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ABSTRACT 

In this paper we study global properties of the optimal excising boundary for the American option-pricing model. It is 
shown that a global comparison principle with respect to time-dependent volatility holds. Moreover, we proved a global 
regularity for the free boundary. 
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1. Introduction 

It is well-known that, for the American option-pricing 
model, there is an optimal holding region for contracts 
holders (see [1-5]). The part of the boundary for the re-
gion is unknown (free boundary), which is often referred 
as the optimal excising boundary for option traders. This 
free boundary has to be calculated along with the option 
price of the security. The mathematical model for the 
problem is highly nonlinear and there is no explicit solu-
tion representation even when volatility and interest rate 
are assumed to be constants (see [4]). On the other hand, 
for the financial world as well as for the intrinsic interest 
itself, it is extremely important to find the location of the 
free boundary along with the option price of the security. 
Particularly, people would like to know how the price of 
a security changes near the option expiry time since it 
may change dramatically [6,7]. 

During the past few decades, there are many research 
papers concerning for various option-pricing models. 
There are several Monographs devoted to this topic (see, 
for examples, [1,3,4,8]). For the American option model 
as well as its generalization, the existence and uniqueness 
are studied by many researchers ( here just a few exam-
ples, [2,5,9-12]). A basic fact is that the American op-
tion-pricing model can be reformulated as a variational 
inequality of parabolic type. Hence, many known results 
about existence and uniqueness can be applied to the 
model. However, the disadvantage of the method is that 
there is no information about the free boundary. To 
overcome the shortcoming, several authors employed 
other methods to establish the existence and uniqueness 
for the problem (see [7,13-17]). Because of the practical 
importance, many researchers paid a special attention to 
the asymptotic behavior for the free boundary near the 
expiration time(see [6,18-25]). Moreover, various nu-

merical computations for the location of free boundary 
are also carried out by many people (see, for examples, 
[14,25-28] and the references therein). More recently, 
some global property of the free boundary attracts some 
interest. The authors of [29,30] proved that the free 
boundary is convex if the volatility in the model is as-
sumed to be a constant. However, this global property is 
not valid in the real financial market since the volatility 
depends on time and other economical factors. When the 
volatility depends on time and the security, the problem 
becomes much more challenging. In this paper we would 
like to study some global property of the free boundary. 
We want to find how the optimal exercising boundary 
changes when the volatility changes during the life-time 
of the option contract. This question is very important for 
structured products in the financial world. 
  We first recall the classical model for the American 
option-pricing model with one security or one type of 
asset. Let  ,V s t  be the option price for a security such 
as a stock with price s  at time . Then it is well- 
known that 

t
 t,V s  satisfies the Black-Scholes equation 

with no dividend [31,32]: 

 
2

2 1
0 := = 0, , ,

2t ss sL V V s V rsV rV s t Q


    T   (1.1) 

where  is the interest rate and r   represents the 
market volatility of the stock,  is the region defined 
below. 

1
TQ

For the American put-option model (call-option is 
similar), in order to avoid loss for option holders, it is 
desirable to hold the option only when s  lies in the re- 
gion (called optimal holding region):  

    1 := , : < < ,0 < < ,TQ s t S t s t T  

where  =s S t  is the free boundary, which ensures 
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 ,V s t  0 , called the optimal exercising boundary. 
  On the free boundary  =s S t , we know from the 
continuity of the option price that  satisfies:   ,V s t 

    , = , 0 < <V S t t K S t t T       (1.2) 

  , = 1, 0 < < ,sV S t t t T           (1.3) 

where K  is the striking price. 
We also know the payoff value at the terminal time  

once the striking price is given:  
T

     , = , < ,V s T K s S T s
  

.

,

.

      (1.4) 

 , 0,V s t s                    (1.5) 

For later use, we introduce :  

   2

1 2

= , : 0 < < ,0 < <

= ,

T

T T T T

Q s t s S t t T

Q Q Q  
 

where  

  = = : 0 <T s S t t T   

In financial markets, the volatility   plays a major 
role for the option pricing model. Option price often 
changes dramatically when the stock market is in a cha-
otic movement. This was the case when the flash-crash 
happened on May 6, 2010 as well as the case on Oct. 19, 
1987. On the other hand, for a relatively stable market, 
the volatility mainly depends on time. This is particularly 
true for an index fund such as S&P500 index in the U.S. 
market. Hence, we assume that  throughout 
this paper. Our question is how the free boundary 

 t= 
 S t  

changes when the volatility  t  changes during the 
life-span of the option contract. We show that there is a 
global comparison principle for the free boundary with 
respect to the change of volatility . Moreover, a 
global existence result is also established as a by-product. 
Our proof is based on the line method (see [15]), which 
is different from existing literature (see [21,13] and the 
references therein). Although the existence of a solution 
for the problem is already known, our method does have 
several advantages. One of them is that the free boundary 
is determined along with the option price at each discrete 
time simultaneously. Moreover, a global regularity for 
the free boundary is also obtained. To author’s knowl-
edge, this regularity result is new and optimal (see [19, 
21,12]). 

t 

  The paper is organized as follows. In Section 2, we 
construct a sequence of approximation solutions by using 
the line method. After deriving some uniform estimates, 
a global existence is established. Moreover, an optimal 
global regularity for the free boundary is also obtained. 
In Section 3, we first derive some comparison properties 
for the approximation solution and then show that the 

limit solution preserves the same property. Some con-
cluding remarks are given in Section 4. 

Remark 1.1: After this paper is completed, the author 
le

2. Existence and Uniqueness 

ased on the discrete 

owing conditions are always assumed through- 
ou

arned that E. Ekströn proved a result in [33] (2004) 
about the monotonicity of option price with respect to 
volatility. However, there is no result about the compari-
son result for the free boundary. Moreover, the method in 
[33] is totally different from ours here. In addition, we 
also present a regularity result for the free boundary. 

Since our argument in Section 3 is b
problem, we give the complete details about the con-
struction of the approximation solution sequence. We 
also show that the approximation sequence is convergent 
to the solution of the original problem (1.1)-(1.5). As a 
byproduct, an optimal regularity of the free boundary is 
obtained. 

The foll
t this paper. 
H(1): Let      , 0t r t C T ,  for some   0,1  . 

ch that  There exist po  and R  susitive constants ,a b

   0 < ,a t b r t R 0 .     

Now we construct an approximate solution sequence 
by

teger. Divide 
 using the line method. 
Let N  be a positive in  0,T  into   

su rva

N

binte ls with equal length =
T

h :  
N

Define 

0 10 = < < < = , = , = 0,1, ,N it t t T t ih i N   

 
1

1
= d

tk
k tkh

,.   


  

 
1

1
= d , = 1,2, .

tk
k tk

r r k
h

 


   N

If we use difference quotient to approximate  and tV
replace  t  and  r t  by n  and nr , we have  

     

   

1 2, , 1
,

2
, , = 0.

n n
n n ss

n n n ns

V s t V s t
s V s t

h
r sV s t r V s t

 


 
 

This leads us to define the approximate solution 
 nV s  and nS  as follows: 

m the terminal conditioFro n, we know 
   , =V s T K s  

  =S T K . and So we define  

.

Suppose we have obtained  and 

   = ,0 < , =N NV s K s s S K  
 

  1nV s 1nS  , we can 
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de ows:  fine  nV s  and nS  as foll

 2

< <

n n 1= ,
2

,

n n n n

n

1 1 1
ns V r r V V s

h h
   

      (2.1) 

1,           (2.2) 

      

where w  exte d 

sV  

K

as

nde

S s





n nV S

 nV s

e have

 

   = , =n n nS V S   

0, ,s              (2.3) 

 s  into the whole interval 1n

 0,  by  

 1 = ,

V

1.n

It  see th e above free boun ary problem 
(2

erpolation to define the free 
bo

0 < <nV s K s s S   

 is easy to at th

)

d
.1)-(2.3) has a unique solution   ,V s S  for each 

n . Actually, since the problem is ional one 
n find the solution  nV s  and nS  explicitly (see [4] 

for detailed calculation
Now we use the int

n n

one-dimens
ca

. 

undary  NS t  as follows:  

  1
1

1

=

, = 1, 2, , .

N n n
n n ,

t t
S t S S

h h
t t t n N










 

 define 

 

n n 

 

 ,
use the notation 

t t

Also, we

We also 

  , =NV s t V s 1< , = 0,1, 1.n n nt t t n N   

     1= .
s

V s
h

  

Our  show that the approxim e solution 
se

 

,n h



 goal is to

 orig

n nV s V

 = = , = 0,1, , .k T kQ t t k N   

at
quence     , ,N NV s t S t  is convergent to the solu-

tion of the dary problem (1.1)-(1.5). 
To this end, we need to derive some uniform estimates.

inal free boun

Lemma 2.1: For all  , Ts t Q , 

N NV s t S   0 , ,0K t K   .

Proof  the definition, we see  

if T . Suppose we have shown that  

: From

Nt t 
0s  , we

   , =N  0NV s t V s  

1 =Nt

 1  clanV im that   0nV s  . Indeed, if  n  V s
gative minimum oint attains a ne  at some p  ,n

*s S  , 
then at this minimum point, we see  

2

*=

1 1
> 0,

2 n n n n n n

s s

s V r sV r V
h

         
 

which contradicts the right-hand side of the Equation (2.1). 
It follows that   0V s   on n  ,nS  . By the definition 
of  nV s  on   see 0n   for 0, nS , we  V s  0,s  . 
Con ly, 0V  on TQ . 

 other hand, we NV s  h

sequent

On the  claim that as an 
up

 ,N s t 

, t
 true for per bound K . Indeed, it is obviously  NV s , 

which implies that  ,NV s t K  when  1,N Ntt t . 
We assume that  1nt  rst inter  , nt  is the fi val in which

 0 <max >s nV s K  n, suppose that . The  V s  attains 
 at an interior poin

n

t a positive maximum  ,nS*s   , 
then at *=s s ,    * *0, = 0V s V s  . n n Thus, 

 2 *

*=

1 1
.

2 n n n n n n n n

s s

1
s V r sV r V r V s

h h
                 

 

It follows from Equation (2.1) that  

 *
1

1
,

1n n
n

V s V K
r h  


 

which is a contradiction. On the boundary = ns S ,  

 , = .n n nV S t K S K   

 nV s K  when 0 ns S Obviously, . Consequen- 
tly,  , t K0 NV s   in

dition (
 TQ . F e, from the 

boun 2.2),  see 0 nS K   for all 
= 0,1, ,n N . 

urthermor
dary con we

Q.E.D. 
 2.2: There exists a constant  such that  Lemma 1C

 
 

 

2 2( )
=1

2
12

=1

,

m
N N

L s Lm kk

m
N

h L kk

V h V

h V C

 





 




 

where depends only on known data, but not on 
 

fo

1C  
f: T

N . 
maProo his estimate is similar to the energy esti te

r a parabolic equation. Indeed, we introduce new vari-
ables:  

= ln , = .x s T t   
Define  

       , = , , =U x V s t X S t   .

Then the original free boundary problem .1)-(1.5) is 
eq

(1
uivalent to the following one: 

     

   

21 2

1

1
ˆ ˆ ˆ:=

2 2

ˆˆ = 0, , ,

xx x

T

LU U U r U

r U x Q

     

 

   
 

 

   (2.4) 



   ( ), = , 0 < ,XU X K e T          (2.5) 

    , = , 0 < ,X
xU X e T           (2.6) 

      ,0 = , 0 < < ,S TU x K e X x


      (2.7) 

where  

    ˆ = , : < < ,0 <TQ x X x T     ,

       ˆ ˆ= , =t r r t     .
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Lemma 2.4: There exists a constant  su  that  On the other hand, by the definition we know  

It follows that  

Thus,  
.

Now we can extend 

   , = , 0 < < ,0 < < .V s t K s s S t t T  

 0 ˆ=L V r  , 0 < < ,0 < < .K s S t t T  

   = , < < ,0 < <LU r t K x X T    1

 ,U x   into the gion re
 1ˆ = 0,TQ R T , we use the continuity of  ,U x   and 

 ,x xU   in ˆ
TQ  to see  ,xthat U   is a weak 

ollowing problem:  

 
solution of the f

 1 = , , ,LU f x x      (2.8) ˆ
TQ  ,    

where  if 

   ,0 = , <xU x K e  

   

< .x     (2.9) 

, = 0f x < < ,0x X T     and 
   ˆ, =f x r  K  if   < < ,0 <X x T   . 

method method to dNow efine 
,

 we can use the line 
 U xn  and  NU x   which are exactly the same as 

for
on page

 a classical parabolic equation (see [34], estimate (5.15) 
 137) a n the desired energy estimate. By 

the definition, we see clearly that  
nd obtai

 , = ,N NV s t U x   
for   1, Ts t Q . 

Q.E.D. 
L : Temma 2.3 here exists a constant  such that 2C

 
  2 ,N

s L QT

V C


  

where depends only on known da , but not on . 
Proof: Note that is uniformly Lipschitz con- 

 o

2C  ta N
 ,0U x  

tinuous n   0 ,X  . We may assume that   U ,0x  
is differentiable  bounded derivative on 

  0 ,X  . 
Define  

with a

   , = ( ,xW x U x .   

It follows that satisfies the following equations:  W  

     1 1
ˆ ˆ ˆ

2 2

   

2 2

ˆˆ = 0, , ,

xx xW W r W         

Tr W x Q 
 

 

     (2.10) 

    (2.11) 

The maximum principle yields that 

    , = , 0 < ,XW X e T     

     ,0 = ,0 , 0 < <xW x U x X x ,    (2.12) 

 ,W x   is uni-
formly bounded and the bound depend known 
da

s only on 
n easilyta. By using the same argument, we ca  deduce 

the uniform bound for  ,N

s
V s t . 

Q.E.D. 
Let > 0  be a sma  anll number d define  

    = , : 0 . .T TQ s t t TQ      

3C ch

 
  

 
 

where depends only on the known data an

  3,N N
hss xL Q L QT T

V V C
 

   

3C  d  , but 
not on .  

f: ns
um at 

N
Proo From the theory of parabolic equatio , we 

may ass e th  ,U x   is differentiable up to  X  . 
Set 

     , = , , , .xx TUP x x x Q    

From the boundary condition (2.5), we see   

          . , , = X
xU X X U X e X         

It follows by (2.6) that  

  , =U X    0, < <X x   .

From the Equation (2.4) and the boundary conditions 
(2.5) and (2.6), we see 

        

    
ˆ ˆ

,X

r e

K e

 21 1
ˆ , =

2 2
XP X 



   



 
 

 
 

which is uniformly bounded. 
By differentiating Equation (2.4) with respect to x 

    

twice, we see  ,P x   satisfies  

       2 21 1
ˆ ˆ ˆ ˆ

2 2

  1= 0, , .

xx x

T

P P P r P

x Q






 

For any 

r          


> 0 , the Schauder’s theory implies that 
   , =P x ,xxU x   is uniformly bounded and the 

bound depends on known data and  . Now we can 
m principle again on apply th ue maxim  TQ   to 

conclude that  ,P x   is uniformly b nded. One can 
also use the same argument for W  to conclude the es- 
timate for 

ou

 ,xxtU   in  TQ  . Similar estimates hold 
for the discretized solution  NV s s and , t   ,

N

h
x

V s t . 
Q.E.D. 
Lemma 2.5: There exists a constant 4C  such that  

 
2

dt
 

where depends only on known data and 

40

d
d ,

T NS t t C




2C   , but not 
on 

f: 
N . 

Proo First of all,  NS t  is continuous and is also 
diffe ntire able on  0,T  except = , = 0,1,t t n Nn

ws that 
. It fol- 

lo    T . 1 0,NS t H
From the def  of NV undary 

condition 
inition  ,s t  and the bo

(2.2), we know that, for t ,  1 n<nt t

  1n  
d

= .
d

N nS S
S t

t h


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Note that , then  1 <n nS S

   

     

1
1

1

1

=

, , 1
= =

n n n n

, d
N N

Sn n n N

ySn

V S V S

V S t V S t
V y t y

h h












 

It follows that 

n nS S
h

   

  

2 2

1=1

5

d d
d = d

d

,

NT tnN N

tnn

N
h L QT

t t S t t
t

C V C









 


 

where depends only on known data and 

0 d
S

t

5C   . 
Q.E.

 the re e ready to 

exist
 in follows the e  same argum s 

fo

D. 
With sults of Lemmas 2.1-2.5, we ar

prove th following theorem. e 
Theorem 2.6: The free boundary problem (1.1)-(1.5) 

has a unique solution     , ,V s t S t  with  
    1,2, 0, ;V x t L T W   and    C T

Proof: First of all, olution 

1 0, . 
ence of a weak s
S t

the 
 ,U s t

that in [
TQ  xactly ent a

1, page uenes34] (Theorem 5.  138). The uniq s 
llows from the variational inequality. Moreover, regu-

larity theory for parabolic equation implies that 

     , 2 ,1 12 2, .T TU s t C Q C Q
  

Moreover, since the coefficients of the Equation (2.4) 
depends only on

 
   

  , we use the interior re ularity of 
para

g
bolic equations to conclude that  

  2 ,1 12
s TU C Q




 
 . 

To see the regularity of the free boundary, we use 
Lemma 2.5 to see    1 0,NS t H T    and  

  51 0,
.NS C


  

It follows that  

H T

   
1 20 ,
sup

t t 

1 2

1 2

.
N N

T

S t S t
C

t t





 

Hence, by Ascoli-Arzela’s lemma, we can extract a 
subsequence, still denoted by , such   NS t  that  NS t  
converges to a function, denoted by  S t . Moreover, 

 

 

 
1

2 0,S t C T   . Since > 0  is arbitrarily, we  

Furt
have    12 0,S t C T . 

hermore, since   ˆ, Tf x L Q , we use   2,1
pW

at for an , 
- 

esti  obtain thmate to y > 1p

  2,1 ˆ ,
W Qp T

U C

where C  depends only on kn ata


  

own d ,  and p  . 
Now we convert back to the origin variables to con-

clude that 
al 

    2,1, .V s t W Qp T   

By Sobo  ,V s tlev’s embedding, we know that  and 
 ,sV s t

since  
 are continuous over . On th nd, TQ e other ha

   , = , 0 ,0V s t K s s S t t ,T    

we obtain  

 

       , = , , = 1,

< .

sV S t t K S t V S t t

t T0 <

 
 

To see more regularity for , we use the boundary 
condition (2.5)-(2.6). Ind  the condition (2.5)- 
(2.6), we see  

 S t
eed, from

  , = .U X T      

We differentiate (

0, <

2.6) to find  

       , ,

.

xx x

X

U X X U X

T



  ( )= , <e X

     
 

   

From the Equation (2.4) we obtain  

    
 

( ) ˆ2
, = X

xx

Kr
U X e  .


 

 
   

It follows that  

   
    ˆ

= , ,
ˆ2 x < .X U X T

Kr 

 
  


     

Now we consider the free boundary problem for 
   , = ,xW x U x   in  TQ  :  

       

   

ˆ ˆ ˆ ˆ
2 2

,

xx xW W r W r W

loc

          
   

2 21 1

ˆ= 0, , Tx Q a 

 



   ( ), = , < ,XW X e T locall      

   
    ˆ

= , ,
ˆ2

< ,X W X T
Kr 

 
  


     

     ,0 = ,0 , 0 < < ,xW x U x X x local  

    , ,W x X   It is easy to see that a unique solution 
exists with    1 ,X C T  . It follows that  

   1 0, .S t C T    

Q.E.D. 
Remark 2. nce and uniqueness, 1: For the existe we 

only need to assume that  and  are of class   t  tr
 0,  L T with a positive und . 

un

As we m e interested in 

lower bo  for   t

3. Properties of Free Bo dary 

entioned in the introduction, we ar
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how the free boundary changes when  t  changes. It 

.1)- 
 and 

turns out that a comparison principle holds. 
Theorem 3.1: Let  1 t  and  2  satisfy the 

assumption H(1). Let     1 1, ,V s t S t  and  
    , ,V s t S t  be the solu ions of the

t

 pr2 2 oblem (1
(1.5) corresponding to   2 t . 

t
 1 t

If  t t     on 1 2 0,T , then  

     1 2 1, , ,V s t V s t S t S t  2,

0 < <t T
 

.

To prove the theorem, we show that the c mparison 
property holds for the discrete solution und r certain 
co

o
e

ndition. 

Lemma 3.1: If 
2

1
<h

b R
, then 

 
2

2

d
<

d
S S0, < .n nV s

s
   

Proof: If necessary, we may use an approximation to 
replace by a smooth c vex function 
on

   =NV s K s
  

0NV s en
at 

on
  ,NS  . Without loss of generality, we may simply 

assume    . Th  from the regularity theory, we 
know th  nV s  is differentiable in  ,nS  . Let 

 = , < < .n nV s S s   

Now for 1 , we differentiate uation

 nu s

  the Eq  (2.1) 
twice with resp

=n N
ect to s  to see that  satisfies the 

fo
 nu s

llowing equation: 

 

2 21 1
(2 )

2 n n n n n n

1
= 0, < < .

n n

N n

s u r su u        r
h

V s S s
h

 
 

  
 

From the maximum principle, we see that  nu s  can  

not attain a negative minimum if 2 1
< 0n nr h

On the other hand, from the Equations (2.1) and (2.1) we 

   . 

see  

 
 2

2
= .n

n n

r
u S  

n nS

It follows that, if 
2

1
<h

b R
,  

Once we know , we can use the maxi-
mum principl e same clusion for 

Q.E.D. 

  <nu s0, < .ns S   

 1 0Nu s
 

e to obtain th
inite numbe

 con
= 2N  . After a f r of steps, we obtain the 

desired result of Lemma 3.1. 

Since we are interested in the relation between 
 V  and 

n

  ,n ns S n , for convenience we use  
 , :=s  V s and n nV   :=n nS S  instead of  ,n nV s   

and  Sn n .  
.2: Fo = 0,1, , 1n N  ,  L r emma 3

   ,nV s  d
> 0, < 0.

d nS 


 

 


Proof: Let 

   ,
, = nV s

W s .








 

We differen
=

tiate Equation (2.1) for  with re- 
spect to 

=n N

n  to obtain:   
2

2 2 2
2

d1 1
:= = .n

n

V
LW s W rsW r W

2 d
s

h s
      

 
 

From Lemma 3.1, we see that  

2 21 1
0, < < .

2 n nh
s W rsW r W S s         

The maximum principle implies that

 
 

  ,W s   can 
not attain a negative minimum at an in t in terior poin
 ,nS  . 

On  =n nS S  :  

       , = , , = 1.S K S V S    n n n ns nV    

We e   ,n nSVdifferentiat  with respect to    
to obtain  

  , =nS   0.W  

It follow  , 0W s    for    , , ,ns S a    
 the same argument to 
= 1, ,0n N   . 

s that b
when 
obtain e co

ndary condition
have  

=n N
 the sam

. Now we can use
nclusion for 

Moreover, from the second bou , we 

       d nS 
 , , = 0V S V S   . 

om Equation (2.1) we know  

dnss n ns n

Also, fr

 2

2
= .n

nss

n n

r
V

S
 

It follows that 

      
2

d
= ,

d 2
n nn

s n
n

SS
W S

r


. 


  

Since  ,W s   attains its minimum 0 at the boundary 
 nS  , 

Thus,  
by Hopf’s lemma, we see   , > 0s nW S   . 

 d
< 0.

d nS 


 

Q.E.D. 
Now we are ready to prove the main theorem in this 

section. 
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Proof of Theorem 3.1: Let  and  1 t  2 t  
satisfy the assumption H(1). Let    t  and 

 corres- 
 

be the solutions 
1 1, ,t S

(1.5)
V s

of (1.1)- 2 , ,s t S   2V t  
ponding  1 t  and  2 t . If    1 2<t t   on  0,T . 
We define 

 
1

1
= d , = 1,2; = 1,2

tk
ik itk

i
h

   


  

Let inV s S  be t solutio  of the em 1)- 
(2.3) corres ding to volat

, , .k N

he n probl  (2.
 the ility 

  ,in

pon in . It is clear that 

1 2<n n   for = 1,2, ,n N  if  on    <   1 2t t

 0,T . By Lemma 3.1 and Lemma 3.2, if 
2

1
<h

b R
 

we have 

Fro

   1 1 2 2> , = 0, , , .n n n nS S n N    1, 2

m the definition of  S t , we know that N  

,

provided that 

   1 2> , 0N NS t S t t T   

2

1
<h

b R
. 

Since  1
NS t  and 2

NS re uniformly con t
  , re

 a ve
to spectively, a . It
fo



.D. 
: It is clear that the comparison result in

Theorem 3.1 still holds if  with
positive lower and upper boun

4. Conclusion 

igger when th
volatility is a function 

, it is not clear how the option price 
boundary change when the vo

rgent 
  1S t

llows t
 and 

hat  
2S t s N 

  1 2 , 0 .S t S t t T   
It is also clear that  2 ,V s V s t  on TQ . 
Q.E
Remark 3.1

 1 , t

 
  0,t L T 

ds. 
  a 

When the volatility is a constant, it has been known for a 
long time that the option price is b e volatil- 
ity is bigger. However, when the 
of time,  = t 
nor the optimal excise latil- 
ity changes for the whole time period  0,T . In this pa- 
per we answered such a question. We show that a com- 
parison property for option price and the optimal excis- 
ing bound  (Theorem 3.1) when the volatility 

   1 2t t  . This result is important for option traders. 
Moreover, we proved a global regularity result for the 
free boundary by using a very different method from the 
existing literature. 
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