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ABSTRACT 

In this paper, a new mesh based algorithm is applied for motion estimation and compensation in the wavelet domain. 
The first major contribution of this work is the introduction of a new active mesh based method for motion estimation 
and compensation. The proposed algorithm is based on the mesh energy minimization with novel sets of energy func-
tions. The proposed energy functions have appropriate features, which improve the accuracy of motion estimation and 
compensation algorithm. We employ the proposed motion estimation algorithm in two different manners for video 
compression. In the first approach, the proposed algorithm is employed for motion estimation of consecutive frames. In 
the second approach, the algorithm is applied for motion estimation and compensation in the wavelet sub-bands. The 
experimental results reveal that the incorporation of active mesh based motion-compensated temporal filtering into 
wavelet sub-bands significantly improves the distortion performance rate of the video compression. We also use a new 
wavelet coder for the coding of the 3D volume of coefficients based on the retained energy criteria. This coder gives the 
maximum retained energy in all sub-bands. The proposed algorithm was tested with some video sequences and the re-
sults showed that the use of the proposed active mesh method for motion compensation and its implementation in 
sub-bands yields significant improvement in PSNR performance. 
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1. Introduction 

Recently, digital video communication and digital video 
storage have found many applications like digital TV, 
computer multimedia and video conferencing, to name a 
few. To reduce transmission bandwidth and storage ca-
pacity, it is necessary to apply an appropriate compression 
algorithm to videos. The Discrete Wavelet Transform 
(DWT) is the transform of choice in recent video com-
pression algorithms. Adopted by the JPEG2000 image 
compression standard [1], it significantly outperforms the 
algorithms based on other transforms, such as the dis-
crete cosine transform, in terms of objective metrics as 
well as perceptual image quality [2]. The success of the 
DWT stems from its ease of computation and its inherent 
decomposition of an image into non-overlapping sub- 
bands that enables the design of efficient quantization 
algorithms and allows for the incorporation of the human 
visual system. 

One of the main stages in video compression is motion 
estimation and compensation. In most of the frames in a 
video, the only difference between subsequent frames is 
the result of either camera’s or objects’ motion in the 
frames. Motion estimation and compensation algorithms  

take advantage of this clue to provide a way for creating 
frames of a movie from a reference frame. Different al-
gorithms have been proposed for motion estimation and 
compensation such as block-displacement methods [3,4], 
optical flow [5], feature matching [6], mesh based algo-
rithms [7] and model based methods [8]. 

In block-displacement methods, the matching process 
uses a block based method. That is, video frames are 
divided into blocks and motion vectors of the blocks in the 
current frame point to the closest matching blocks in the 
reference frame. If there is no motion or only pure trans-
lational motion, the motion vectors provide a one-to-one 
mapping between pixels in the reference frame and pixels 
in the current frame. However, in more realistic video 
sequences, motion is usually much more complex and 
yield one-to-many mappings for some pixels in the ref-
erence frame and no mapping for others. The latter pixels 
are thus unconnected.  

Although block-displacement techniques are popular, 
they have a number of drawbacks. First, the rigid block 
motion model fails to capture all aspects of the motion 
field, leaving a significant number of pixels unconnected 
between the frames. These unconnected pixels are coded 
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separately, which decreases coding efficiency. Second, it 
is difficult to achieve sub-pixel accuracy in the block- 
displacement techniques while maintaining invertibility 
of the temporal transform. Finally, implementation of 
block-displacement techniques is hindered by numerous 
unconnected pixels. 

Motion estimation using image intensity is another 
method for motion compensation in video compression. 
Two usual methods of this category are optical flow and 
feature matching. The optical flow and the feature match-
ing methods are similar. In optical flow methods, motion 
vectors are calculated for all pixels of the image; how-
ever, in the feature matching algorithms, motion vectors 
are only calculated for strong features in the image. Con-
sidering the similarity between optical flow and feature 
matching algorithms, they are also called dense and 
sparse optical flow algorithms, respectively.  

In both optical flow algorithms, it is assumed that in-
tensity changes only because of the motion of pixels. 
Optical flow equation has two unknown variables; thus, 
the motion vector cannot be estimated without other con-
straints, which is called aperture problem. Therefore, 
different constraints are added to calculate motion vectors. 
Constant optical flow method (Lucas-Kanade algorithm) 
[9] assumes that motion fields are well approximated by a 
constant vector within any small region of the image plane. 
To increase the speed and accuracy of the method, multi- 
resolution implementation of the algorithm using image 
pyramids may be also employed [10]. 

Optical flow algorithms mainly suffer from the aper-
ture problem. Because motion vectors are calculated in-
dependently, they are somewhat chaotic as well. 

Mesh based algorithms [11] use some nodal points to 
generate a triangular or rectangular mesh on the image. 
Then, by matching mesh elements in different frames, 
motion vectors are calculated. The model based methods 
employ a 2-D or 3-D geometric model for motion esti-
mation.  

Model based algorithms are proper for global motion 
estimation like camera motion; however, they fail to cal-
culate local motion in the video frames. 

In this paper, a new method is proposed for video 
compression in the wavelet domain. The proposed algo-
rithm is based on the new motion estimation and com-
pensation method in wavelet sub-bands. To calculate 
motion for different pixels in the image a mesh model 
based on new mesh energy is proposed.  

The organization of this paper is as follows: in the next 
section, different 2-D DWT algorithms are reviewed. In 
Section 3, the proposed active mesh based algorithm is 
described. The proposed video compression procedure is 
described in Section 4. Experimental results appear in 
Section 5 and conclusion is provided in Section 6. 

2. 2-D Discrete Wavelet Transform 

A 2-D separable discrete wavelet transform is equivalent 
to two consecutive 1-D transforms. For an image, a 2-D 
DWT is implemented as a 1-D row transform followed 
by a 1-D column transform. Transform coefficients are 
obtained by projecting the 2-D input image  ,X u v  
onto a set of 2-D basis functions, which are expressed as 
the product of two 1-D basis, as shown in Equation (1). 
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The 2-D DWT analysis can be expressed as the set of 
equations as shown in Equation (2). The scaling function 
 ,u v , wavelets  1 ,u v , ,  and the 

corresponding transform coefficients 
 2 ,u v 3 ,u v
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 2  , ,X N j m  and  , ,(3)X N j m  correspond to differ-

ent sub-bands in the decomposition.  , , X N j m  are the 
coarse coefficients that constitute the LL sub-band. The 

 1  , , X N j m  coefficients contain the vertical details 
and correspond to the LH sub-band. The  2  , ,X N j m  
coefficients contain the horizontal details and correspond 
to the HL sub-band. The  3  , ,X N j m  coefficients 
represent the diagonal details in the image and constitute 
the HH sub-band. Thus, single-level decomposition at 
scale (N + 1) has four sub-bands as shown in Figure 1.  
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The synthesis bank performs the 2-D IDWT to recon-
struct  ,X u v . 2-D IDWT is given in Equation (3). 

 

 

Figure 1. Single-level 2-D wavelet decomposition (analysis). 
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location of feature points, their matches and other attrib-
utes of the generated mesh and video frames. The track-
ing of mesh is performed by minimizing the mesh energy 
which considers the motion information of nearby fea-
tures to remove erroneous matches and enhance the ac-
curacy. 

3.1. Mesh Energy 

The mesh energy is the combination of internal and ex-
ternal energies. To achieve high accuracy, different en-
ergy functions are defined for mesh model including 
matching, interest points, correlation, sum of squared 
differences (SSD) and corner energies. These energies 
are calculated for match points as well as predefined 
neighborhoods around them. The mesh energy is the 
weighted sum of internal and external energies. By mini- 
mizing the mesh energy in each frame, the location of 
image features and the related mesh are calculated in the 
subsequent frames. 

A single stage of a 2-D filter bank is shown in Figure 
2. First, the rows of the input image are filtered by the 
high-pass and low-pass filters. The outputs of these fil-
ters are down-sampled by two and then the columns of 
the outputs are filtered and down sampled to decompose 
the image into four sub-bands. The synthesis stage per-
forms up-sampling and filtering to reconstruct the origi-
nal image. 

3. Motion Estimation Using the Proposed 
Active Mesh Method 

3.2. Internal Energy To find a remedy for the problem of motion estimation 
methods in video compression, a new algorithm is used 
based on an active mesh model. The method uses a com-
bination of 2-D formable meshes and feature matching 
algorithm to calculate motion vectors more precisely. In 
this algorithm, image features (interest points) are ex-
tracted using the Kanade-Lucas-Tomasi (KLT) feature 
extractor technique [12]. Interest points are used as mesh 
vertices in order to generate an unstructured mesh over 
the video frame by Delaunay triangulation algorithm [13]. 
To compute motion vectors, the matching points of the 
features are found using the improved Lucas-Kanade 
feature matching algorithm [11], which utilizes image 
pyramids for the calculation of match points. The method 
calculates match point of each feature individually with 
sub-pixel accuracy. However, because motion vectors are 
calculated independently, motion vectors are somewhat 
chaotic. Thus, the match points of the previous step are 
not considered as true match points. In order to find true 
match points, mesh energies are defined based on the  

The normalized external energy is defined for every 
mesh vertex as follows: 

   int cur cur yE L x L               (4) 

where  curL x  and  cur y  are the x, y components for 
length of mesh lines. The value of 

L
  is given by: 
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L
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
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 
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where pre  and cur  are lengths of the mesh lines in 
the previous and current frames, respectively. The line

L L
  

parameter is a coefficient that regularizes effect of the 
applied energy. Internal energy for origin and destination 
nodes is given by: 

 org intE i E                 (7) 

 dst intE i E                 (8) 

 

 

Figure 2. One level filterbank for computing 2-D DWT and IDWT.  
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Definition of the internal energy using the mentioned 

equations gives a rigid-elastic structure to the mesh, 
which is useful for motion estimation. 

3.3. External Energy 

To test different motion estimation algorithms in the spa-
tial domain, they were applied in video compression al-
gorithm, as demonstrated in Figure 3. This figure illus-
trates the utilizing process of motion estimation algo-
rithm in compression. As can be seen in Figure 3, the 
difference between the current frame and the previous 
one, which was compensated with one of these previous, 
mentioned methods, will be send to the encoder. As a 
result of using the difference between two sequences, we 
managed to send the minimum amount of information to 
the decoder. Then the residual image will be encoded and 
decoded by the SPIHT method, which is based on wave-
let transformation. While the motion estimation process 
is being done, the motion vectors obtained by these three 
methods are send to the decoder. In the decoder section, 
the previous frame which was completely send to the 
decoder produced the restored image by means of motion 
vectors. This image will be added to the encoders resid-
ual image and in this way the main image will be pro-
duced. This process is performed for all of the images in 
a image sequence and all images are restored by this 
method. 

3.4. Video Compression Steps in Wavelet  
Sub-Bands 

To test different motion estimation algorithms in the 
wavelet sub bands, they were applied in video compres-
sion algorithm, as demonstrated in Figure 4. For video  

compression, optimized active mesh motion estimation in 
wavelet sub bands was used. Then, motion compensation 
algorithm was used with sub-pixel accuracy. Followed 
by motion compensation algorithm, an embedded wave-
let-based coding was used which was applied to residual 
frames. The wavelet based encoding was based on 
SPIHT algorithm [14-16] with the specified wavelet and 
number of levels. The SPIHT algorithm involved a 2-D 
DWT followed by a progressive bit plane coding of 
wavelet coefficients using a zero tree-like quantization 
structure. For decompression, the wavelet-based decod-
ing algorithm was applied and using the motion vectors 
obtained by motion estimation algorithm, the original 
frame was reconstructed.  

The external energy utilizes image information such as 
intensity and texture information to locate the true 
matching points of mesh nodes. The external energy was 
defined based on the following intuitions: 
 Considering the short interval between frames, nodes 

are mostly matched with similar points in the next 
frames. 

 Since nodes are the interest points (corners) of the 
first frame, the nodes are probably matched with cor-
ners or interest points in the subsequent frames. 

Based on the above intuitions, the normalized external 
energy was defined for every mesh vertex as follows: 

   ext FM FM

r d r d
E d x S d y S

r r

      
   


    (8) 

 d x  d y and where  are the x and y components 
related to the distance between feature points in the pre-
vious frame and matching points in the current frame, r is 
the radius of the search area and FMS  is the correlation 
criterion which is given by: 
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Figure 3. Block diagram of video compression algorithm when motion comensation is employed in spatial domain. 
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Figure 4. Block diagram of video compression algorithm when motion comensation is employed in wavelet sub-bands. 
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where corrF  is the correlation coefficient between 
matching points. The sum of the internal and external 
energy is considered as the node energy. 

3.5. Energy Minimization  

The Greedy algorithm [17] is used here to minimize the 
calculated mesh energy in deformable meshes. The 
Greedy algorithm for minimization of the mesh energy 
and tracking mesh nodes has the following steps: 

1) Select one of the unselected nodes of mesh. 
2) Fix the location of other vertices and move the se-

lected vertex in the window centered on the initial loca-
tion of the selected vertex. 

3) Calculate the total mesh energy for all possible lo-
cations of Step 2. 

4) Move the vertex to the point with the minimum en-
ergy. 

5) Repeat Steps 1 to 4 to reach the minimum point 
and/or maximum iteration.  

6) Update mesh elements and parameters. 

3.6. The Proposed Video Compression Algorithm 

We use two different methods for video compression. In 
the first method, which is shown in Figure 3, motion 
estimation and compensation is applied in spatial do-
main.  

As the figure shows, we utilize different motion esti-
mation algorithms for comparison. In this method, the 
motion compensation is carried out in spatial domain to 

obtain the predicted image. Then difference of the cur-
rent frame and the predicted image is fed for wavelet 
decomposition. In the case of proper motion estimation, 
the difference or residual image has less amount of in-
formation for decoding. Then the residual image are en-
coded and decoded by the SPIHT method [14-16], which 
is based on wavelet transformation. The SPIHT algo-
rithm involves a 2-D DWT followed by a progressive bit 
plane coding of wavelet coefficients using a zero tree- 
like quantization structure.  

In the decoder section, by using the motion vectors 
and the decompressed previous frame the predicted im-
age is also reconstructed. By adding the predicted image 
to encoded residual image the decompressed image is 
obtained.  

Our second approach benefit from motion estimation 
in wavelet sub-bands as shown in Figure 4. In this ap-
proach the proposed active mesh method for motion es-
timation is employed in wavelet sub-bands. The motion 
estimation algorithm calculates motion vectors with sub- 
pixel accuracy. In this algorithm, the predicted image is 
calculated for all images in the wavelet sub-bands. Then 
SPIHT algorithm is utilized for video coding in sub- 
bands. Motion vectors for all sub-bands are sent for 
video decoding as well. For decompression, the wavelet- 
based decoding algorithm is applied and using the mo-
tion vectors and the predicted sub-band images, the 
original frame is reconstructed.  

4. Experimental Results 

The proposed algorithm was implemented using a Mi-
crosoft Visual C++ program and tested with several vid-
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eo sequences. To show the efficiency of the proposed 
algorithm, we also implemented Lucas-Kanade feature 
matching algorithm and motion estimation algorithm 
using block matching. Algorithms were tested with dif-
ferent videos including the Coast Guard video (100 
frames), Motor video (100 frames), Snake video (100 
frames), NASCAR video (100 frames), Foreman video 
(100 frames), Mother video (100 frames), Akiyo video 
(100 frames), Hall video (100 frames), Silent video (100 
frames) and Boat video (100 frames). The first video 
sequence has the spatial resolution of 320 × 240 pixels 
and the temporal sampling rate of 30 frames/sec. The 
second sequence has the spatial resolution of 160 × 120 
pixels and the temporal sampling rate of 25 frames/sec. 
The third sequence has the spatial resolution of 352 × 
240 pixels and the temporal sampling rate of 29 frames/ 
sec. The last five sequences have a spatial resolution of 
160 × 120 pixels and the temporal sampling rate of 10 
frames/sec.  

For block matching method, the block size for motion 
estimation is 16 × 16. Other parameters for block match-

ing and feature matching algorithm were selected in or-
der to give the best results.  

Figure 5 shows motion vectors of two consecutive 
frames for two sample video sequences. As the figure 
shows, the proposed algorithm has less outliers or incor-
rect matches. Figures 6 and 7 demonstrate the result of 
the proposed active mesh model for motion estimation in 
spatial domain and wavelet sub-bands respectively. Fig-
ures show the results of the proposed algorithm for 
mother video sequence. 

Figure 8 shows the frame-by-frame PSNR perform-
ance for the proposed video compression algorithm. To 
compare the results of the proposed method with those 
other methods the results of the following algorithm are 
shown in the figure: 
 Proposed video compression algorithm with active 

mesh based motion compensation in wavelet sub-
bands (Wavelet active mesh). 

 Proposed video compression algorithm with active 
mesh based motion compensation in spatial domain 
(Spatial active mesh). 

 

 

Figure 5. Motion vectors of two sample consecutive frames for Coastguard and Motor video sequences. (a) Motion vectors for 
sample consecutive frame of Coastguard video using the proposed active mesh model; (b) Motion vectors for sample consecu-
tive frame of Coastguard video using Luca-Kanade method; (c) Motion vectors for sample consecutive frame of Motor video 
using the proposed active mesh model; (d) Motion vectors for sample consecutive frame of Motor video using Luca-Kanade 
method. 
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Figure 6. The results of the proposed active mesh method 
for motion estimation in spatial domain and its evolution 
over video frames. 
 

(a)

(b)

(c)  

Figure 7. The results of the proposed active mesh method 
for motion estimation in wavelet sub-bands, (a) LH sub- 
band; (b) HL subband; (c) HH subband. 

 Video compression using block matching algorithm. 
The structure of Figure 3 is used for compression. 

 Video compression using Lucas-Kanade feature 
matching algorithm. The structure of Figure 3 is used 
for compression. 

 Video compression using Redundant Discrete Wave-
let Transform (RDWT) algorithm [18]. 

We tested the algorithms with the Coastguard, Motor, 
Snake, Nascar, Foreman, Mother, Akiyo, Hall, Silent and 
boat videos. Figure 8 shows the frame-by-frame PSNR 
for Coastguard, Motor, Snake, Nascar, Foreman, Mother, 
Silent and boat videos, respectively. Bit rates for all of 
these sequences are 0.5 bpp (1.3 Mbps). Table 1 shows 
the average PSNR for different test videos. According to 
the results of Figure 8 and Table 1, it can be observed 
that the proposed active mesh model in wavelet sub- 
bands yields significant improvement in PSNR perform-
ance. Table 2 shows the execution time of different al-
gorithms for various test videos. According to the results 
of Table 2, it can be observed that the video compression 
algorithm with Lucas-Kanade motion estimation algo-
rithm is the fastest method. It is also obvious that the 
proposed algorithm has proper execution speed compar-
ing other methods. 

5. Conclusion 

In this paper, a new method for motion estimation and 
compensation and its application for video compression 
were proposed. The proposed motion estimation algo-
rithm is based on mesh model and new sets of energy 
functions. The proposed motion estimation algorithm 
was applied in spatial and wavelet sub-bands for video  
 
Table 1. Average PSNR performance (dB) for different 
videos at 1.3 Mbps (0.5 bpp). 

Compression Methods 
Video 

Sequences Lucas-
Kanade

Spatial 
Active Mesh 

Block 
Matching 

RDWT 
Wavelet 

Active Mesh

Nascar 32.48 32.73 31.18 32.34 33.58 

Coastguard 36.21 36.45 34.67 41 42.79 

Motor 36.44 36.68 35.22 36.02 37.54 

Snake 38.35 38.47 37.05 39.11 40.42 

Foreman 34.98 36.14 36.28 37.52 37.64 

Mother 44.26 45.63 45.79 45.97 47.34 

Akiyo 49.17 50.42 50.61 50.74 53.05 

Hall 42.74 43.96 44.09 44.25 45.38 

Silent 40.02 41.99 42.26 44.88 47.15 

Boat 31.49 32.22 32.38 32.63 34.76 
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Figure 8. Frame-by-frame PSNR for sample videos at 0.5 bpp (1.3 Mbps), (a) Coastguard; (b) Motor; (c) Snake; (d) Nascar; 
(e) Foreman; (f) Mother; (g) Boat; (h) Silent. 
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Table 2. Execution time in second for the proposed and 
various implemented algorithms.  

Compression Methods 
Video 

Sequences Lucas- 
Kanade 

Spatial 
Active Mesh 

Block 
Matching 

RDWT 
Wavelet 

Active Mesh

Nascar 64 65 62 64 66 

Coastguard 72 73 70 82 84 

Motor 72 74 72 73 75 

Snake 76 75 78 78 80 

Foreman 68 71 74 77 76 

Mother 86 90 90 90 94 

Akiyo 95 100 100 103 106 

Hall 84 86 88 88 90 

Silent 80 82 84 90 94 

Boat 75.9 64 65 67 68 

 
compression. We tested the proposed algorithm with 
several video sequences and compared its results with 
those of other methods. Experimental results showed that 
the active mesh model in wavelet sub-bands enhances the 
PSNR considerably. 
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