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ABSTRACT

In this paper we study global properties of the optimal excising boundary for the American option-pricing model. It is
shown that a globa comparison principle with respect to time-dependent volatility holds. Moreover, we proved a global

regularity for the free boundary.
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1. Introduction

It is well-known that, for the American option-pricing
model, there is an optimal holding region for contracts
holders (see [1-5]). The part of the boundary for the re-
gion is unknown (free boundary), which is often referred
as the optimal excising boundary for option traders. This
free boundary has to be calculated along with the option
price of the security. The mathematical model for the
problem is highly nonlinear and there is no explicit solu-
tion representation even when volatility and interest rate
are assumed to be constants (see [4]). On the other hand,
for the financial world as well as for the intrinsic interest
itself, it is extremely important to find the location of the
free boundary along with the option price of the security.
Particularly, people would like to know how the price of
a security changes near the option expiry time since it
may change dramatically [6,7].

During the past few decades, there are many research
papers concerning for various option-pricing models.
There are several Monographs devoted to this topic (see,
for examples, [1,3,4,8]). For the American option model
aswell asits generalization, the existence and uniqueness
are studied by many researchers ( here just a few exam-
ples, [2,5,9-12]). A basic fact is that the American op-
tion-pricing model can be reformulated as a variational
inequality of parabolic type. Hence, many known results
about existence and uniqueness can be applied to the
model. However, the disadvantage of the method is that
there is no information about the free boundary. To
overcome the shortcoming, several authors employed
other methods to establish the existence and uniqueness
for the problem (see [7,13-17]). Because of the practical
importance, many researchers paid a special attention to
the asymptotic behavior for the free boundary near the
expiration time(see [6,18-25]). Moreover, various nu-
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merical computations for the location of free boundary
are also carried out by many people (see, for examples,
[14,25-28] and the references therein). More recently,
some global property of the free boundary attracts some
interest. The authors of [29,30] proved that the free
boundary is convex if the volatility in the model is as-
sumed to be a constant. However, this global property is
not valid in the real financial market since the volatility
depends on time and other economical factors. When the
volatility depends on time and the security, the problem
becomes much more challenging. In this paper we would
like to study some global property of the free boundary.
We want to find how the optimal exercising boundary
changes when the volatility changes during the life-time
of the option contract. This question is very important for
structured products in the financial world.

We first recall the classical model for the American
option-pricing model with one security or one type of
asset. Let V(s,t) bethe option price for a security such
as a stock with price s at time t. Then it is well-
knownthat V(s,t) satisfies the Black-Scholes equation
with no dividend [31,32]:

2
LV =V, +%52V§+rsvs—rv =0,(st)eQ, (11

where r is the interest rate and o represents the
market volatility of the stock, Q is the region defined
below.

For the American put-option model (call-option is
similar), in order to avoid loss for option holders, it is
desirable to hold the option only when s liesin the re-
gion (called optimal holding region):

Q= {(st):S(t) <s<o0,0<t<T},

where s=S(t) is the free boundary, which ensures
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V(s,t)>0, called the optimal exercising boundary.
On the free boundary s=S(t), we know from the
continuity of the option pricethat V(s;t) satisfies:

V(S(t),t)=K-S(t), 0<t<T (12

V(S(t).t)=-1, 0<t<T, (13

S

where K isthe striking price.
We also know the payoff value at the terminal time T
once the striking priceis given:

V(sT)=(K-s)",S(T)<s<wm, (1.4)
V(sit)>0,s—> 0. (1.5)
For later use, we introduce :
Qf ={(st):0<s<S(t),0<t<T},
Q =Q;UQtUTrY,
where
I, ={s=5(t):0<t<T}|.

In financial markets, the volatility o plays a major
role for the option pricing model. Option price often
changes dramatically when the stock market isin a cha
otic movement. This was the case when the flash-crash
happened on May 6, 2010 as well as the case on Oct. 19,
1987. On the other hand, for a relatively stable market,
the volatility mainly depends on time. Thisis particularly
true for an index fund such as S&P500 index in the U.S.
market. Hence, we assume that o =o(t) throughout
this paper. Our question is how the free boundary S(t)
changes when the volatility o(t) changes during the
life-span of the option contract. We show that there is a
global comparison principle for the free boundary with
respect to the change of volatility o(t). Moreover, a
global existence result is aso established as a by-product.
Our proof is based on the line method (see [15]), which
is different from existing literature (see [21,13] and the
references therein). Although the existence of a solution
for the problem is already known, our method does have
several advantages. One of them is that the free boundary
is determined along with the option price at each discrete
time simultaneously. Moreover, a global regularity for
the free boundary is also obtained. To author’s knowl-
edge, this regularity result is new and optimal (see [19,
21,12)).

The paper is organized as follows. In Section 2, we
construct a sequence of approximation solutions by using
the line method. After deriving some uniform estimates,
a global existence is established. Moreover, an optimal
global regularity for the free boundary is also obtained.
In Section 3, we first derive some comparison properties
for the approximation solution and then show that the
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limit solution preserves the same property. Some con-
cluding remarks are given in Section 4.

Remark 1.1: After this paper is completed, the author
learned that E. Ekstron proved a result in [33] (2004)
about the monotonicity of option price with respect to
volatility. However, there is no result about the compari-
son result for the free boundary. Moreover, the method in
[33] is totally different from ours here. In addition, we
also present aregularity result for the free boundary.

2. Existence and Uniqueness

Since our argument in Section 3 is based on the discrete
problem, we give the complete details about the con-
struction of the approximation solution sequence. We
also show that the approximation sequence is convergent
to the solution of the origina problem (1.1)-(1.5). As a
byproduct, an optimal regularity of the free boundary is
obtained.

The following conditions are always assumed through-
out this paper.

H(1): Let o(t),r(t)eC*[0,T] for some a<(0,1).
There exist positive constants a,b and R such that

O<a<o(t)<b0<r(t)<R
Now we construct an approximate solution sequence

by using the line method.
Let N be a positive integer. Divide [0,T] into N

subintervals with equal length h = % :

O:tO <t <<ty :T!ti =ih,i=0,1,---,N
Define

- =£rk

< G(T)dl’,.

"]
r =l.|.tk r(r)dr k=1,2,---N.
K hlwa ’ ”
If we use difference quotient to approximate V, and
replace o(t) and r(t) by o, and r,, wehave
V(st.)-V(st,)

h
+r,8V (st,), -V (st,)=0.

+%o-n52\/(s,tn)§

This leads us to define the approximate solution
(s) and S, asfollows:
From the terminal condition, we know

V(sT)=(K-s)
and S(T)=K .Sowedefine
Vy(s)=(K-s)",0<s<x,S, =K.

V

n

Suppose we have obtained V,,,(s) and S,,;, wecan
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define V,(s) and S, asfollows:

lo-nszvn” + rnsvn’ _(rn +1]Vn = _lvml(s)r
2 h h 2.1)
S, <s<oo,
Vo(S)=K-8,V,(S)=-1, 2.2)
V,(s) > 0,ass— o, (2.3

where we have extended V

.1(s) into thewholeinterval
[0,00) by

Y/

n+1

(s)=K-s, 0<s<S§,,.

It is easy to see that the above free boundary problem
(2.1)-(2.3) has a unique solution (V,(s),S,) for each
n. Actualy, since the problem is one-dimensional one
can find the solution V,(s) and S, explicitly (see [4]
for detailed calculation).

Now we use the interpolation to define the free
boundary S(t) asfollows:

s (t)="

tnl£t<t n=1,2,,

t— Tlag

[
h
N.
Also, we define

VY¥(st)=V,(s),t,<t<t,,n=01,--N-1

n+1?

We also use the notation

Qk:QTm{t:

Our goal is to show that the approximate solution
sequence (VN (st),s" (t)) is convergent to the solu-
tion of the original free boundary problem (1.1)-(1.5).

To this end, we need to derive some uniform estimates.

Lemma2.1: Foral (st)eQ,

0<V"(st)<K,0<SV(t)<K.

t}, k=01,--,N

Proof: From the definition, we see
V¥ (s4)=Vy (5)20

if ty,<t<t, =T . Supposewe have shown that
V,.1(s)=0, we claim that V,(s)>0. Indeed, if V,(s)

attains a negative minimum at some point s €(S,,»),
then at this minimum point, we see
>0,

1 o, SV +r sV — ( r+ ijvn
2 h S:S*

which contradicts the right-hand side of the Equation (2.1).
It follows that V,(s)>0 on [S,,). By the definition
of V,(s) on [
Consequently, V

(s,t)zo on Q.
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S,). wesee V,(s)>0 for se[0,x).

On the other hand, we claim that V" (s;t) has an
upper bound K. Indeed, it is obviously true for V, (s),
which implies that V" (s,t)<K when te[tyt,].
We assume that [t,,.t,] is the first interval in which
M&X ..., V, (S) > K . Then, suppose that V,(s) attains
a positive maximum at an interior point s (S, ),
thenat s=s', V/(s')<0,V;(s)=0. Thus,

1 o, sV +r sV —(rn + ljvn
2 h SZS*

It follows from Equation (2.1) that

V() <V, <K,

" 1+rh ™
which isacontradiction. On theboundary s=§,,
V,(S,.t)=K-§,<K.

Obviously, V,(s)<K when 0<s<§, . Consequen-
tly, 0<V"(st)<K in Q . Furthermore, from the
boundary condition (2.2), we see 0<S§ <K for all
n=0,1,--,N.

Q.ED.
Lemma 2.2: Thereexistsaconstant C, such that
N
"V |||_2(Q)m+hk2:1 V ) 2(y)

+h2kz:l"\/HN ||L2(S1k) <G

where C, dependsonly on known data, but noton N .

Proof: This estimate is similar to the energy estimate
for a parabolic equation. Indeed, we introduce new vari-
ables:

=Ins,z=T-t.
Define

U (x7)=V(st), X ()= S(t).

Then the origina free boundary problem (1.1)-(1.5) is
equivalent to the following one:

LU :=U, —%&(T)ZUXX —(r‘(f)—%&(r)zjux

(2.4)

+(7)U =0,(x7)eQy,
U(X(r),r)=K-€"®, 0<r<T, (2.5)
U,(X(7),7)=-€, 0<z<T, (2.6)

U(x0)=(K-e""), X(0)<x<w,  (27)
where

QT ={(X,r): X(r)<x<00,0<rST},

6(r)=o(t),f(r)=r(t).
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On the other hand, by the definition we know
V(st)=K-s, 0<s<S(t),0<t<T.
It follows that
LV =-f(r)K, 0<s<S§(t),0<t<T.

Thus,
LU =—r(t)K, —oo<x<X(7),0<z<T.

_Now we can extend U(xr) into the region
Q; =R'x(0,T], we use the continuity of U(x,7) and
U,(x7) in Q to see that U(xr) is a wesk
solution of the following problem:

L1U=f(x,r), (X,T)eér, (2.8
U(x0)=(K-g€")+, —oo<x<owo (29

where f(x,7)=0 if —0o<x<X(r),0<r<T and
f (X,r)=—f(z')K if X(r)< X<00,0<7<T.

Now we can use the line method method to define
U,(x) and U"(x,r) which are exactly the same as
for aclassica parabolic equation (see [34], estimate (5.15)
on page 137) and obtain the desired energy estimate. By
the definition, we see clearly that V" (s,t)=U"(x,7)
for (st)eQr.

Q.ED.

Lemma2.3: Thereexistsaconstant C, such that

<G,

"M,

where C, dependsonly on known data, but noton N.

Proof: Notethat U (x,0) isuniformly Lipschitz con-
tinuous on [ X (0),). We may assume that U (x,0)
is differentiable with a bounded derivative on
[ X(0),%).

Define

W(x,7)= Ux((x,r).
It followsthat W satisfies the following equations:

1., A 1., 2
W, —EO'(Z') Wm—(r(r)—za(r) ]Wx 2.10)
+f(T)W=0,(X,T)eéT,
W(X(r),r)=-€""7, 0<r<T, (211
W(x,0)=U,(x0), X(0)<x<ew, (212)

The maximum principle yields that W(x,r) is uni-
formly bounded and the bound depends only on known
data. By using the same argument, we can easily deduce
the uniform bound for V" (s,t)

Q.ED.

Let 6 >0 beasmal number and define

Q(0)=Qq; N{(st):0<t<T-5}.

s”
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Lemma 2.4: There existsaconstant C, such that
<G,

”<V "). ) “(V“N ) L*(r(4)

where C, depends only on the known dataand &, but
noton N.

Proof: From the theory of parabolic equations, we
may assumethat U (x,7) isdifferentiableupto X(z).
Set

P(x,7)=U,(x7),(x7)eQ;.
From the boundary condition (2.5), we see
U, (X(7),7)X'(r)+U, (X (r),7)=-€X (7).
It follows by (2.6) that
U, (X(z),7)=0, X(r)<x<o0.

From the Equation (2.4) and the boundary conditions
(2.5) and (2.6), we see
1.

23(P(X().0)=[7(r)- 36 () Je
+(T)(K—ex(’)),

which isuniformly bounded.
By differentiating Equation (2.4) with respect to x
twice, wesee P(x,7) satisfies

P26 (e) pxx_(f(r)_%&(r)zjmf(f)P

:O,(X,z')eQ%.

For any 6 >0, the Schauder's theory implies that
P(x,6)=U,(x,6) is uniformly bounded and the
bound depends on known data and & . Now we can
apply the maximum principle again on Q; (&) to
conclude that P(x,z) is uniformly bounded. One can
also use the same argument for W to conclude the es-
timate for U, (x,7) in Q (&). Similar estimates hold
for the discretized solution V" (s,t)s and (Vﬁ(s,t)N)

Q.E.D. X

Lemma 2.5: There existsaconstant C, such that

T-s| d

— SV (t
L lgs
where C, depends only on known dataand ¢ , but not
on N.

Proof: First of al, S"(t) is continuous and is also
differentiableon [0,T] except t=t,,n=0,1,---N . Itfol-
lowsthat S"(t)e H*(0,T).

From the definition of V" (st) and the boundary
condition (2.2), we know that, for t,, <t <t

d v _Sn_sn—l
ES (t)= P

2

dt<c,,
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Notethat S, <S,,then
- Vn (Sn)_vn (Sn—l)

Sn_Sn-l h
VN(Svt)_VN(Snfvt)_ lesio,n
h Thls. ht), @
It follows that
T-5 d 2
dt
'[0 dt Z:J.n 1 dt

<Oy oy < S

where C; depends only on known dataand o .

Q.E.D.

With the results of Lemmas 2.1-2.5, we are ready to
prove the following theorem.

Theorem 2.6: The free boundary problem (1.1)-(1.5)
has a unique solution (V(s,t),S(t)) with
(V(xt)eLO,T;W*(Q)) and S(t)eC**[0,T).

Proof: First of all, the existence of a weak solution
U(st) in Q. follows the exactly same argument as
that in [34] (Theorem 5.1, page 138). The uniqueness
follows from the variational inegquality. Moreover, regu-
larity theory for parabolic equation implies that

2+a,l+g

(@)nc™ 2 ().
Moreover, since the coefficients of the Equation (2.4)

depends only on z, we use the interior regularity of
parabolic equations to conclude that

2 (Q(5)).

To see the regularity of the free boundary, we use
Lemma25tosee S"(t)eH'(0,T-5) and

U(st)eC’?

2+a 1+

U,eC

”SN ||H1(O,T—§) <G
It follows that
S )-8 (1)
0<ty tp<T -5 |t1 —t2|

Hence, by Ascoli-Arzela's lemma, we can extract a
subsequence, still denoted by S"(t), such that S"(t)

converges to a function, denoted by S(t). Moreover,
1

S(t)eC2[0,T-5].Since §>0 isarbitrarily, we
have S(t )eC12[0 T).
Furthermore, since f(x,7)eL” (QT) we use W -
estimate to obtain that forany p>1,

Y ks <C
where C dependsonly onknowndata, p and &§.

Now we convert back to the original variables to con-
clude that
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V(s1)<W2 (@ (9).

By Sobolev's embedding, we know that V (s;t) and
V,(st) are continuous over Q.. On the other hand,
since

V(st)=K-s, 0<s<S(t),0<t<T,

we obtain
V(S(t),t)=K-S(t),V,(S(t),t)=-1,
0<t<T.

To see more regularity for S(t), we use the boundary
condition (2.5)-(2.6). Indeed, from the condition (2.5)-
(2.6), we see

U, (X(z),7)=0,6<7<T.
We differentiate (2.6) to find
Uy (X(7),7) X' (z)+U,. (X (z).7)
=-e"OX'(7),6 <7 <T.
From the Equation (2.4) we obtain

Uy (X(z),7)=—-€+ 2::5;)
It follows that
X'(z) :—Zigzz)ux,(x(z),r),5 <r<T.

Now we consider the free boundary problem for
W(x7)=U,(x7) in Q(J):
o(eyw —(f(r)—%&(r)zij+f(z')w
=0,(x7) <G, (5),loca
W(X(7),

r)=-€*®, §<7r<T,locall

= 6(7)
X )= 5k )
W(x,0)=U,(x,0),

Itis easy to see that aunique solution (W (x,7), X (7))
existswith X (z)eC"“[5,T]. It follows that

S(t)eC*“[0,T-4].

W, (X(7),7),6<7<T,

X (0) < x<oo,local

Q.ED.
Remark 2.1: For the existence and uniqueness, we

only need to assume that o (t) and r(t) are of class

L”(0,T) with apositive lower bound for o (t).

3. Properties of Free Boundary

As we mentioned in the introduction, we are interested in
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how the free boundary changes when o (t) changes. It
turns out that a comparison principle holds.

Theorem 3.1: Let o,(t) and o,(t) satisfy the
assumption H(1). Let (V,(st),S(t)) and
(V,(s:t),S,(t)) be the solutions of the problem (1.1)-
(1.5) corresponding to o, (t) and o, (t).

If o,(t)<o,(t) on [0,T],then

Vi(st)<V,(st), S(1)2S,(1),
O<t<T.

To prove the theorem, we show that the comparison
property holds for the discrete solution under certain
condition.

Lemma3.1: If h<2i,then
b°+R
d2
dSZVn() 0, S, <S<w.

Proof: If necessary, we may use an approximation to
replace Vy (s)=(K—-s)" by a smooth convex function
on [S,, ) Without loss of generality, we may smply
assume V, (s) > 0. Then from the regularity theory, we
know that V( s) isdifferentiablein (S, ). Let

u,(s)=Vy(s), S <s<w.

n

Now for n= N -1, we differentiate the Equation (2.1)
twice with respect to s to seethat u,(s) satisfies the
following equation:

1
O_ZSZUH
2

n

+ (20, +r1,)su; +(an +r, —%)u

:—%VN(S)" <0, <s<w.

From the maximum principle, we see that u, (s) can
. . _ . 1
not attain a negative minimum if &2 +r, - <0.

On the other hand, from the Equations (2.1) and (2.1) we
see

It followsthat, if h<—S—,
b°+R

u,(s)=0, § <s<oo,

Once we know uN_l(s)" >0, we can use the maxi-
mum principle to obtain the same conclusion for
n=N-2. After afinite number of steps, we obtain the
desired result of Lemma 3.1.

Q.ED.

Since we are interested in the relation between
(V,(s).S,) and o,, for convenience we use
V,(5.0)=V,(s) and §,():=S, instead of V,(s.0,)

Copyright © 2012 SciRes.
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and Sn(a-n)'
Lemma3.2: For n=0,1,---,N-1,
oV (S,O') d
-0 — 0
oo g do-Sn(o-)<
Proof: Let
W(s,a):w_
oo

We differentiate Equation (2.1) for n=N with re-
spectto o =o, toobtain:
2 dzvn .
ds’

Lw = Lo + rsW'—(rn +1JW =-0S
2 h
From Lemma 3.1, we see that
%O'ZSZ\N"-‘:- rs\N’—(rn +%)W <0,S, <s<w.

The maximum principle implies that W(s,o) can
not attain a negative minimum at an interior point in
(Sy0).-

On's,=5,(0):

Vo(S,(0),0)=K=5,(0) Ves(S,(0).0) =-1.

We differentiate V,(S,(c).0) with respect to o
to obtain

W(Sn(a),a) =0.

It followsthat W(s,0)>0 for se(S,,»),0¢€[a,b]
when n=N. Now we can use the same argument to
obtain the same conclusionfor n=N-1,---,0.

Moreover, from the second boundary condition, we
have

vn$(g(a),a)dsaga) Vo, (S,(5),0)=0.

Also, from Equation (2.1) we know
2r

It follows that

ds, (o) _
do

(a.8)

n

W,(S,(0),0).

Since W(s,o) attains its minimum O at the boundary
S,(c), by Hopf's lemma, we see W,(S,(c),0)>0.
Thus,

d
il <
do Sn(o-)

Q.E.D.
Now we are ready to prove the main theorem in this
section.
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Proof of Theorem 3.1: Let oy(t) and o,(t)
satisfy the assumption H(1). Let (V,(st),S(t)) and
(V,(s:t),S,(t)) be the solutions of (1.1)-(1.5) corres-
ponding o (t) and o,(t). If o,(t)<o,(t) on [0,T].
We define

A N
o-ik—ﬁ_[tkilo](r)dr,l—1,2,k—1,2,---,N.

Let (V,,(s).S,) bethesolution of the problem (2.1)-
(2.3) corresponding to the volatility o;,. It is clear that
0y, <0y, for n=1,2,--- N if oy(t)<o,(t) on

[0,T]. By Lemma 3.1 and Lemma 3.2, if h<L
b?+R

we have
Sh(01)>Su(02), N=01,2,---,N.
From the definition of S"(t), we know that

S'(t)>S)'(t), 0<t<T,

provided that h< = .
b*+R

Since S'(t) and S (t) are uniformly convergent
to S(t) and S,(t), respectively, a N —oo . It
follows that

S(t)=S,(t), 0<t<T.

Itisalsoclear that V,(s,t)<V,(st) on Q.

Q.E.D.

Remark 3.1: It is clear that the comparison result in
Theorem 3.1 still holds if o(t)el”(0,T) with a
positive lower and upper bounds.

4. Conclusion

When the volatility is a constant, it has been known for a
long time that the option price is bigger when the volatil-
ity is bigger. However, when the volatility is a function
of time, o =o(t), it is not clear how the option price
nor the optimal excise boundary change when the volatil-
ity changes for the whole time period [0,T]. In this pa-
per we answered such a question. We show that a com-
parison property for option price and the optimal excis-
ing boundary hold (Theorem 3.1) when the volatility
o,(t) < o,(t). Thisresult isimportant for option traders.
Moreover, we proved a global regularity result for the
free boundary by using a very different method from the
existing literature.
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