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ABSTRACT 

This paper employs a new approach to analyze potentially omitted non-diversifiable factors in the idiosyncratic risks 
from multi-factor asset pricing models. It is shown that if there is an omitted non-diversifiable hidden factor, the idio- 
syncratic risks will contain persistent cross-sectional memory. An extended Rescaled Variance test generalized from L. 
Giraitis, P. Kokoszaka, R. Leipus, and G. Teyssiere [1] with finite forecast horizon is provided to investigate the 
cross-sectional memory of forecast errors in multifactor pricing models. Under the null hypothesis that idiosyncratic 
risks contain only short memory when there is no hidden non-diversifiable factor, we demonstrate that the extend- 
edT-sample Rescaled Variance test statistic approximates a functional of weighted Brownian Bridge, which is distrib- 
uted asymptotically as the T-sample Watson’s statistic presented by Maag [2]. Using this approach, our empirical tests 
that compare forecast errors from the CAPM and Fama-French [3] model with the excess returns of 1391 firms indicate 
that there is a strong likelihood that the CAPM may require further identification of hidden non-diversifiable factor(s). 
Yet, there lacks convincing evidence that the Fama-French [3] model has an omitted non-diversifiable factor in idio- 
syncratic risks. 
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1. Introduction 

Empirical studies on asset pricing models generally re- 
quire the application of some ad hoc information sets of 
proxies or reference variables. Since the genuine factor 
structures are unobservable for the specification of risk 
premia, the set of proxies or reference variables only 
represents the incomplete information set in a presumed 
factor structure for risk premium. In empirical studies, it 
is possible that the disturbance term of a presumed factor 
structure includes omitted factors in the process of pro- 
jecting excess returns on an ad hoc information set. Nu- 
merous empirical studies, such as Goyal and Santa-Clara 
[4], Mayers [5], and Malkiel and Xu [6], show that the 
idiosyncratic risk volatility on a presumed factor struc- 
ture or asset-pricing model may contain useful informa- 
tion in forecasting the stock returns. In a follow-up study 
to Goyal and Santa-Clara [4], Guo and Savickas [7] ar- 
gue that the predictive power of idiosyncratic volatility 
goes down if consumption-wealth ratio is controlled for 
in the forecasting equation. T. Bali, N. Cakici, X. Yan and 
Z. Zhang [8] also shows that the finding of Goyal and 
Santa-Clara [4] is partially due to liquidity premium and  

small stocks traded in NASDAQ. With extended samples 
of stock returns, Balie [8] does not find any significant 
relation between equally weighted average stock volatile- 
ity and the value-weighted portfolio returns. A. Ang, R. J. 
Hodrick, Y. Xing, and X. Zhang [9], however, find that 
stocks with high idiosyncratic volatility (relative to the 
Fama and French [3] model) have low average returns 
pointing to a negative relation between idiosyncratic 
risks and stock returns. Fu [10] argues that idiosyncratic 
volatilities are time-varying and the results in A. Ang, R. 
J. Hodrick, Y. Xing, and X. Zhang [9] are largely driven 
by the return reversal of a subset of small stocks with 
high idiosyncratic volatilities. He instead finds a signifi- 
cantly positive relation between the estimated conditional 
idiosyncratic volatilities and expected returns using 
EGARCH models. Guo and Savickas [11] show that 
idiosyncratic volatility has statistically significant predic-
tive power for aggregate stock market returns, and that 
idiosyncratic volatility performs just as well as the 
book-to-market factor in explaining the cross section of 
stock returns. However, all these time series/cross-sec- 
tional empirical studies focus mainly on the finding of  
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explanatory variables for the stock returns. An issue that 
needs further attention is the diversifiability of the identi- 
fied factor(s). Given that the systematic risk/factor(s) is 
non-diversifiable in asset pricing models, verification of 
diversifiability on these presumed factor(s) should be 
provided in addition to the identification of explanatory 
variables. In brief, the detection of possible explanatory 
factor(s) for stock returns although essential, should be 
followed by a study on the diversifiability of the identi- 
fied factor(s). 

Hence, discussions on additional hidden factor(s) in 
the idiosyncratic risks from presumed asset pricing mod- 
els raise the following questions: Do idiosyncratic risks 
on a presumed asset pricing model really contain an es- 
sential hidden non-diversifiable factor that should be 
applied to asset pricing models? If so how can we test it?  

Chamberlain and Rothschild [12] show that if asset 
returns have a k-factor approximate factor structure 
where k < n, and n is the number of assets then, the first k 
eigenvalues of the variance-covariance matrix of asset 
returns will be unbounded while the k + 1 eigenvalue of 
the matrix will be finite, as n grows to infinity. However, 
in empirical studies of asset returns, for any finite sample 
collected, eigenvalues of the variance-covariance matrix 
of asset returns under presumed factor structure are all 
finite. Verification on the growth of eigenvalues of these 
matrices across increasing sample sizes of asset returns is 
needed in empirical studies since the claim of approxi- 
mate factor structure of Chamberlain and Rothschild [12] 
is based on an infinite dimensional setting. This paper 
provides an alternative test based on the fact that if the 
factor loadings of a hidden factor (in idiosyncratic risks) 
are non-diversifiable with respect to all well-diversified 
portfolios, a persistent cross-sectional memory among 
idiosyncratic risks will result. Specifically, if the asset 
returns follow the approximate factor structure with k + 1 
factors where the fitted model is only equipped with k 
identified factors, then the (k + 1)-th eigenvalue of the 
variance-covariance matrix for asset returns (due to the 
hidden non-diversifiable factor loadings) will be un- 
bounded, according to Chamberlain and Rothschild [12]. 
However, this property of unbounded non-diversifiable 
factor loadings can be shown to lead to a persistent cross- 
sectional memory among the presumed idiosyncratic 
risks. Instead of applying eigenvalues or statistical pro- 
cedures such as principal component analysis to examine 
the factor structure, the verification of the persistence of 
cross-sectional dependence among idiosyncratic risks 
becomes a diagnostic tool for asset pricing models and/or 
hidden factor(s). Many empirical studies show that idio- 
syncratic risk for asset pricing models is essential in 
pricing the asset returns. However, the verification for 
idiosyncratic risks as systematic/non-diversifiable fac- 
tor(s) is still required for further studies. Specifically, if 

idiosyncratic risks or proxies of their volatility are indeed 
the common non-diversifiable factors among all asset 
returns, then they should appear as consistent compo- 
nents with persistent cross-sectional dependence in pre- 
sumed asset pricing models. Although it may seem opti- 
mistic for empiricists to consider idiosyncratic risks as 
hidden factors when cross-sectional dependence or short- 
run time-series predictability is discovered, these find- 
ings may not necessarily guarantee a non-diversifiable 
factor required for asset pricing models, unless further 
study is provided to verify that the identified factor or 
proxy is non-diversifiable. 

The method developed in this study can verify the ex- 
istence of a non-diversifiable hidden factor by testing if 
the error terms of asset pricing models are subject to a 
cross-sectional long dependence. Intuitively, under linear 
factor structure of excess returns, if there is a hidden 
non-diversifiable factor in idiosyncratic risks, then none 
of the weighted combinations of asset returns in the 
well-diversified portfolios will eliminate this factor. Spe- 
cifically, the weighted sums of factor loadings for this 
hidden factor will not converge to zero asymptotically 
when the number of assets expands. Similar to time se- 
ries setting, this property is closely related to the defini- 
tion of cross-sectional long memory as the sums of 
cross-sectional covariances of these idiosyncratic risks 
will expand to infinity asymptotically. Therefore, the 
cross-sectional memory condition of idiosyncratic risk 
becomes a necessary condition, and thus an alternative 
test for the existence of non-diversifiable hidden factor. 

Our diagnostic test provides an effective way to de- 
termine whether the factors found in these studies are 
transitory or persistent in cross-sectional memory, and 
thus to ascertain the validity of their findings. In other 
words, the verification of factor structure is reduced to 
the verification of persistence of cross-sectional depend- 
ence (for idiosyncratic risks) among these asset returns. 
Specifically, a forecast-error-based extended Rescaled 
Variance test is introduced here as an alternative statistic- 
cal inference for idiosyncratic risk. Although long mem- 
ory or long dependence has been discussed in many time 
series studies, the extension can be provided in random 
fields or set-indexed data such as Lavancier [13]. On the 
other hand, re-stacking and exchanging the time series 
horizon and cross-sectional indices as in White [14] for 
panel data, the asymptotic arguments on long memory 
time series can also be applied to the cross-sectional long 
dependence. The rest of this paper is organized as fol- 
lows. Section 2 shows the model and a theorem for the 
long-memory properties of idiosyncratic risks where 
their partial sums of cross-sectional co-variances grow to 
infinity asymptotically if the omitted factor is non-di- 
versifiable. The proofs of these arguments are shown in 
the appendix. Section 3 shows the modified T-sample 
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Rescaled Variance Test when given with finite-time- 
horizon panel data. Section 4 shows applications and 
empirical findings of the test in detecting the omitted 
non-diversifiable factor on idiosyncratic risks of Fama- 
French [3] model for 1391 excess returns, followed by 
the conclusion. 

2. The Model 

To derive the test, we first introduce a few prerequisites. 
Definition D1 describes a Hilbert space of real squared- 
integrable random variables defined on the probability 
space1. The excess returns of assets forms a subset of this 
Hilbert space. Assumption A1 shows the conditions of 
factors or pre-specified reference variables applied as 
factors. The assumption allows different choice sets of 
instrumental or reference variables applied to specify the 
risk premium. These choice sets may be evolving over 
time or different sample sizes. In particular, the reference 
variables may be generated by the innovations from the 
multivariate time series models of pre-specified eco- 
nomic variables in a conditional expectation approach. 
Assumption A2 is to describe the presumed multi-factor 
model of the asset returns. Assumption A3 shows the 
possible missing factor and idiosyncratic risk in the ex- 
cess return after projecting on the presumed explanatory 
variables. Assumption A4 provides a condition for diver- 
sification of the genuine noises in pricing models. 

Definition D1: Let 2 , , H L F P 

, ,

 be a Hilbert 
space of squared-integrable (with respect to probability 
measure P) real-valued random variables on complete 
probability space  F P  where H is endowed with  

the 2L -norm  |, where  1 22
dx x P   for x H .  

Let the inner product of H be denoted as  ,x y E xy  
for all ,x y H . In addition,   1,2, , , 1, , 1,2, ,it i n n t T      
represents a sequence of all assets’ excess returns con-
tained in H. 

r

Assumption A1: Let 1 2 , , ,t t t ptf f f f 

ode

  be a vec-
tor of p orthogonal perceived factors2 (defined in H) at 
time t for the multi-factor pricing m l, jtf  is the j-th 
factor at time t. Or, in partic r, ula jtf   s are orthogonal 
reference variables from the available information set for 
the asset-pricingfactors. In addition, 0jtE f  , where  

2 2
jtE f j  for all . 1, 2, , ,j p 1,  2,t ,T

Assumption A2: Let the excess return ,i t  for each 
asset i at time t be expressed in the fitted factor structure 
as 

r

, ,
1

p

i t i t t it i ij jt i t
j

r E r f ,  


          ,      (1) 

where 1,2, , 1, ,i n n  
T

 as randomly assigned sub- 
indices for the asset returns, and , where 

t

1, 2, ,t  
  represents the information filtration (including lagg- 
ed dependent variables) up to time t, i  stands for the  

conditional expected excess return ,i t tE r  
3, ,i t   

stands for the projection error (or so-called “presumed” 
idiosyncratic risk) for asset i and time t with the assumed 
multifactor pricing model. 

Assumption A3: Let the projection error or presumed 
idiosyncratic risk (if contains a hidden factor) be ex- 
pressed as, , , , ,

h
i t i t i t i ht i tf v       , where htf  

represents a stationary stochastic hidden factor with a 
non-degenerated distribution,   0htE f  , htf H , 
such that htf  is orthogonal to all pre-selected factors as 

1 2t t t pt , ,f , ff f   , and htf  is cross-sectional sta- 
tionary for all assets and inter-temporal independent over 
time. The i

h  represents the non-stochastic unobserv- 
able factor loading for asset i on the hidden factor htf  
for all i’s, 1, 2,i    The ,i t  is a cross-sectional 
mean-zero stationary random noise with finite moments 
and is independent of   1,2, , 1,2,it i t


      0htE f  ,  

2E  , ,i t t i t0,E f     .    
Also, let 

1,2, , , 1,
sup h

i
i m m


 

 
 

 

such that all sequences of    belong to 

the factor-loading space 

1,2, , , 1,

h
i i m m


  

B  with -norm.  
Assumption A3 imposes an asymptotic condition for 

the absolute factor loading(s) on the hidden factor. This 
is to ensure that as the size of portfolio expands, the fac- 
tor loadings won’t be exploding—provided that the ex- 
cess returns are in the Hilbert space H. To apply the ideas 
of diversification, a few definitions on the feasible 
weights in the factor pricing models are introduced in the 
followings. Definition D2 and D3 are to formulate the 
diversification in an infinite dimensional quadratic func- 
tional to define the opportunity set for sequence of feasi- 
ble weights applied to each asset. The definition of 
non-diversifiable hidden factor is provided in D4. The 
notation  represents the numbers of assets n 
grows sufficiently large asymptotically. Specifically, the 
limit of weighted sums of hidden factor loadings  

n 

1With this definition, we confine the discussion to asset returns with 
finite second-ordered moment. Further extension is feasible if the infi-
nite variance is introduced in the framework. This, however, requires 
additional assumptions for the underlying statistical distributions of the 
stable processes. We leave this for future studies. 
2The perceived factors are the proxies for the identified factors of the 
multifactor pricing model. 

1

lim
n

h
i i

n i

 
 
  is denoted as 

1

h
i i

i

 



  and the limit of 

3As this studyfocuses on the identification of hidden non-diversifiable 
factors, the possibly time-varying risk premium is left for future stud-
ies. 
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weights  as , respectively. 
1

lim 1
n

i
n i


 


1

1i
i








2

Definition D2: Let W be a compact sub-space of  
space endowed with the -norm that for any  

2


 
1 2

2
2

1

, i
i




 1 2, ,y y y y
     
 

, 

where W consists of all real bounded sequences of non- 
degenerated diversifying feasible weights   such that 

  2 


1,2, ,i i   and 2 , where 2  contains 
sequences of   21,2, ,i i   with only finitely many 
numbers of non-zero weights that for each  

  o


o

  1,2, ,i
W


 i   and W* is the closed subset of W  

with  1 2, ,    W 4  and  , 
1

1i
i





 

1
i i p

i

 





where 

 , 

i  stands for the m n for asset i, ean retur p  is 
the m urn portfolio5. Let ean rate of ret for the   = 

  2 1, , , , ,h h h
n n       , 1

h s B   , B  is an infi- 
nite dimensional closed sub-space of  -space for 
bounde factd sequences of or-loading 

 1 2 1, , , , ,h h h h
n n         

endowed with the -n orm as 
1,2,i , , 1,

sup h
i

n n


 
 

 
. 

LeDefinition D3: t  ,  
lower semi-continuous diversification functional, where

:W  R  be a weakly 
 

 
1

, h
i i

i

    




  for a given   in B . The diversi-  

fication problem of d  the portfolio is define as  

 
*

inf ,
W
  


, 

where W* is the closed subset of W s defined in Defini- 
tion D2. 

 a

Given the above definition, the idea of diversifiable 
factor rests on the opportunity set of the infinite dimen- 
sional optimization problem. For the non-diversifiable 
factor, its hidden factor loadings can’t be eliminated by 
any possible sequence of feasible diversifying weights in 
W* as n  . 

Definition D4: The hidden factor htf  for all the fac-
tor-loa quenceding se s such that  

 1 2, , , ,h h h h
n       , 1,n

where B    , is denoted as W*-div sifiable with 
increasing numbers of assets if and only if 

er
 

 
*

inf , 0
W
  


  

*W , and the hidden factor denoted as non-  

n W*

 is for all 

diversifiable i  when  
*

inf , 0
W

 for all    

hat is, the hidd r is 
only if all sequ  di- 

versifying weights w

*W  as n  . T en facto
W*-non-diversifiable, if and ences of

ill not drive the weighted sums of 
factor loadings to zero6. 

Assumption A4 (Diversification of random noises):  

the
n

 weighted sum as ,
1

0i i t
i




  almost surely for all  

*W as n  . 
With the above fra  now show that di- mework, we can

versification of th dden factor depends on the cross- 
se

tationary hidden factor in idiosyncratic risk 

e hi
ctional memory conditions (or intensity of memory) of 

hidden factor. This in turns provides us with statistical 
hypotheses to test the existence of non-diversifiable hid- 
den factor. 

Theorem 1.1: If for any date t, there exists a non-di- 
versifiable s

, , , ,
h

i t i t i t i ht i tf v        and let the distance function 
between indices of asset returns with arbitrary orders 

ively) be defined as (denoted as s and i respect j s i   
for , 1, 2, , , 1,s i n n   , and the cross-sectional co- 
variance function be defined as  

  , , ] 0,1, 2,it i t i j tj E j        , 

the presumed idiosyncratic risk  a cross- 
sectional perturbed long-depende r any date t, 

 , 1,2.i t i


 
nt series fo

 is

such that  

   
0 0

it it
n j j  

lim
n

j j  


    , 

for all the presumed idiosyncratic risk  as 
numbers of assets n grow. Conversely, if  is 

 , 1,2.i t i


 
   1,2.it i


 
  for allcovariance-stationary and   it j j L j    i’s 

and t’s, where L(j) is a slowly-varying function of j,  

4The weights can be shown as   
1,2, , , 1,

i
i n n

 
  

 which vary with 

different sequences of factor loadings  
1,2, , , 1,

h

i i n n


  
 even for the 

same hidden factor hf . To be concise, we denote it as  
1,2, , , 1,i i n n


  

here. In addition, to avoid the case where the portfolio only consists of 
a finite number of assets with non-zero weights, we assume that the 
choices of weights must expand to infinite numbers of assets in the 
return space where -space stands for the metric space with 

-norm 

2

2  1 2 1 2, ,x , ,x

6It is easy to show that the diversification problem also focuses on the 
variances and co-variances of  

1,2, ,it i


 
 where the idiosyncratic risk 

has been diversified away. The functional  ,   will be 

 
2

2, inf h

i i h pW
i i


1 1

, i i    


  
 

 

    ,n nx x x     if 
2

i
i

x


  . 

5The notation  implies that the limit exists for 

the convergent infinite series of weights. 
1

1i
i







1

lim 1in
i







n

   
   
  2, where h is the 

2nd-order moment of the hidden factor. In addition, we confine the 
weights to lie in  space so that the weights are subject to appropri-

ate normalization. 
2
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2 2H   , 
1

1
2

H   (i.e. the  , 1,2.i t i


 
 is a cross-  

sectional lo  depende ny t), a
sufficiently small 

ng nt series for a nd for some 
0,   R , and *W ,  for all 

 
2,

liminf inf ,0 1
nn

i n

i L i



 


 

   7,   (2) 
i

i

i


     

is a slowly-varying function of i that    0L i   

 
 

lim 1
L i

L i


  for 0, 1,2, , , 1,i n n

i
,      

then the hidden fac on-diversifiable in W*. 
Moreover, according to Zhou and Taqqu [15], a com- 

pact 
th

ypothesis Testing 

 the framework of the Re- 
Giraitis, P. Kokoszaka, R. 

tor is n

pletely random re-ordering of samples will not im
e data’s long dependence. Consequently, when the 

cross-sectional sub-indices to asset returns are assigned 
randomly, like in many empirical studies, the cross-sec- 
tional long memory will not be influenced either. Hence, 
the diagnostic test on the memory condition of projection 
errors (or idiosyncratic risks) becomes an alternative 
method for identifying the non-diversifiable hidden fac- 
tor. 

3. H

In the following, we extend
scaled-Variance test of L. 
Leipus, and G. Teyssiere [1] with simultaneous infer- 
ences across finite forecast horizon to test the memory of 
idiosyncratic risks in fitted multifactor pricing models. 
The test statistics converge asymptotically to the T-sam- 
ple Watson’s test statistic on unit circle where the as- 
ymptotic distribution is shown in Maag [2]. For the 
framework of analysis, we will assume that the time ho- 
rizon is fixed. That is, the time horizon T for performing 
the test is finite while the numbers of cross-sectional ob- 
servations n can be extended asymptotically as n   . A 
few definitions and assumptions are needed to establish 
the pre-requisites.  

Definition D5: A random process  X   is called 
“self-similar”, if and only if 

0    , 0, ,
d

HX X R              (3)  ,

where  is the Hurst exponent, the n0H  otation 
d

   
stands for the equivalence of distributions. In addition, 

 loss without of generality, we set the initial condition 
 0 0X   almost surely. According to Embrechts and 

Maejima [16], for any self-similar process, 0H   if 
a d if n  only    0 , 0X X     almost surely. When 

1H  , it implies that all autocorrelations of  X   are 
equal to one. 

Definition D6: Let 0 1.H   A mean-zero Gaussian 
process   , 0HB     is called “fractional Brownian 
motion” if its auto-cov ction can be shown as ariance fun

   

   2 22 21

H H

HH H

s  
      (4

1
2 H

E B B

s s E B



 



      
) 

In particular, when 
1

1
2

H  , the process will have  

long-range dependence, when 1 2H  ,   , 0B     H

ill become the usual  motion with independ-  w Brownian

ents, if ent identically distributed increm
1

0
2

 

process is called “anti-persistent” with sum of auto-co- 

H  , the  

variances being finite. 
Assumption A5: Given Theorem 1.1 that for any date t, 
1,2, ,t T   in the pre-determined finite time horizon k 

of hypothesis testing, and for numbers of assets n , 
 , and the hidden factor  where n 

 , ,1,2
, h

i t i t i hti
f  





 

*  is W -non-diversifiable, and if is co- 
variance-stationary such that  

1,2, , , 1,it i n n


    

    ,it j j L j  

and the long run variance 2

2 2H  , 

t  of partial sum 

, ,
1

n T i t
i

n

S 


   

follows that 

   2 2 2
,

1
, 1

2
H

t n tVar S n L n H R H      
7To control the decaying rate of the diversifying weights, we need to 
impose the tail restriction that the weights do not collapse to zero dras-
tically. Otherwise, we would have a degenerated portfolio that consists 
of infinitely many assets with negligible weights when the number of 
assets grows. Hence, we include  

2,

liminf inf 0
n

i
i

in
i n

i L i





 

 on the 

diversifying weights. If  for all i’s, the decaying rate o  0L i   f 

inf ii n



 cannot be greater than i  . The purpose of confining the 

range of   to 0  is to control the exponential decaying rate 

of 

1

1,2,. ,
inf ii n


 

. Otherwise, the bigger   is, the faster 
1,2,. ,
inf ii n


 

will 

be allowed to decay even when  
2,

limi
n

nf



for  , 0L n    is a slowly-varying function of n  

such that 
 
 

lim 1
n

L n

L n




  for all 0  , will converge in  

distribution as

 

 
 

[ ]n d

, ,
1

,

1
,i t H t

i
n t

B
Var S

 



         (5) 

where 

inf 0
n

i
i

i
i n

i L i




 
  is satis-

fied, making diversification impossible. 
0 1  , 

1
1

2
H  , [ ]n  is the largest integer  
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n ,   , 0HB     is a fractional  less than or equal to 

Brownian motion with Hurst exponent 
1

1
2

H  .  

ption A6: Let the idiosyncratic risk Assum   1,2,it i


   
for any erm  finite time horizon T  date t in the pre-det ined

fia e hidden fact

 .  

Th g mixing

that may have a diversi bl or, contain only  


cross-sectional short memory as 2
t j  ,

0
i t

j





 
e sequence   1,2,it i


   satisfies the stron  

condition such that the mixing coefficient   0j   as 
j  , where the mixing coefficient 

       
0 ,

supj P A B   
jA B

P A P B


 

, 

where the l m
l
  represents the  -field ge  by 

the set of random variables  , , ,l t 
follows the invariance 

nerated
  and 

 
1, ,,l t l m t 

principle that as  1,2,it i


 
n   

 
,

1

0 1.d
i t t

it

B
n

  
 

1
,

n

          (6) 

by extend the Rescaled Variance statistic of L. We here
Giraitis, P. Kokoszaka, R. Leipus, and G. Teyssiere [1] to 
a T-sample setting that analyzes the memory of the idio- 
syncratic risk with finite time horizon for 
Notice that the assumption A6 can be extended to include 
th

panel data. 

e (cross-sectional) heteroscedasticity in   1,2,it i


   and 
the following ,n TV  statistic converges to the same func- 
tional of Brownian bridges under the null hypothesis 
even though  , 1,2,i t i


 

is not covariance-stationary. The 
conditions still holds under the non-stationary case as 
indicated by L. Giraitis, P. Kokoszaka, R. Leipus, and G. 
Teyssiere [1]. However, due to additional complexity 
that needs to be introduced, this is left for further studies.  

Theorem 1.2: Given the above setting, for any date t, 
1, 2, , , 2t T T  , T is the finite time horizon for hy-  

pothesis testing, where  
,

sup , ,
n

t
h r s n

h r s


  , and 

 , ,t h r s  is the fourth order cumulant of cross-sec- 
tional covariance-stationary  , 1,2,i t i


 

 at date t then, 
othesis that there is no non-diversifi- under the null hyp

hypo
, the modifie

scaled Var

able hidden factor in the idio thesis 
testing with finite time horiz d Re-

syncratic risk, for 
on 2T 

iance test is given as  

 



2
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1 1 1
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ˆ
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           1 2, , ,o o o o
k tB B B B B B      

independent Brownian bridges where by definiti
1  are T 
on,  

   22
, , ,

1 1

1
ˆˆ 2

qn

n t j t n t j j t
j j

s q
n ,  

 

    , 

and the weights   1
1j

j
q

q
  


 are the Bartlett 

weights such that q  , 0
q
  as n   and 

n
the 

sample cross-sectional covariance function such as  

  , , ,
1

,
1

j t
i

n t
i

n

n




,

1
ˆ ,0 ,

1

n j

i t n i j t n

n
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j n    

 



    







r-
or a 

given date t, 

 

is the cross-sectional average,  , 1,2, ,i t i n


  
 are the e

ror terms from the presumed asset pricing model f
[ ]n  

qual t
stands teger that is 

less than or e o the real 
for the largest in

number n , where the as-
ymptotic dist n of  (ributio  ,n TV denoted as  ,n TF V  ) 
is shown by [2] as  Maag 

  1
,

1

for

for 1,
k

n T

T
F V

T





 2, 

  
             (9) 
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 
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r
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



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

2

11 TH 


    
 

  

 

 and  1TH z  1,2, ,T   is the Hermite polynomial 
of order 1T   for z. Under the alternative hy-  argument 
pothesis AH  where  , 1,i t i




ry and there 
2,
is

 is cross-sectional co-
v a  a non-diversifiable factor 
in the idiosyncratic risk of presumed asset pricing model. 
In addition, for simplicity, let 

ariance-station

, ,
1 1 1,

,j t n t
t m jn t

 
  

   
       

  

 
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 L n C 0o  ,    2 1

,

, , H
t

h r s n

h r s O n 


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then,
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n


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1
d d

T
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t
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T

 


   
 

 
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,

H
d
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V

n


   
 

1

0
B B

where  o
HB t  

ng parame

,n TV
her wo

is the fractional Brownian Bridge with 
scali ter H. The test is also consistent that the 
statistic under the alternative hypothesis.  

In ot  we reject the null hypothesis of short 
memory when is large relative to the critical value 

  
rds,

,n TV  
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chosen according to the significance level. When T is 
equal to one, the test is reduced to the Rescaled Variance 
test distributed as Watson’s test statistic. The re
the test is referred to is that the test statistic con-
verges to the same fu tional as Maag’s [2] statistic in 

denti

fo he da

ason that 
1T   

nc
testing i cal distribution for all T groups without 
knowledge of the underlying cumulative distribution 
function r t ta. The asymptotic distribution of such 
statistic is in turns, identical to the test statistic of 1T   
groups under assumed cumulative distribution function 
according to Maag [2]. 

Notice that the above result is based on the genuine 
idiosyncratic risk  , 1,2, 1,2, ,i t i t


  

. Yet, in the empirical 
studies, we can only o e either residuals or (out-of- 
sample) forecast errors from the fitted asset pricing mod-
els. Hence, we need to obtain the consistency of the sam-
ple statistics for any given (out-of-sample) forecast errors 
with cross-sectional observations 1, 2, , , 1,i n n    

Theorem 1.3: Given that 

bserv

 , 1,2, , , 1,î t i n n


  
 for  

date t in the finite time horizon T are the (cross-sectional) 
forecast errors for the presumed asset pricing model 
w

any

here the parameters for  
1,2, , , 1, , 1,2, ,ij i n n j p


    

, are 
consistently estima , der the null hypothesis of 
no hidden non-diversifiable factor in  , 1,2, , ,i t i n


  

, such 
that 

ted  and un

 , ,
1 1

ˆlim1 lim1 1 0,
n n

p
i t i t p

n ni i

n n o 
  

     

when n  , the forecast err led Vari-
ance statistic is shown as  

or-based Resca

 , ,
ˆsup 1n T n TV V  ,          (11) 
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  
 (13) 

ns
 

is the estimate for ˆns  by using
forecast errors from the f asset pricing model. 

4. Empirical Applications and Data 

To test whether the idiosyncratic risks in Fama-Fren
model contain a hidden non-diversifiable f
we collect the excess returns of 1391 rando
firms with different capitalizations and from di
industries including agricultural products, chemical 
ductions, financial, transportation, consumer goods, ret

enter ex  are coll
onthly 

data in our sample period of January 1987 to December 
 factor in 

   1,2, ,î  i n
, the 

ch [3] 

fferent 
pro- 
ail, 

itted 

actor or not, 
mly selected 

tainment, etc. These cess returns ected 
from the firms in CRSP that have continuous m

2006. If there is a hidden non-diversifiable
idiosyncratic risks from Fama-French [3] model, finding 
of persistent memory in these idiosyncratic risks may 
provide the empirical evidence to verify the claim for its 
existence. 

With regards to the possibility of survivorship bias in 
the CRSP data source, Li and Xu [17] argue that such 
survivorship bias is unlikely significant for the U.S. stock 
returns. In addition, Barber and Lyon [18] also show that 
the selection bias does not significantly affect the esti-
mated factor premiums in equity returns of Fama-French 
[3] model, which implies that sample selection does not 
affect the empirical results of Fama-French [3] model. 
Hence, we select the explanatory variables for the re-
gressions as those in the Fama-French [3] model as the 
asset pricing models of interest. And for comparison, we 
also apply our diagnostic test to the idiosyncratic risks 
from the CAPM. Furthermore, following the argument of 
Li and Mayer [19] that correction of dynamic selection 
bias does not improve the accuracy of forecasts of the 
model, the application with forecast errors from the fitted 
model seems more appropriate since our study is diag-
nostic for specifications in regressions. Therefore, we 
consider the out-of-sample forecast errors of both 
Fama-French [3] model and CAPM to test the null hy-
pothesis that the hidden factor is diversifiable in the 
idiosyncratic risks. 

Based on the tables and asymptotic cumulative distri-
bution function provided by Maag’s [2], we select 24 
months out-of-sample forecast errors (that is, T = 24) for 
the test period in verifying cross-sectional memory of 
idiosyncratic risks. The forecast errors for all these ex-
cess returns are obtained with the parameters estimated 
in the previous months of the in-sample period from 
January 1987 to December 2004, and are conditional on 
the updated explanatory variables in the asset pricing 
models applied here. The test period is from January 
2005 to December 2006. The test statistics for different 
forecast horizons are calculated from T = 1 to T = 24 
using the asymptotic cumulative distribution functions 
from Maag [2]. Notice that when T = 2, the test statistic 
actually conforms with Watson’s [19] two-sample test 
where its asymptotic distribution is identical to the statis-
tic as in L. Giraitis, P. Kokoszaka, R. Leipus, and G. 
Teyssiere [1]. Hence, the asymptotic distributions ap-
plied to T = 2 and T = 1 are identical according to the 
asymptotic arguments in Maag [2] and Watson [20] as 
far as the two-sample tests are of concern, with an em-
pirical application of Magg’s [2] tests shown in Brown 
[21]. 

Our extended Rescaled Variance V̂  tests are per-,n T
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formed under the null hypothesis that the hidden factor is 
diversifiable. The p-values of the statistics are calculated 
from the asymptotic cumulative distribution function 
provided by Maag [2]. Since the distribution function is 
not conventional, and that Maag’s [2] tabulation of criti-
cal values is limited to the case when maximum forecast 
horizon is T = 5, the ,n̂ TV  statistics are considered as 
rejecting the null if the p-values are relatively smaller 
than the given 5% or 1% significance levels.  

Table 1 presents th test statistics and the cor- 
re ss-

e ,n̂ TV  
sponding p-values for testing the cro sectional mem- 

ory of idiosyncratic risks in the Fama-French [3] model. 
These test statistics are provided with different selections 
of q, which are denoted as the lags for possible cross- 
 
Table 1. T-sample rescaled variance tests on forecast errors 
of Fama-French (1993) Model. 

T q = 5 q = 10 q = 15 

1 (0.063)0.175  (0.056)0.181  (0.059)0.178  

2 (0.221)0.213 (0.197)0.221  (0.208)0.217  

3 (0.575)0.219  (0.542)0.226  (0.559)0.222  

4 (0.947)0.192  (0.940)0.196  (0.945)0.193  

5 (0.994)0.200  (0.993)0.203  (0.993)0.203  

 

.062)  

.143)  

7)  

.111)  

285)  

182)  

.458)  

097)  

280)  

163)  

096)  

.043)  

.006)  

.032)  

.105)  

255)  

482)  

626)  

6 

10 

11 

12 

13 

14 

15 

16 

17 

18 

(00.717 (0.143)0.636  (0.199)0.602  

7 (0.199)0.694  (0.143)0.636  (0.199)0.602  

8 (00.824 (0.258)0.753  (0.314)0.723  

9 (0.061.004 (0.156)0.917  (0.203)0.879  

(01.042 (0.230)0.952  (0.295)0.913  

(0.1.004 (0.462)0.918  (0.549)0.880  

(0.1.207 (0.253)1.122  (0.306)1.086  

(01.123 (0.550)1.044  (0.623)1.010  

(0.1.431 (0.192)1.333  (0.262)1.282  

(0.1.357 (0.440)1.265  (0.533)1.218  

(0.1.538 (0.293)1.436  (0.378)1.384  

(0.1.710 (0.191)1.601  (0.264)1.543  

(01.913 (0.103)1.789  (0.162)1.718  

19 

20 

(02.243 (0.030)2.054  (0.063)1.953  

(02.141 (0.111)1.961  (0.194)1.865  

21 (02.060 (0.272)1.885  (0.404)1.793  

22 

23 

(0.1.986 (0.498)1.819  (0.642)1.730  

(0.1.912 (0.733)1.751  (0.841)1.666  

24 (0.1.903 (0.844)1.741  (0.919)1.655  

Notes: The e index T stands fo  each month in the forecast horizon r 
instance 1 stands for January 05, T = 2 stands for February 2005, nd 
so forth. The table reports the st statistic with rresponding p-va s 
denoted renthesis. If the p-va e is less than the gnificance levels such 
as 5% or 1%, the null hypothesis that there is no n diversifiable h en 
factor is ted. 

sectio short-run memo  estimating long run v ri-
ances diosyncratic risk under the n For simplicity 
of expo n, we only report cases wh q = 5, 10, 15, 
respectively. 

For comparison purpose, we also e 
diagno  tests on the idi ncratic risk ative 
models such as the CAPM, and the over-simplified case 

 tim
, T = 

r
 20

. Fo
 a

te
lu

co
si

lue
 in pa

on- idd
 rejec

nal ry in a
of i

sitio
ull. 
en 

perform the sam
stic osy s from altern

when excess returns are regressed only with a constant 
term. The test statistics are shown in Tables 2 and 3, 
respectively. All test statistics from these two alternative 
models reported in Tables 2 and 3 show that their 
p-values are all well below the 1% confidence level. 
 
Table 2. T-sample rescaled variance tests on forecast errors 
of the CAPM. 

T q = 5 q = 10 q = 15 

1 (0.008)0.283  (0.006)0.292  (0.007)0.288  

2 (0.007)0.580  (0.007)0.577  (0.008)0.581  

3 1.353* 1.197* 1.132* 

4 4.241* 3.192* 2.776* 

5 6.157* 5.094* 4.629* 

6 7.668* 6.383* 5.834* 

7 7.996* 6.805* 6.316* 

6.780* 5.862* 5.477* 

7.285* 6.207* 5.763* 

8 7.316* 6.277* 5.854* 

9 

10 

11 6.670* 5.683* 5.277* 

12 6.322* 5.395* 5.014* 

13 7.503* 6.425* 5.953* 

14 7.033* 6.025* 5.581* 

15 7.274* 6.269* 5.828* 

16 6.900* 5.966* 5.558* 

17 7.328* 6.327* 5.883* 

18 7.171* 6.217* 5.789* 

19 7.646* 6.562* 6.081* 

20 7.323* 6.298* 5.846* 

21 7.174* 6.202* 5.768* 

22 7.121* 6.166* 5.738* 

23 6.886* 5.964* 5.551* 

24 6.626* 5.740* 5.324* 

Notes: O he p-value irst two n forecas n are 
presented in parenthesis. Other p-values are replaced with an asterisk since 
they are h lower tha he null h  that ther dden 
non-diversifiable factor is rejected for all levels of T and q since all p-values 
are below 1% significance level. 

nly t s of the f  months i t horizo

muc n 0.1%. T ypothesis e is no hi
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Table -sample r  varian  on fore rors 
when ex s returns gressed on stant. 

3. T
ces

escaled
 are re

ce tests
 a con

cast er

T q = 5 q = 10 q = 15 

1 7.743* * * 5.773  4.924  

2 8.912* 6.514* 5.488* 

3 23.424* 16.985* 14.472* 

4 25.959* 18.326* 15.484* 

5 24.348* 17.407* 14.751* 

6 20.823* 14.959* 12.716* 

7 20.436* 14.621* 12.427* 

* *8 23.315  17.108  14.719* 

 16.506  14.268  

11 25.187  18.308  15.742  

14 22.408

17 22.582

9 22.281* * *

10 26.299* 18.956* 16.224* 

* * *

12 23.392* 17.055* 14.689* 

13 23.745* 17.267* 14.842* 

* 16.337* 14.053* 

15 22.720* 16.757* 14.492* 

16 21.322* 15.731* 13.609* 

* 16.339* 14.043* 

18 21.976* 15.986* 13.765* 

19 21.978* 15.974* 13.749* 

20 21.181* 15.426* 13.295* 

21 20.209* 14.716* 12.682* 

22 21.388* 15.572* 13.411* 

23 21.026* 15.371* 13.259* 

24 20.185* 14.758* 12.731* 

Notes: A values are r y an aste are m han 
0.1%, and therefore the thesis tha no hidd ersi- 
fiable fac jected for a ls of T and 

 
These statistics rej null h is that  no 
hidden non-diversi or i diosyn
and s est that is a p  cro nal 
memo n the id tic ris ther w ese 
results imply that there is at least one hidden non-diver- 
sifiable factor in iosync ks fo the 
CAPM and the ov lified ithin the sample 
window, and that th  mod comp d in 
need of additional (s) to  asset  In 

ama-French [3] model reported in Table 1. For instance, 
e test statistics for idiosyncratic risks from CAPM 

 to 1

del may contain a hidden non-diversifiable 

et v

ll p- eplaced b risk as they uch lower t
 null hypo

ll leve
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q. 
en non-div

tor is re

ect the 
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ypothes
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 there is
cratic risks 

ugg  there ersistent ss-sectio
ry i iosyncra ks. In o ords, th

 the id ratic ris r both 
er-simp model w
ese two

 factor
els are in
explain

lete an
returns.

particular, it is noticeable that these statistics from these 
two alternative models are much greater than those in 
F
th

models are much greater than those in Fama-French [3] 
model across the forecast horizon. In particular, when the 
forecast horizon expands to T   4, the test statistics 
increase sharply relative to the previous months and all 
these p-values from CAPM models are far less than 1% 
when using the asymptotic distribution function provided 
by Maag [2]. On the other hand, the ,n̂ TV statistics for 
the CAPM in Table 2 are well below those for the 
over-simplified model in Table 3, indicating that the 
CAPM does possess a certain level of explanatory power 
for asset returns, and that the so-called systematic risk (or 
the beta) in CAPM proves to be a contributing factor for 
asset returns. 

The findings from Fama-French [3] model in Table 1 
however, are quite different. Out of the seventy-two 

,n̂ TV  statistics in sample window, only three (namely, 
the ones for q = 5, T = 18; q = 5, T = 20; and q = 10, T = 
19) are significant at the 5% level and only one (for q = 5, 
T = 19) is significant at the 1% level. As the number of 
lags q increases from 5 to 10 or from 10 5, even these 
would become statistically insignificant. Thus, the null 
hypothesis that there is no hidden non-diversifiable factor 
cannot be rejected for the Fama-French [3] model within 
the sample window. In other words, there lacks convinc-
ing evidence that the idiosyncratic risks from Fama- 
French [3] mo
fac

dive

tor. Intuitively speaking, if the idiosyncratic risks of a 
fitted asset pricing model indeed contain a hidden non- 

rsifiable factor, more supporting statistics for the 
need of non-diversifiable factor(s) should result when 
more months are included. In other words, as T increases, 
the statistics should show more supporting evidences for 
the alternative hypothesis. Specifically, since this test is a 
one-sided test, more significant test statistics should ap-
pear when T expands, indicating that there is a higher 
likelihood the tests may reject the null. However, the 
results from Table 1 do not support so. Although when T 
= 1 where the ,n̂ TV  test statistics of Fama-French [3] 
model coincide with Watson’ statistics and the p-values 
for these test statistics are slightly greater than 5%, the 
p-values of the vast majority of these test statistics in 
Table 1 are not significantly lower when T expands. 

More specifically, given the cumulative distribution 
provided by Maag [2], the p-values increase sharply from 
0.063 in January 2005 (when T = 1) to 0.994 in May 
2005 (when T = 5). This indicates a decreasing likelihood 
for the idiosyncratic risk of Fama-French [3] model to 
identify a non-diversifiable hidden factor, probably due 
to increasing stock market volatility and information 
flow during this period. This result nevertheless, shows 
that higher mark olatility and noisy inter-market in- 
formation flows do not give rise to a non-diversifiable 
factor. However, after June 2006 and until August 2006, 
some p-values of ,n̂ TV  statistics do drop to a level that is  
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lower than 5% when q = 5. This may indicate there is a 
po

dive

idio

5.

d on this necessary condition, we develop a 
n-diversifiable factor(s) in the idio-

pricing models. We extend the 

ssibility that an additional hidden factor is needed. 
Nevertheless, when q expands, the p-values increase 
again even for the same month. The test statistics in Ta- 
ble 1 overall do not support the persistence of cross-sec- 
tional memory across different forecast horizons, offer-
ing little evidence that an additional non-diversifiable 
factor is needed for the Fama-French [3] model. In con-
trast, all the p-values for ,n̂ TV  test statistics (across all 
different q’s) of CAPM models in Table 2 and those of 
the over-simplified model in Table 3 are far lower than 
1% level from the start of forecast horizon, indicating the 
existence of non- rsifiable factors and the need to 
include additional variables for the CAPM and the 
over-simplified model. 

In summary, for the Fama-French [3] model, our di-
agnostic test statistics in general do not reject the null 
hypothesis that there is no hidden non-diversifiable factor 
and show that that the idiosyncratic risks do not have 
persistent cross-sectional memory. Therefore there lacks 
convincing evidence for the existence of a hidden non- 
diversifiable factor in the syncratic risks from the 
model. In contrast, the idiosyncratic risks from the 
CAPM and the over-simplified model reject the null hy- 
pothesis, suggesting that there may be a need for addi- 
tional variables to explain the hidden non-diversifiable 
factor(s). 

 Conclusions 

We extend the analysis in asset pricing models to con-
sider the possibility of a hidden non-diversifiable factor 
in idiosyncratic risks. Our analysis demonstrates that that 
if the idiosyncratic risks from asset pricing models con-
tain a non-diversifiable factor, the cross-sectional sum of 
absolute factor loadings of the hidden factor are growing 
unbounded, and thus a cross-sectional long memory will 
appear in the idiosyncratic risks. In other words, such a 
cross-sectional long memory will become a necessary 
condition for the existence of hidden non-diversifiable 
factors. Base
diagnostic test for no
syncratic risks of asset 
Rescaled Variance test of L. Giraitis, P. Kokoszaka, R. 
Leipus, and G. Teyssiere [1] for finite forecast horizon as 
a T-sample forecast-error-based test, with the test statistic 
distributed asymptotically as a multi-sample Watson test 
statistic for identical distribution in Maag [2]. Using a 
CRSP sample of 1391 stock returns across different in-
dustries from January 1987 to December 2006, we apply 
the diagnostic test on the forecast errors from the 
Fama-French [3] model and the CAPM. The results in 
general, do not reject the null hypothesis that there is no 
hidden non-diversifiable factor in idiosyncratic risks for 

the Fama-French model. On the other hand, the test sta-
tistics for idiosyncratic risks from the CAPM indicate 
strongly that there is a possibility for non-diversifiable 
factor(s). This suggests that, within our 20-year sample 
period, the CAPM probably leaves out non-diversifiable 
factor(s) in its specification, while there is little evidence 
that the Fama-French model has the same issue. In addi- 
tion, our results imply that it is advisable for studies on 
the idiosyncratic risks from asset pricing models to ex- 
amine the cross-sectional memory before they can justify 
the existence of hidden non-diversifiable factors and pro- 
claim the inclusion of idiosyncratic risks in asset pricing 
models. Since asset pricing models emphasize the exis- 

 

tence of non-diversifiable factor(s) as the pricing kernel 
of excess returns, the existence of cross-sectional de- 
pendence among the residuals of presumed fitted asset 
pricing models may not suffice to prove the need of some 
additional pricing factor(s), especially when such cross- 
sectional dependence is not persistent. 

For future studies, a recursive scheme of the re-scaled 
variance test over time horizon can be developed with 
time-varying coefficients to provide tracking and detec- 
tion on asset pricing models. This would be useful since 
Goyal and Santa-Clara [4] have employed the time- 
varying forecasting regressions to assess the proxy hid-
den factor with the equally-weighted monthly average 
stock volatility. Also, our test could be extended to in- 
clude a resampling option as well.  
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In other words, given that  are covariance- 
stationary, the idiosyncratic risk ve a cross- sec-
tional long memory. Conversely, if the idiosyncratic 
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Hence, the hidden factor with assumed long memory 
should be non-diversifiable. 

Proof of Theorem 1.2: Since the test statistic depends 
only on the sampled covariances (regardless of the un- 
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Hence, the test statistic is consistent. 
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defined as 
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