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ABSTRACT 

Lattice constant, bulk modulus, Young modulus, valence band width, conduction band width, energy gap, vibrational 
energy, and plasmon energy have been calculated under compression and tensile stresses in the range (0 ± 10 GPa) for 8, 
54, 128 atom clusters of silicon by means of density functional theory method with restricted Hartree-Fock theory 
within the framework of large unit cell approach. It is found that the results deduced from eight atom cluster are in good 
agreement with the corresponding experimental values. On the other hand, bulk modulus, young modulus, valence band 
width, energy gap, and Plasmon energy increase (decrease) under compression (tensile), while volume decreases 
(increases) with compression (tensile). The vibrational energy has a minimum value at the ground state point. The con- 
duction band width has no systematic behavior with pressure. 
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1. Introduction 

Electronics is one of many interesting fields that IV ma-
terials can be implied in [1-6] so they have been subjected 
to extensive investigations [7-14]. Silicon, a very impor-
tant semiconductor, is the principal component of most 
semiconductor devices; it is widely used in the semicon-
ductors industry because it remains a semiconductor at 
higher temperatures than the semiconductor germanium, 
and because its native oxide forms a better semiconduc-
tor/dielectric interface than any other materials. The ap-
plications of silicon are in the electronic current conduc-
tion control (transistors), IC, detectors, solar cells and so 
forth. Nanocrystalline silicon (nc-Si) has small grains of 
crystalline silicon within the amorphous phase (a-Si). One 
of the most important advantages of nanocrystalline sili-
con is that it has increased stability over (a-Si) [15-20]. 

Understanding the properties of Si nanocrystals is an 
interesting field. Up to our knowledge, the effect of pres-
sure on the properties of Si nanocrystals has not been com-
prehensively investigated. So the aim of the present work 
is to achieve this task. 

Density functional theory (DFT) method in addition to 
Hartree-Fock (HF) theory within the Large unit cell 
(LUC) method [14] are used for calculating the total en-
ergy, lattice constant, bulk modulus (B), Young modulus 

(Y), valence band width (VBW), conduction band width 
(CBW), energy gap (Eg), vibrational energy (Fvib), and 
plasmon energy (Epl). 

2. Method 

The self-consistent Hartree-Fock method is used in the 
present work to obtain the electronic structure of silicon 
nanocrystals. Correlation corrections can be neglected in 
some closed-shell calculations (which is the case of the 
present work) using Koopmans theorem [21] owing to 
the cancellation of correlation corrections with relaxation. 
STO-3G basis states are used as the simplest basis to 
reach higher number of atoms [20,22-24]. 

Large unit cell (LUC) method coupled with ab initio 
Hartree-Fock self-consistent electronic structure calcula-
tions are used in the present work. LUC method was 
formulated and used previously to investigate the elec-
tronic of several kinds of bulk materials including dia-
mond [20,23-25]. Semiempirical LUC calculations were 
performed previously for silicon nanocrystals [22] with 
smaller number of atoms. This method uses (k = 0) ap-
proximation, that is one point in the wave vector space. 
The LUC method is one kind of supercell methods with 
the above k = 0 restriction. In this method, and instead of 
adding more k points, the single central cell is expanded 
to contain more atoms, which are called core atoms in the 
present work. We found this method very suitable for  *Corresponding author. 
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describing the core of a nanocrystal since it still has the 
outer dangling bonds that are saturated by surface atoms. 
The method does not expand to contain the whole space; 
instead it contains only the real number of atoms in a 
nanocrystals core that has nearly the exact diamond 
structure [14]. Gaussian 03 program has been used for 
the present calculations [26]. 

3. Calculations 

After the structure optimization, we calculate the lattice 
constant (ao), the cohesive energy (Ec) and total energy 
(Eo) in the ground state (zero temperature and 1 atmos-
phere). The cohesive energy is calculated from (Equation 
(17) in Ref. [27]). Results were fitted to Equation (1), the 
equation of state of Murnaghan, to estimate the change of 
energy with pressure E(V), [28] and to determine the 
change of vibrational energy Fvib Equation (2) [29], 
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where PT is the isothermal pressure, Vo and Bo are the 
volume and the bulk modulus of the unit cell at the stan-
dard conditions and V is the volume at any pressure. The 
bulk modulus is calculated by Cohen empirical formula 
[30]: 
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I is the ionicity factor which equals 0, 1 and 2 for IV, 
III-V and II-V groups respectively [30], d is the intera-
tomic distance [31]. Then the isothermal bulk modulus at 
any pressure (BT) has been calculated as [32]: 

T o oB B B P  T                (4) 

where ( o ) is the derivative of bulk modulus at zero 
pressure. The volume is calculated from: 

B

d

d
T

T

P
B V

V
                   (5) 

The results of pressure vs. volume  oP V V  rela-
tion are shown in Figure 1. On the other hand, the Young 
modulus is calculated from [33], 
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where ε is the strain. We have from Mijbil et al. [34] that 
the energy of plasmon (Epl) is: 
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Figure 1. The variation of volume with pressure. 
 

Table 1. The structural properties of Si at (0 K and 1 atm), 
the dimensions are Å, GPa, eV for length, pressure, and 
energy respectively. 

Pres. 
 

8 54 128 
Theo. Ref. Exp. Ref.

ao 5.41 5.33 5.28
5.427 
5.383 

[35] 
[36] 

5.4307
5.431

[35]
[36]

Bo 100.232 105.597 109.139
87.99 
95.9 

[35] 
[36] 

98 
96 - 99.4

[37]
[38]

Eg 2.74 3.29 3.52 3.5 [20] 3.44 [39]

Epl 16.693 17.07 17.313 16.4 - 16.9 [40] 16 [40]

o
B    

3.828 
4.153 

[35] 
[36] 

4.09 
4.24 

[35]
[37]

Pmax    
11.7 
11.95 

[41]  
[42] 

12.5 [42]

EZPV    0.065 [38]   

 
where T TP B  . 

4. Results and Discussion 

Our calculated structural properties at (0 K & 1 atm) 
compared with other results are shown in Table 1. 

It is known that DFT underestimates the band gap [43] 
due to the discontinuity of the potential of exchange- 
correlation [44] which explains the difference between 
our results and the experimental data. 
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The compression stress increases the density and de-
creases volume due to the shrinkage of orbitals [45] as 
shown in Figure 1, and the distance between atoms [46], 
which entails an increment in the bond strength [47] and 
bulk modulus [48] (Figure 2) because the bulk modulus 
depends upon the density directly, and the young modulus 
which depends upon the bulk modulus [49], and vice 
verse for the tensile stress. 

Figure 3 shows an increment in the plasmon energy 
with compression and a reduction of it with tensile stress. 
Kornyushin has showed that the plasma affects the charge 
distribution and so the sound wave [50]. On the other hand, 
the phonon frequency affects the effective charge [51], 
which depends upon the charge distribution and deter-
mines the plasma frequency [52]. Compression stress, 
according to Sanjurjo, increases the effective charge for 
IV-IV materials and vice verse [51]. Meanwhile, the ef-
fective charge reduction, according to Burstein, decreases 
the plasmon frequency [52], and then one can find that 
our results are in good agreement with experiment [51] 
for the behavior of plasmon energy. The vibrational en-
ergy increases with both stresses. 

In order to get a further comprehension, the vibrational 
energy is considered. Its behavior is the same for all 
clusters and takes a minimum value at the standard con-
ditions (0 K, 1 atm). It is known that atoms vibration is 
determined by phonons [53], and the velocity of sound 
depends on the atoms arrangement [54], while crystal is 
considered as a group of harmonic oscillators [55], accord-
ing to Born-von Kármán theory. From all above and ac-
cording to Polit who mentioned that the change of the 
lattice constant changes the charge distribution which 
affects the atoms’ force field and these potentials modify 
the vibration energy [56]. On the other hand at zero tem-
perature and according to Equation (2), the vibrational 
energy depends upon the behavior of the total energy 
which increases with stresses due to repulsion and attrac-
tion forces [57]. 

Energy gaps and valence band widths increase with 
compression, as shown in Figures 4(a) and (b) and they 
decrease with tensile stress, whereas the conduction band 
has no systematic behavior with pressure as shown in 
Figure 4(c). It should be pointed out that increasing 
compressing means increasing overlapping and Coulomb 
interaction. 

5. Conclusion 

From the results of the present work, it shown that the 
density functional theory method with the restricted Har-
tree-Fock theory within the framework of large unit con-
stitutes a powerful approach for investigating the struc-
tural properties of semiconductor nanoclusters. It is 

found that the bulk modulus, Young modulus, valence 
band width, energy gap, and plasmon energy increase with 
compression, whereas the conduction band width has no 
systematic behavior with pressure. The conduction band 

 

 

Figure 2. The variation of bulk modulus with pressure. 
 

 

 

Figure 3. The variation of plasmon energy with pressure. 
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Figure 4. The effect of pressure on the: (a) Energy gap; (b) Valence band width; and (c) Conduction band width. 
 

behavior needs more investigation, and it could be attrib-
uted to the different coulomb interactions and the delo-
calization of the p orbitals. 
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