ωn: Number of the pos-
sible states of the system. 

Now, if we consider that internal attractive interaction 
exists in system the n-constituents’ cluster to m-aggregates, 
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each aggregates in a finite number of initial constituents. 

ln !m Bk m                (13) 

And 

!
d ln l

!
m

m n B B
n

m
S S S k k

n

          
n


     (14) 

m < n for the condensed process, entropy decreases dS < 
0. Conversely, m > n for the dispersed process. 

The argon melting cluster can be interpreted in terms 
of the coexistence of two subsystems with internal inter-
actions. In this picture the internal energy and the entropy 
will not be additive extensive quantities. 

7. Conclusions 

How can this negative heat capacity be interpreted? Upon 
melting, a large system converts added energy completely 
into potential energy, reducing continuously the fraction 
of its solid phase. The kinetic energy, and thus the tem-
perature remain constant. A small system, on the other 
hand, tries to avoid partly molten states and prefers to 
convert some of its kinetic energy into potential energy 
instead. Therefore the cluster can become colder, while 
its total energy increases. 

In our study, the most important condition for detect-
ing coexisting phases is the rate of cooling-heating which 
must be large in comparison to the relaxation time. 

In the region of the phase transition, depending on the 
value of integration step, the system may or may not be 
stable. If the system is unstable due to the competition 
between its subsystems, the dominance of attractive 
forces will cause the appearance of the back-bending 
phenomenon. 

As pointed out by Berry [33], a rugged potential en-
ergy surface requires a slow enough change of the sys-
tem’s temperature to avoid trapping it in a metastable 
state. If this trapping happens, the system cannot escape 
from a local minimum for realistic computational times. 

Effectively we have demonstrated that for a given in-
tervals of time step integration, due to the nature of LJ 
potential, the structure of configurational states of Ar clus-
ters varies significantly with increasing cluster tempera-
ture, and new configurational states come into play in the 
liquid state as the cluster is excited. This is accompanied 
by a significant energy gap between the solid and liquid. 
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