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ABSTRACT

In this paper, a new mesh based algorithm is applied for motion estimation and compensation in the wavelet domain.
The first major contribution of this work is the introduction of a new active mesh based method for motion estimation
and compensation. The proposed algorithm is based on the mesh energy minimization with novel sets of energy func-
tions. The proposed energy functions have appropriate features, which improve the accuracy of motion estimation and
compensation algorithm. We employ the proposed motion estimation algorithm in two different manners for video
compression. In the first approach, the proposed algorithm is employed for motion estimation of consecutive frames. In
the second approach, the algorithm is applied for motion estimation and compensation in the wavelet sub-bands. The
experimental results reveal that the incorporation of active mesh based motion-compensated temporal filtering into
wavelet sub-bands significantly improves the distortion performance rate of the video compression. We also use a new
wavelet coder for the coding of the 3D volume of coefficients based on the retained energy criteria. This coder gives the
maximum retained energy in all sub-bands. The proposed algorithm was tested with some video sequences and the re-
sults showed that the use of the proposed active mesh method for motion compensation and its implementation in

sub-bands yields significant improvement in PSNR performance.
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1. Introduction

Recently, digital video communication and digital video
storage have found many applications like digital TV,
computer multimedia and video conferencing, to name a
few. To reduce transmission bandwidth and storage ca-
pacity, it is necessary to apply an appropriate compression
algorithm to videos. The Discrete Wavelet Transform
(DWT) is the transform of choice in recent video com-
pression algorithms. Adopted by the JPEG2000 image
compression standard [1], it significantly outperforms the
algorithms based on other transforms, such as the dis-
crete cosine transform, in terms of objective metrics as
well as perceptual image quality [2]. The success of the
DWT stems from its ease of computation and its inherent
decomposition of an image into non-overlapping sub-
bands that enables the design of efficient quantization
algorithms and allows for the incorporation of the human
visual system.

One of the main stages in video compression is motion
estimation and compensation. In most of the frames in a
video, the only difference between subsequent frames is
the result of either camera’s or objects’ motion in the
frames. Motion estimation and compensation algorithms
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take advantage of this clue to provide a way for creating
frames of a movie from a reference frame. Different al-
gorithms have been proposed for motion estimation and
compensation such as block-displacement methods [3,4],
optical flow [5], feature matching [6], mesh based algo-
rithms [7] and model based methods [8].

In block-displacement methods, the matching process
uses a block based method. That is, video frames are
divided into blocks and motion vectors of the blocks in the
current frame point to the closest matching blocks in the
reference frame. If there is no motion or only pure trans-
lational motion, the motion vectors provide a one-to-one
mapping between pixels in the reference frame and pixels
in the current frame. However, in more realistic video
sequences, motion is usually much more complex and
yield one-to-many mappings for some pixels in the ref-
erence frame and no mapping for others. The latter pixels
are thus unconnected.

Although block-displacement techniques are popular,
they have a number of drawbacks. First, the rigid block
motion model fails to capture all aspects of the motion
field, leaving a significant number of pixels unconnected
between the frames. These unconnected pixels are coded
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separately, which decreases coding efficiency. Second, it
is difficult to achieve sub-pixel accuracy in the block-
displacement techniques while maintaining invertibility
of the temporal transform. Finally, implementation of
block-displacement techniques is hindered by numerous
unconnected pixels.

Motion estimation using image intensity is another
method for motion compensation in video compression.
Two usual methods of this category are optical flow and
feature matching. The optical flow and the feature match-
ing methods are similar. In optical flow methods, motion
vectors are calculated for all pixels of the image; how-
ever, in the feature matching algorithms, motion vectors
are only calculated for strong features in the image. Con-
sidering the similarity between optical flow and feature
matching algorithms, they are also called dense and
sparse optical flow algorithms, respectively.

In both optical flow algorithms, it is assumed that in-
tensity changes only because of the motion of pixels.
Optical flow equation has two unknown variables; thus,
the motion vector cannot be estimated without other con-
straints, which is called aperture problem. Therefore,
different constraints are added to calculate motion vectors.
Constant optical flow method (Lucas-Kanade algorithm)
[9] assumes that motion fields are well approximated by a

constant vector within any small region of the image plane.

To increase the speed and accuracy of the method, multi-
resolution implementation of the algorithm using image
pyramids may be also employed [10].

Optical flow algorithms mainly suffer from the aper-
ture problem. Because motion vectors are calculated in-
dependently, they are somewhat chaotic as well.

Mesh based algorithms [11] use some nodal points to
generate a triangular or rectangular mesh on the image.
Then, by matching mesh elements in different frames,
motion vectors are calculated. The model based methods
employ a 2-D or 3-D geometric model for motion esti-
mation.

Model based algorithms are proper for global motion
estimation like camera motion; however, they fail to cal-
culate local motion in the video frames.

In this paper, a new method is proposed for video
compression in the wavelet domain. The proposed algo-
rithm is based on the new motion estimation and com-
pensation method in wavelet sub-bands. To calculate
motion for different pixels in the image a mesh model
based on new mesh energy is proposed.

The organization of this paper is as follows: in the next
section, different 2-D DWT algorithms are reviewed. In
Section 3, the proposed active mesh based algorithm is
described. The proposed video compression procedure is
described in Section 4. Experimental results appear in
Section 5 and conclusion is provided in Section 6.
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2. 2-D Discrete Wavelet Transform

A 2-D separable discrete wavelet transform is equivalent
to two consecutive 1-D transforms. For an image, a 2-D
DWT is implemented as a 1-D row transform followed
by a 1-D column transform. Transform coefficients are
obtained by projecting the 2-D input image X (u,v)
onto a set of 2-D basis functions, which are expressed as
the product of two 1-D basis, as shown in Equation (1).

#(u,v)=g(u)(v)

vy (uv) =y (u)g(v)
v (uv)=g(u)y (V)
v (uv)=w (U)w(v)

(M

The 2-D DWT analysis can be expressed as the set of

equations as shown in Equation (2). The scaling function
¢(u,v), wavelets (u,v), v, (u,v) VA (u,v) and the
corresponding transform coefficients X (N R m) ,
x @ (N, j,m) and X(3)(N, j,m) correspond to differ-
ent sub-bands in the decomposition. X (N R m) are the
coarse coefficients that constitute the LL sub-band. The
x 1 ( N, j,m) coefficients contain the vertical details
and correspond to the LH sub-band. The x® (N, j,m)
coefficients contain the horizontal details and correspond
to the HL sub-band. The X© ( N, j,m) coefficients
represent the diagonal details in the image and constitute
the HH sub-band. Thus, single-level decomposition at
scale (N + 1) has four sub-bands as shown in Figure 1.

X (N, j,m)

= x(u,v)2”¢(2”u—j)¢(2”v—m)dudv:>LL
X(N, j,m)

= jx(u,v)zNy/(zNu—j)¢(2“v—m)dudv:> LH

X (N, j,m) @
= jx(u,v)2N¢(2Nu—j)yx(2“v—m)dudv:> HL

= [[x(uv)2"y (2" u =)y (2" v—m)dudv = HH

The synthesis bank performs the 2-D IDWT to recon-
struct X (u,v).2-D IDWT is given in Equation (3).

105 LH

Image

4

HL HH

Figure 1. Single-level 2-D wavelet decomposition (analysis).
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x(u,v)zzzm:x (N, j,mp2"g(2"u—j)g(2"v—m)
3R EXO (L m)2y (2= )o(2v-m)

+ X0 i,j,m)ziy/(ziu—j)y/(ziv—m)
3
A single stage of a 2-D filter bank is shown in Figure
2. First, the rows of the input image are filtered by the
high-pass and low-pass filters. The outputs of these fil-
ters are down-sampled by two and then the columns of
the outputs are filtered and down sampled to decompose
the image into four sub-bands. The synthesis stage per-
forms up-sampling and filtering to reconstruct the origi-
nal image.

3. Motion Estimation Using the Proposed
Active Mesh Method

To find a remedy for the problem of motion estimation
methods in video compression, a new algorithm is used
based on an active mesh model. The method uses a com-
bination of 2-D formable meshes and feature matching
algorithm to calculate motion vectors more precisely. In
this algorithm, image features (interest points) are ex-
tracted using the Kanade-Lucas-Tomasi (KLT) feature
extractor technique [12]. Interest points are used as mesh
vertices in order to generate an unstructured mesh over
the video frame by Delaunay triangulation algorithm [13].
To compute motion vectors, the matching points of the
features are found using the improved Lucas-Kanade
feature matching algorithm [11], which utilizes image
pyramids for the calculation of match points. The method
calculates match point of each feature individually with
sub-pixel accuracy. However, because motion vectors are
calculated independently, motion vectors are somewhat
chaotic. Thus, the match points of the previous step are
not considered as true match points. In order to find true
match points, mesh energies are defined based on the

L— rows —1 L cols —I

location of feature points, their matches and other attrib-
utes of the generated mesh and video frames. The track-
ing of mesh is performed by minimizing the mesh energy
which considers the motion information of nearby fea-
tures to remove erroneous matches and enhance the ac-
curacy.

3.1. Mesh Energy

The mesh energy is the combination of internal and ex-
ternal energies. To achieve high accuracy, different en-
ergy functions are defined for mesh model including
matching, interest points, correlation, sum of squared
differences (SSD) and corner energies. These energies
are calculated for match points as well as predefined
neighborhoods around them. The mesh energy is the
weighted sum of internal and external energies. By mini-
mizing the mesh energy in each frame, the location of
image features and the related mesh are calculated in the
subsequent frames.

3.2. Internal Energy

The normalized external energy is defined for every
mesh vertex as follows:

E

int

= j’Lcur (X)+ﬂ“|‘cur(y) (4)

where Ly, (x) and L, are the X, y components for

length of mesh lines. The value of A is given by:

ﬂ:[Lpre_Lcurj (5)

aLine Lcur

where L, and L, are lengths of the mesh lines in
the previous and current frames, respectively. The o,
parameter is a coefficient that regularizes effect of the
applied energy. Internal energy for origin and destination

nodes is given by:
org (I) = _Eint (7)
Edst (I) = +Eint (8)

Reconstructed
Vag Image

L— cols — L— rows —I

Figure 2. One level filterbank for computing 2-D DWT and IDWT.
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Definition of the internal energy using the mentioned
equations gives a rigid-elastic structure to the mesh,
which is useful for motion estimation.

3.3. External Energy

To test different motion estimation algorithms in the spa-
tial domain, they were applied in video compression al-
gorithm, as demonstrated in Figure 3. This figure illus-
trates the utilizing process of motion estimation algo-
rithm in compression. As can be seen in Figure 3, the
difference between the current frame and the previous
one, which was compensated with one of these previous,
mentioned methods, will be send to the encoder. As a
result of using the difference between two sequences, we
managed to send the minimum amount of information to
the decoder. Then the residual image will be encoded and
decoded by the SPIHT method, which is based on wave-
let transformation. While the motion estimation process
is being done, the motion vectors obtained by these three
methods are send to the decoder. In the decoder section,
the previous frame which was completely send to the
decoder produced the restored image by means of motion
vectors. This image will be added to the encoders resid-
ual image and in this way the main image will be pro-
duced. This process is performed for all of the images in
a image sequence and all images are restored by this
method.

3.4. Video Compression Steps in Wavelet
Sub-Bands

To test different motion estimation algorithms in the
wavelet sub bands, they were applied in video compres-
sion algorithm, as demonstrated in Figure 4. For video

compression, optimized active mesh motion estimation in
wavelet sub bands was used. Then, motion compensation
algorithm was used with sub-pixel accuracy. Followed
by motion compensation algorithm, an embedded wave-
let-based coding was used which was applied to residual
frames. The wavelet based encoding was based on
SPIHT algorithm [14-16] with the specified wavelet and
number of levels. The SPIHT algorithm involved a 2-D
DWT followed by a progressive bit plane coding of
wavelet coefficients using a zero tree-like quantization
structure. For decompression, the wavelet-based decod-
ing algorithm was applied and using the motion vectors
obtained by motion estimation algorithm, the original
frame was reconstructed.

The external energy utilizes image information such as
intensity and texture information to locate the true
matching points of mesh nodes. The external energy was
defined based on the following intuitions:

e Considering the short interval between frames, nodes
are mostly matched with similar points in the next
frames.

e Since nodes are the interest points (corners) of the
first frame, the nodes are probably matched with cor-
ners or interest points in the subsequent frames.

Based on the above intuitions, the normalized external
energy was defined for every mesh vertex as follows:

=3 (980 (a0 (5] ®)

where d(x) and d(y) are the X and y components
related to the distance between feature points in the pre-
vious frame and matching points in the current frame, r is
the radius of the search area and S, is the correlation
criterion which is given by:

+
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Frame — Image encoding Image decoding Frame

T +
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Figure 3. Block diagram of video compression algorithm when motion comensation is employed in spatial domain.
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Figure 4. Block diagram of video compression algorithm when motion comensation is employed in wavelet sub-bands.

Sen =
where F_, is the correlation coefficient between
matching points. The sum of the internal and external
energy is considered as the node energy.

3.5. Energy Minimization

The Greedy algorithm [17] is used here to minimize the
calculated mesh energy in deformable meshes. The
Greedy algorithm for minimization of the mesh energy
and tracking mesh nodes has the following steps:

1) Select one of the unselected nodes of mesh.

2) Fix the location of other vertices and move the se-
lected vertex in the window centered on the initial loca-
tion of the selected vertex.

3) Calculate the total mesh energy for all possible lo-
cations of Step 2.

4) Move the vertex to the point with the minimum en-
ergy.

5) Repeat Steps 1 to 4 to reach the minimum point
and/or maximum iteration.

6) Update mesh elements and parameters.

3.6. The Proposed Video Compression Algorithm

We use two different methods for video compression. In
the first method, which is shown in Figure 3, motion
estimation and compensation is applied in spatial do-
main.

As the figure shows, we utilize different motion esti-
mation algorithms for comparison. In this method, the
motion compensation is carried out in spatial domain to

Copyright © 2012 SciRes.

obtain the predicted image. Then difference of the cur-
rent frame and the predicted image is fed for wavelet
decomposition. In the case of proper motion estimation,
the difference or residual image has less amount of in-
formation for decoding. Then the residual image are en-
coded and decoded by the SPIHT method [14-16], which
is based on wavelet transformation. The SPIHT algo-
rithm involves a 2-D DWT followed by a progressive bit
plane coding of wavelet coefficients using a zero tree-
like quantization structure.

In the decoder section, by using the motion vectors
and the decompressed previous frame the predicted im-
age is also reconstructed. By adding the predicted image
to encoded residual image the decompressed image is
obtained.

Our second approach benefit from motion estimation
in wavelet sub-bands as shown in Figure 4. In this ap-
proach the proposed active mesh method for motion es-
timation is employed in wavelet sub-bands. The motion
estimation algorithm calculates motion vectors with sub-
pixel accuracy. In this algorithm, the predicted image is
calculated for all images in the wavelet sub-bands. Then
SPIHT algorithm is utilized for video coding in sub-
bands. Motion vectors for all sub-bands are sent for
video decoding as well. For decompression, the wavelet-
based decoding algorithm is applied and using the mo-
tion vectors and the predicted sub-band images, the
original frame is reconstructed.

4. Experimental Results

The proposed algorithm was implemented using a Mi-
crosoft Visual C++ program and tested with several vid-
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eo sequences. To show the efficiency of the proposed
algorithm, we also implemented Lucas-Kanade feature
matching algorithm and motion estimation algorithm
using block matching. Algorithms were tested with dif-
ferent videos including the Coast Guard video (100
frames), Motor video (100 frames), Snake video (100
frames), NASCAR video (100 frames), Foreman video
(100 frames), Mother video (100 frames), Akiyo video
(100 frames), Hall video (100 frames), Silent video (100
frames) and Boat video (100 frames). The first video
sequence has the spatial resolution of 320 x 240 pixels
and the temporal sampling rate of 30 frames/sec. The
second sequence has the spatial resolution of 160 x 120
pixels and the temporal sampling rate of 25 frames/sec.
The third sequence has the spatial resolution of 352 x
240 pixels and the temporal sampling rate of 29 frames/
sec. The last five sequences have a spatial resolution of
160 x 120 pixels and the temporal sampling rate of 10
frames/sec.

For block matching method, the block size for motion
estimation is 16 x 16. Other parameters for block match-

ing and feature matching algorithm were selected in or-

der to give the best results.

Figure 5 shows motion vectors of two consecutive
frames for two sample video sequences. As the figure
shows, the proposed algorithm has less outliers or incor-
rect matches. Figures 6 and 7 demonstrate the result of
the proposed active mesh model for motion estimation in
spatial domain and wavelet sub-bands respectively. Fig-
ures show the results of the proposed algorithm for
mother video sequence.

Figure 8 shows the frame-by-frame PSNR perform-
ance for the proposed video compression algorithm. To
compare the results of the proposed method with those
other methods the results of the following algorithm are
shown in the figure:

e Proposed video compression algorithm with active
mesh based motion compensation in wavelet sub-
bands (Wavelet active mesh).

e Proposed video compression algorithm with active
mesh based motion compensation in spatial domain
(Spatial active mesh).
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Figure 5. Motion vectors of two sample consecutive frames for Coastguard and Motor video sequences. (a) Motion vectors for
sample consecutive frame of Coastguard video using the proposed active mesh model; (b) Motion vectors for sample consecu-
tive frame of Coastguard video using Luca-Kanade method; (c) Motion vectors for sample consecutive frame of Motor video
using the proposed active mesh model; (d) Motion vectors for sample consecutive frame of Motor video using Luca-Kanade

method.
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Figure 6. The results of the proposed active mesh method
for motion estimation in spatial domain and its evolution
over video frames.
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S K
S\zis
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(b

Figure 7. The results of the proposed active mesh method
for motion estimation in wavelet sub-bands, (a) LH sub-
band; (b) HL subband; (c) HH subband.
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e Video compression using block matching algorithm.
The structure of Figure 3 is used for compression.

e Video compression using Lucas-Kanade feature
matching algorithm. The structure of Figure 3 is used
for compression.

e Video compression using Redundant Discrete Wave-
let Transform (RDWT) algorithm [18].

We tested the algorithms with the Coastguard, Motor,
Snake, Nascar, Foreman, Mother, Akiyo, Hall, Silent and
boat videos. Figure 8 shows the frame-by-frame PSNR
for Coastguard, Motor, Snake, Nascar, Foreman, Mother,
Silent and boat videos, respectively. Bit rates for all of
these sequences are 0.5 bpp (1.3 Mbps). Table 1 shows
the average PSNR for different test videos. According to
the results of Figure 8 and Table 1, it can be observed
that the proposed active mesh model in wavelet sub-
bands yields significant improvement in PSNR perform-
ance. Table 2 shows the execution time of different al-
gorithms for various test videos. According to the results
of Table 2, it can be observed that the video compression
algorithm with Lucas-Kanade motion estimation algo-
rithm is the fastest method. It is also obvious that the
proposed algorithm has proper execution speed compar-
ing other methods.

5. Conclusion

In this paper, a new method for motion estimation and
compensation and its application for video compression
were proposed. The proposed motion estimation algo-
rithm is based on mesh model and new sets of energy
functions. The proposed motion estimation algorithm
was applied in spatial and wavelet sub-bands for video

Table 1. Average PSNR performance (dB) for different
videos at 1.3 Mbps (0.5 bpp).

Compression Methods

Video
Sequences Lucas- S_patial Block RDWT Wavelet
Kanade Active Mesh Matching Active Mesh
Nascar  32.48 32.73 31.18 32.34 33.58
Coastguard 36.21 36.45 34.67 41 42.79
Motor 36.44 36.68 3522 36.02 37.54
Snake 38.35 38.47 37.05 39.11 40.42
Foreman  34.98 36.14 36.28 3752 37.64
Mother ~ 44.26 45.63 45779 4597 47.34
Akiyo 49.17 50.42 50.61 50.74 53.05
Hall 42.74 43.96 44.09 4425 4538
Silent 40.02 41.99 4226  44.88 47.15
Boat 31.49 32.22 3238 32.63 34.76
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Figure 8. Frame-by-frame PSNR for sample videos at 0.5 bpp (1.3 Mbps), (a) Coastguard; (b) Motor; (c) Snake; (d) Nascar;
(e) Foreman; (f) Mother; (g) Boat; (h) Silent.
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Table 2. Execution time in second for the proposed and
various implemented algorithms.

Compression Methods

Video
Sequences Lucas- S_patial Bloc_k RDWT Wavelet
Kanade Active Mesh Matching Active Mesh
Nascar 64 65 62 64 66
Coastguard 72 73 70 82 84
Motor 72 74 72 73 75
Snake 76 75 78 78 80
Foreman 68 71 74 77 76
Mother 86 90 90 90 94
Akiyo 95 100 100 103 106
Hall 84 86 88 88 90
Silent 80 82 84 90 94
Boat 75.9 64 65 67 68

compression. We tested the proposed algorithm with
several video sequences and compared its results with
those of other methods. Experimental results showed that
the active mesh model in wavelet sub-bands enhances the
PSNR considerably.

(6]
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