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ABSTRACT 

A noninvasive method for imaging the human brain during mobile activities could have far reaching benefits for studies 
of human motor control, for research and treatment of neurological disabilities, and for brain-controlled powered pros-
thetic limbs or orthoses. Several recent studies have demonstrated that electroencephalography (EEG) can be used to 
image the brain during locomotion provided that signal processing techniques, such as independent Component Analy-
sis (ICA), are used to parse electrocortical activity from artifact contaminated EEG. However, these studies used 
high-density 256-channel EEG sensor arrays, which are likely too time-consuming to setup in a clinical or field setting. 
Therefore, it is important to evaluate how reducing the number of EEG channel signals affects the electrocortical source 
signals that can be parsed from EEG recorded during standing and walking while concurrently performing a visual 
oddball discrimination task. Specifically, we computed temporal and spatial correlations between electrocortical sources 
parsed from high-density EEG and electrocortical sources parsed from reduced-channel subsets of the original 
high-density EEG. For this task, our results indicate that on average an EEG montage with as few as 35 channels may 
be sufficient to record the two most dominate electrocortical sources (temporal and spatial R2 > 0.9). Correlations for 
additional electrocortical sources decreased linearly such that the least dominant sources extracted from the 35 channel 
dataset had temporal and spatial correlations of approximately 0.7. This suggests that for certain applications the num-
ber of EEG sensors used for mobile brain imaging could be vastly reduced, but researchers and clinicians must consider 
the expected distribution of relevant electrocortical sources when determining the number of EEG sensors necessary for 
a particular application. 
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1. Introduction 

Electroencephalography (EEG) has long been used to 
record electrocortical activity within the brain because it 
is a safe and non-invasive tool [1-3]. EEG is used to 
monitor ictal and inter-ictal activity in seizure patients [4, 
5] and to assess cognitive processes during neuroscience 
and psychology experiments [6,7]. In addition, EEG is 
used in brain computer interface devices, which enable 
command of an electronic device by brain activity mo- 
dulation [8-11]. Current EEG systems can have as few as 
four electrodes [11] or as many as 256 electrodes. Until 
recently, the use of EEG has been limited to stationary 
settings (i.e., settings where the subject is seated or prone) 
because of the susceptibility of EEG electrodes to 
movement and electromyographic artifacts [12-14]. 
However, we have recently demonstrated that these arti-
facts can be removed from high-density (256-channel) 
EEG using advanced computational methods; thus ena-

bling the use of EEG during walking [15-17]. When 
combined with kinematic motion capture, this novel 
paradigm has been referred to as Mobile Brain Imaging 
(MoBI) [1] and is gaining traction as a viable technique 
to study the human brain under non-stationary conditions. 
MoBI will open the door to a plethora of new research 
areas including cognitive control of locomotion, brain- 
body interactions in neurological disorders, and ad-
vancements in the field of brain-machine interfaces. 

The use of Independent Component Analysis (ICA), a 
technique that parses independent component (IC) sig-
nals from correlated time-series data [13,14,16,18-22], 
has been particularly helpful to the development of MoBI. 
ICA of EEG is based on the premise that each electrode 
on the scalp records a linear sum of various underlying 
electrocortical signals, as well as electromyographic, elec- 
troocular, electrocardiographic, and movement artifacts. 
ICA can generate one maximally independent source 
signal (which may reflect an electrocortical or artifactual 
source) for each EEG channel signal recorded; the more *Corresponding author. 
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EEG channels recorded, the more ICs produced [20,21]. 
Therefore, it is desirable to record from as many EEG sen- 
sors as possible if the intent is to capture as many elec-
trocortical processes as possible. 

Increasing the number of EEG electrodes used is not 
trivial, and the increase is not without drawbacks. For 
high-density EEG systems, data processing can take a 
significant amount of time, even on large computing 
clusters. In addition, more electrodes mean higher costs 
and more difficult experimental setups. Lastly, in ex-
perimental setups involving movement and in many 
real-world settings, wireless transmission of EEG signals 
is desirable. Increasing the number of electrodes chal-
lenges existing wireless transmission systems. Given 
these drawbacks, a question naturally arises: How many 
electrodes are needed for MoBI? The answer will likely 
depend on the tasks being performed and nature of the 
cognitive activity involved, but we can begin to estimate 
the number for common situations. 

In this study, we assessed how reducing the number of 
EEG channel signals affects the electrocortical source 
signals that can be parsed from EEG recorded during 
standing and walking using ICA. We performed this as-
sessment using data from [16]. This study involved sub-
jects standing and walking while performing a visual 
oddball discrimination task. We incrementally reduced 
the number of channels from the EEG montage that were 
used in the analysis and evaluated changes in the tempo-
ral and spatial properties of the resulting electrocortical 
source signals. 

2. Methods 

2.1. Data Collections 

Twelve healthy volunteers with no history of major 
lower limb injury and no known neurological or loco-
motor deficits completed this study (11 males and 1 fe-
male, age range 20 - 31 years). All subjects provided 
written informed consent prior to the experiment. All 
procedures were approved by the University of Michigan 
Internal Review Board and complied with the standards 
defined in the Declaration of Helsinki. 

Subjects stood, walked (0.8 m/s and 1.25 m/s), and ran 
(1.9 m/s) on an in-ground treadmill [23] while we re-
corded 248-channel electroencephalography at 512 Hz 
(ActiveTwo, BioSemi, Amsterdam, The Netherlands). Con- 
currently, standard (80%) and target (20%) stimuli (ver-
tical or 45˚ rotated black crosses on a white background, 
respectively) were displayed on a monitor placed at eye 
level about 1 m in front of the subjects. For each gait 
condition (standing, slower walking, faster walking, run-
ning) subjects performed an experimental block wherein 
they were asked to press a handheld button whenever the 
target stimulus appeared and a control block wherein no 

manual response to the target stimulus was required. 
Each data collection session began with the standing 
condition, followed by the other three conditions in ran-
dom order. The standing blocks lasted 5 minutes each 
while the walking and running blocks lasted 10 minutes 
each. For the present study, data collected during running 
were not used due to the presence of large mechanical 
artifacts in the EEG signals. 

2.2. EEG Processing 

All processing and analysis was performed in Matlab 
(The Mathworks, Natick, MA) using scripts based on 
EEGLAB (sccn.ucsd.edu/eeglab), an open source envi-
ronment for processing electrophysiological data [18]. 

After data collection we high-pass filtered the EEG 
signals above 1 Hz. As in [15,16], EEG signals exhibit-
ing substantial noise throughout the collection were re-
moved from the data in the flowing manner: 1) channels 
with std. dev. >1000 µV were removed; 2) any channel 
whose kurtosis was more than 5 std. dev. from the mean 
was removed; and 3) channels that were uncorrelated (r < 
0.4) with nearby channels for more than 1% of the time- 
samples were removed. Datasets containing fewer than 
125 channels after channel rejection were not included in 
this analysis (data for 7 subjects were retained). For each 
remaining subject, a subset of 125 channels was selected 
so that the electrodes were uniformly distributed across 
the scalp. Next, for each subject, a subset of 115 channels 
was selected from the 125 channel subset so that the 
electrode distribution remained maximally uniform. We 
continued this processes, selecting nested subsets of 
channels, until we had 11 EEG subsets per subject (125, 
115, ···, 25 channels). For each subject and each channel 
subset, the channel signals were re-referenced to an av-
erage reference. 

We applied an adaptive mixture ICA algorithm 
[AMICA] [20,21] to each subset of EEG signals. ICA 
parses EEG signals into spatially static, maximally inde-
pendent component processes [22]. Prior to performing 
ICA decomposition, time-periods of EEG with substan-
tial artifact, as defined by z-transformed power across all 
channels in a given time window being larger than 0.8, 
were rejected using EEGLAB. DIPFIT functions within 
EEGLAB [24] computed an equivalent current dipole 
model that best explained the scalp topography of each 
IC using a boundary element head model based on the 
Montreal Neurological Institute (MNI) template (the av-
erage of 152 MRI scans from healthy subjects, available 
at www.mni.mcgill.ca). 

The datasets with 125 channels were considered to be 
benchmark datasets to which the reduced channel data-
sets (115, 105, ···, 25 channels) were compared. For this 
purpose, each of the 125 ICs for the 125-channel ICA 
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decompositions were categorized as electrocortical activ-
ity, muscle activity, eye movement artifact, or noise in 
the following manner. First, if the projection of the equi- 
valent current dipole model to the scalp accounted for 
less than 85% of the scalp topography variance the com-
ponent was considered to be noise (scalp topography 
refers to a mapping of electrode coefficients for each IC 
onto a 2-dimensional head-map); Second, the scalp to-
pography and time-course of each IC was visually in-
spected to identify ICs that were reflective of eye move-
ment artifact [14]; Third, the remaining ICs were classi-
fied as electrocortical sources or muscle sources based on 
inspection of their power spectra and the locations of 
their equivalent current dipoles. 

2.3. Assessing Changes in IC Scalp Projections 

To assess changes in the scalp topography of the ICs, as 
a function of the number of EEG channels used, the scalp 
topographies of ICs from the reduced channel datasets 
were interpolated at each EEG channel location in the 
125-channel electrode montage. Next, for each subject, 
pairwise correlations were computed between IC scalp 
topographies for the 125-channel ICA decomposition and 
each of the reduced-channel ICA decompositions, using 
the Hungarian method. Only ICs representing electrocor-
tical activity from the 125-channel dataset were consid-
ered. ICs were paired based on the maximum absolute IC 
scalp topography correlation. In other words, ICs from 
the reduced-channel datasets were paired with ICs from 
the 125-channel dataset that had similar scalp topography, 
irrespective of polarity. Finally, IC pairs were sorted by 
absolute IC scalp topography correlation and averaged 
across subjects. We also computed the percentage of 
electrocortical and electromyographic sources that were 
retained for each reduced-channel dataset. The percent-
age of electrocortical sources retained was defined as the 
number of electrocortical sources in the 125-channel 
dataset that were correlated with a source in the re-
duced-channel dataset (R > 0.85); the percentage of elec-
tromyographic sources retained was similarly defined. 

2.4. Assessing Changes in IC Activations 

To assess changes in IC activation (i.e., timeseries) as a 
function of the number of channels used, pairwise corre-
lations (for each subject) were computed between 125- 
channel IC activations and reduced-channel IC activa-
tions, using the Hungarian method. Only ICs represent-
ing electrocortical activity from the 125-channel dataset 
were considered. ICs were paired based on the maximum 
correlation. In other words, ICs from the reduced-channel 
datasets were paired with ICs from the 125-channel dataset 
that had similar activations. Finally, IC pairs were sorted 
by IC activation correlation and averaged across subjects. 

2.5. Assessing Changes in Visual Target 
Discrimination Electrocortical Dynamics 

Previous analysis of a similar visual target discrimination 
task for seated subjects showed that brain processes pro-
jecting maximally to the frontal midline would contribute 
substantially to the event related potential (ERP), par-
ticularly to the post-motor positivity [25]. Prior visuali-
zations of grand average IC-based ERPs from our dataset 
confirmed that mediofrontal ICs (projecting maximally to 
the frontal midline) had a clear and substantial stimu-
lus-locked ERP [16]. 

In this study, the IC that projected most strongly to the 
frontal midline for each subject was identified from the 
125-channel IC decomposition by inspecting the scalp 
topographies. Next, the corresponding paired ICs from 
the reduced-channel datasets were identified. For each IC, 
signal epochs were extracted, time-locked from –200 to 
800 ms relative to visual stimulus onsets, using data from 
only the active walking conditions (i.e., the conditions in 
which subjects were walking and actively responding to 
the oddball stimuli by pressing a handheld trigger). A 
signal-to-noise ratio was computed for each trial as the 
peak magnitude in the range of 300 to 600 ms after the 
stimulus divided by the pre-stimulus standard deviation 
[26]. For each subject and each dataset (i.e., the 125- 
channel dataset and the reduced-channel datasets) the 
mean signal-to-noise was computed. Analysis of variance 
was used to compare the grand mean signal-to-noise ratio 
across datasets. 

3. Results 

Of the 12 subjects who participated in this study, 7 had 
125 or more EEG channels after rejection of noisy chan-
nels. For these subjects, 9.0 ± 1.3 electrocortical sources, 
10.9 ± 2.3 electromyographic sources, and 2.4 ± 1.6 elec-
troocular sources, were identified for the 125-channel 
datasets (mean ± std. dev.). In general, the scalp topog-
raphies for electrocortical sources were more distorted by 
reducing the number of EEG channels than the scalp to-
pographies for electromyographic sources (Figure 1). 
The average correlation between electrocortical source 
scalp topographies for the reduced channel datasets (115, 
100, ···, 25 channels) and the 125-channel dataset de-
creased from 0.90 ± 0.09 for the 115-channel dataset to 
0.70 ± 0.14 for the 25-channel dataset (mean ± std. dev.) 
(Figure 2). Scalp topographies of four electrocortical 
sources, from an example subject, are shown for the 125- 
channel, 105-channel, ···, 25-channel datasets (Figure 3). 
The average correlation between electrocortical source 
activation for the reduced-channel datasets and the 
125-channel dataset decreased from 0.86 ± 0.03 for the 
115-channel dataset to 0.63 ± 0.04 for the 25-channel 
dataset (Figure 4). The visual target discrimination ERP  
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Figure 1. The percentage of (gray bars) electrocortical and 
(white bars) electromyographic sources retained for the 
reduced-channel datasets containing 115, 105, ···, 25 EEG 
channels. The percentage of electrocortical sources retained 
was defined as the number of electrocortical sources in the 
125-channel dataset that were correlated with a source in 
the reduced-channel dataset (R > 0.85); the percentage of 
electromyographic sources retained was similarly defined. 
 

 
(a) 

 
(b) 

Figure 2. (a) Grand average absolute correlation between 
electrocortical sources scalp projections for the reduced 
channel datasets (115, 105, ···, 25 channels) and the 125- 
channel dataset (error-bars, 2 S.E.) and (b) Average ab-
solute correlation between electrocortical source scalp 
projections for the reduced-channel datasets and the 125- 
channel dataset ordered by the magnitude of correlation; 
traces are color coded by the number of channels in the 
reduced-channel dataset. Data for the 10 best correlated 
sources are shown. 

 
(a) 

 
(b) 

Figure 3. (a) Grand average absolute correlation between 
electrocortical sources temporal signals for the reduced 
channel datasets (115, 105, ···, 25 channels) and the 125- 
channel dataset (error-bars, 2 S.E.) and (b) Average abso- 
lute correlation between electrocortical source temporal 
signals for the reduced-channel datasets and the 125-chan- 
nel dataset ordered by the magnitude of correlation; traces 
are color coded by the number of channels in the reduced- 
channel dataset. Data for the 10 best correlated sources are 
shown.  
 

 

Figure 4. Electrocortical scalp projections for an example 
subject from the (columns, left to right) 125-channel, 105- 
channel, ···, 25-channel datasets, (rows) four electrocortical 
sources are shown for each dataset. Correlation values be- 
tween the reduced-channel scalp projections and the 125- 
channel scalp projection are shown. 
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signal-to-noise ratio did not change significantly (P = 
0.65) as a function of the number of channels removed. 
The mean (std. dev.) signal-to-noise ratio across all sub-
jects and all datasets was 3.08 (0.09). 

4. Discussion 

Our results demonstrated a distinct relationship between 
the number of EEG electrodes used and the quality of 
electrocortical source signals that can be parsed from 
scalp EEG recorded during standing and walking using 
ICA. By systematically reducing the number of channels 
used, we implemented a straightforward paradigm to 
assess how reducing the number of EEG channels af-
fected the electrocortical source signal estimates derived 
from ICA. We evaluated the scalp topography (i.e., the 
electrode coefficients mapped to the scalp), the timeser-
ies activation of the electrocortical signals, and the sig-
nal-to-noise ratio of an IC-based visual target discrimina-
tion ERP. 

Correlations between scalp topographies from the 
benchmark (125-channel) dataset and the reduced-chan- 
nel datasets fell off linearly with the number of channels 
used. The correlation between the electrocortical source 
activations also weakened as the number of channels 
used was reduced. Figure 4 demonstrates that small re-
ductions in scalp topography correlation can lead to 
qualitatively different topographies. 

It is important not to over-interpret the spatial or the 
temporal performance results. These measures must be 
considered collectively. Topographical comparisons do 
not reflect the absolute contributions to the IC from each 
channel. For example, if a patch of EEG channels re-
mained relatively silent (or absolutely zero) than any 
combination of weights for those electrodes would return 
(nearly) the same IC activation. In addition, temporal 
correlations, measured over the entire experimental time- 
course, may not reflect the true accuracy of the electro-
cortical source signal because events time-locked to cor-
tical processes may be better reconstructed than the en-
tire activation time series. Furthermore, the correlations 
evaluated here do not indicate whether causal relation-
ships between various electrocortical sources are main-
tained as channels are reduced. 

Our results suggest that, for the concurrent locomotor 
and cognitive tasks study here, the two most robust elec-
trocortical sources can be well captured (temporal and 
spatial R2 > 0.9) using an electrode montage with as few 
as 35 channels. The anterior cingulate cortex source, 
which contributes strongly to the visual target discrimi-
nation ERP, was a robust component that was well cap-
tured by the reduced-channel IC decompositions. There-
fore, it is not surprising that the signal-to-noise ratio of 
the IC-based ERP did not change significantly as the 

number of channels was reduced. This is an encouraging 
result for those studying ERPs during mobile activities 
for BMI applications or for research purposes. 

Another consideration is that despite the use of a 256- 
channel EEG system on average only 125 channels were 
usable. Poor recordings in the other channels were due to 
large movement artifacts and/or degrading electrode- 
scalp connections, which likely resulted from forces on 
the electrode head cap from moving electrode wires. As 
sensor technologies improve (i.e., dry electrode sensors 
and wireless transmission) a higher percentage of elec-
trodes will yield clean usable signals. 

An emerging field of study in neuroscience approaches 
the brain as a complex network of dynamic oscillators. 
ICA has already been utilized to formulate these network 
nodes for various analyses [27-29]. The number of ICs 
extracted is of critical importance when studying brain 
activity with these methods. ICA can decode and ana-
tomically locate sources of EEG activity, therefore, 
physiologically realistic maps can be generated when the 
density of anatomical nodes is sufficient. Therefore, 
while reducing the number of EEG channels may be suf-
ficient for analysis of ERPs during mobile tasks, re-
searchers interested in network analysis will likely want 
to maximize the number of EEG signals recorded. 

Another area in which ICA of EEG has proved useful 
is seizure detection and localization [30]. Seizures are 
often marked by large amounts of movement artifact that 
can pose similar challenges as locomotion to the inter-
pretation of EEG recordings [31]. The use of ICA to re-
move movement artifact from seizure EEG and to local-
ize the anatomical source of seizure activity can be bene-
ficial to this field. We can only speculate how the results 
of this study will transfer to seizure analysis. However, 
during seizure, the seizure-related EEG activity is domi-
nant in the EEG channel signals. Therefore, just as the 
anterior cingulate source was well captured by the re-
duced-channel electrode montages in this study, seizure 
activity may be well captured with a reduced number of 
EEG sensors. We believe that applying the analysis ap-
proach presented in this study to seizure-related EEG 
would answer this question and, therefore, should be 
pursued. 

The results of this study are important because they 
provide useful information for researches and developers 
who are interested in implementing MoBI. While addi-
tional EEG electrodes (at least up to 125 channels, as 
shown here) will improve the ICA decomposition, task 
specific placement of electrodes may bypass the need for 
added channels. For example, the cognitive state of a 
subject can be extracted from a few usable ICs, negating 
the benefit of additional channels [10,11]. We plan to 
evaluate the relative effects of strategic placement of 
EEG electrodes in future work. 
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