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Abstract. In real time kinematic (RTK) GPS positioning 
the reference station(s) is (are) static, and the moving 
receivers must not be far from the reference station(s). 
But in some cases, such as formation flying, satellite-to-
satellite orbit determination, etc, it is difficult to establish 
a static reference station. GPS kinematic-to-kinematic 
positioning (KINRTK) will meet such requirements. The 
key work of ambiguity resolution for KINRTK is to 
obtain an ambiguity float solution rapidly. The float 
solution can be estimated using either the “Geometry-
based”(GB) or “Geometry-free”(GF) approach, requiring 
the construction of a “GB” or “GF” ambiguity search 
space. These two spaces are different but have the same 
true integer ambiguity result. Searching in two spaces at 
the same time, referred to here as Dual-space Ambiguity 
Resolution Approach (DARA), will be faster than in the 
individual spaces because only a few ambiguity 
candidates meet the conditions of both spaces 
simultaneously. It can be shown that DARA can 
dramatically reduce ambiguity candidates even if the 
C/A-code pseudo-range observables are used. The results 
of a vehicle test confirm that our approach is promising, 
resulting in millimeter-level misclosure of the KINRTK 
run. 
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1 Introduction 

On-the-fly GPS positioning relative to a moving 
reference, referred to as KINRTK in this paper, has many 
applications, such as formation flying, satellite-to-
satellite orbit determination, and others, where a static 
reference is difficult to establish (e.g., Hermann et al., 
1995, Kawano et al., 2001]. Quick integer carrier phase 
ambiguity estimation plays an important role in KINRTK. 
Once the ambiguities are resolved, centimeter-level 

accuracy of KINRTK can be achieved (e.g., Hermann et 
al., 1995). 

In the GPS literature there are two of the many different 
approaches proposed for integer ambiguity estimation, 
which have drawn much interest. The two approaches 
differ in the model used for integer ambiguity estimation. 
In the first approach, which is the common mode of 
operation for most surveying applications, an explicit use 
is made of the available relative receiver-satellite 
geometry (e.g., Chen & Lachapelle, 1995, Frei & Butler, 
1990, Teunissen, 1995) named the “GB”(GB) model by 
Teunissen (e.g., Teunissen, 1997). Integer ambiguity 
estimation is also possible however, when one opts for 
dispensing with the relative receiver-satellite geometry 
(e.g., Euler et al., 1991, Hatch, 1982, Horemuž, et al., 
2002, Sjöberg, 1998), and is named the “GF”(GF) model. 
In fact from the conceptual point of view, this is the 
simplest approach to integer ambiguity estimation. The 
pseudo-range data are directly used to determine the 
unknown integer ambiguities of the observed phase data 
(e.g., Teunissen, 1997). These two models have their 
advantages and disadvantages. Combining their 
advantages this paper proposes an ambiguity resolution 
algorithm based on the integration of both ambiguity 
resolution approaches. 

 

In our discussion below we assume that dual-frequency 
pseudo-range and carrier phase observables are available. 
In this paper the unit matrix of order p is denoted as pE  
and the p-vector having all ones as entries is denoted as 

pe . Furthermore the canonical unit vector having the one 
as its i th entry is denoted as ic . ‘ vec ’ is the operator 
that transforms a matrix into a vector by stacking the 
columns of the matrix one underneath the other. The 
symbol ‘⊗ ’ denotes the Kronecker product (Teunissen, 
1997): 
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2 Observation Model 

2.1 Satellite Geometry-based Model 

Let us assume that double-differenced phase and pseudo-
range observables are available. For each observed 
satellite (except for the one selected as the reference 
satellite), four observation equations can be written: 
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where 1LR , 2LR , 1Lφ , and 2Lφ  are phase and pseudo-
range observables of the L1 signal with wavelength 

1Lλ and frequency 1Lf , and of the second signal L2 with 
wavelength 2Lλ  and frequency 2Lf  respectively; ρ is 
the geometrical distance between receiver and satellite; 

1La  and 2La  are integer ambiguities; I is the ionospheric 
errors of L1 frequency; 21

12 / LL ffr = ; and δ are 
random observation errors. In the short baseline case, the 
ionospheric bias can be ignored (e.g., Kleusberg, 1986). 
The linearized observation equations at the i th epoch of 
m  satellites are: 

 
 [ ] imiii δaAEbBl +⊗+= −1                  (3) 
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ib denotes the baseline vector of epoch i . The geometry 
of the double-differenced (DD) relative receiver-satellite 
configuration is contained within the (m-1)x3 matrix iB . 
It is well known that due to the high altitude orbits of the 
GPS satellites, the receiver-satellite geometry changes 

only slowly with time. The matrix iB  is therefore only 
weakly dependent on time. In our further analysis it will 
therefore be assumed that iB  is a time-invariant matrix, 

BB =i . The k epochs linear system of DD observation 
equations are: 

 
[ ] δaAEebBEL +⊗⊗+⊗= − )()( 1mkk vecvec

        (6) 
 
where 

[ ]klllL L21= � [ ]kbbbb L21=  

2.2 Satellite Geometry-free Model 

In this model the observation equations are not 
parametrized in terms of the baseline components. 
Instead, they remain parametrized in terms of the 
unknown DD receiver-satellite ranges. This implies that 
the observation equations remain linear and that the 
receiver-satellite geometry is not explicitly present in 
these equations. Hence the model permits both receivers 
to be either stationary or moving.  

 
[ ] [ ] im

i
mi δaAEρeEl +⊗+⊗= −− 141            (7) 

 
where [ ]T121 −= mi ρρρ Lρ . The k epochs system of 
DD observation equations are: 
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where [ ]kρρρρ L21= . For further details we refer 
readers to Teunissen (e.g., Teunissen, 1997). 

3 Shape and Orientation of Ambiguity Search Space 

In our analysis we assume that the variance matrix of the 
observables is given by: PEΣ ⊗= k . Solved by the least 
squares adjustment method, the normal equations are: 
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and the variance of the ambiguities is: 

( ) 11
12

1
112122 )( −−− Σ=−= iaa NNNN QQ , 

  ( )ia UU Σ=                 (12) 

APBBPBBPAAPAQ iiiiiiiii
T1TTT )( −−=     
         (13) 

iiiiiiiiiii lPBBPBBPAlPAU T1TTT )( −−=                
            (14) 

 
where the subscript index i  means the epoch i . The 
matrix iB  of the GB model is the linearized matrix of 
equation (1), while iB  of the GF model is 

41 eEB ⊗= −mi . Assume 1Lσ =0.0019m, 2Lσ =0.0024m, 
CAσ =3.0m, 2Pσ =0.3m, and selecting 5 satellites and 50 

epochs of kinematic observables, we get the variance-
covariances of the ambiguities of the GB model:  
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The variance-covariances of the ambiguities for the GF 
model are:  
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Of particular interest here is the shape and orientation of 
the ellipsoid of standard deviation for the ambiguities 
(e.g., Leick, 1995). The semi-minor and semi-major axes 
and the orientation are given in Tab. 1 to 8.  

 

Tab 1 Semi-major axes for the GB model (m) 

1 2 3 4  
L2 L1 L2 L1 L2 L1 L2 

L1 0.49 0.49 0.43 0.48 0.44 0.47 0.43 1 L2  0.45 0.38 0.43 0.37 0.43 0.37 
L1   0.54 0.49 0.46 0.51 0.47 2 L2    0.43 0.39 0.45 0.40 
L1     0.46 0.53 0.47 3 L2      0.48 0.41 

4 L1       0.50 

Tab 2 Semi-minor axes for the GB model (m) 

1 2 3 4  
L2 L1 L2 L1 L2 L1 L2 

L1 0.003 0.30 0.265 0.22 0.189 0.28 0.239 1 L2  0.25 0.236 0.19 0.173 0.24 0.217 
L1   0.003 0.26 0.216 0.27 0.232 2 L2    0.23 0.202 0.24 0.214 
L1     0.003 0.05 0.046 3 L2      0.05 0.041 

4 L1       0.003 

Tab 3 Semi-major axes for the GF model (m) 

1 2 3 4  
L2 L1 L2 L1 L2 L1 L2 

L1 0.56 0.54 0.49 0.54 0.49 0.54 0.49 1 L2  0.49 0.42 0.49 0.42 0.49 0.42 
L1   0.56 0.54 0.49 0.54 0.49 2 L2    0.49 0.42 0.49 0.42 
L1     0.56 0.54 0.49 3 L2      0.49 0.42 

4 L1       0.56 

Tab 4 Semi-minor axes for the GF model (m) 

1 2 3 4  
L2 L1 L2 L1 L2 L1 L2 

L1 0.003 0.31 0.269 0.31 0.269 0.31 0.269 1 L2  0.27 0.244 0.27 0.244 0.27 0.244 
L1   0.003 0.31 0.269 0.31 0.269 2 L2    0.27 0.244 0.27 0.244 
L1     0.003 0.31 0.269 3 L2      0.27 0.244 

4 L1       0.003 

Tab 5 The orientation for the GB model (Degree) 

1 2 3 4  
L2 L1 L2 L1 L2 L1 L2 

L1 37.93 51.27 35.26 42.27 31.97 45.78 31.93 1 L2  64.54 51.27 53.14 42.27 59.33 45.78 
L1   37.93 37.00 26.45 40.64 29.02 2 L2    49.68 37.00 53.54 40.64 
L1     37.93 47.19 39.93 3 L2      54.30 47.19 

4 L1       37.93 

Tab 6 The orientation for the GF model (Degree) 

1 2 3 4  
L2 L1 L2 L1 L2 L1 L2 

L1 37.93 45.00 31.62 45.00 31.62 45.00 31.62 1 L2  58.38 45.00 58.38 45.00 58.38 45.00 
L1   37.93 45.00 31.62 45.00 31.62 2 L2    58.38 45.00 58.38 45.00 
L1     37.93 45.00 31.62 3 L2      58.38 45.00 

4 L1       37.93 
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Tab 7 The orientation for the GB model with 100 epochs (Degree) 

1 2 3 4  
L2 L1 L2 L1 L2 L1 L2 

L1 37.93 66.42 47.21 50.92 39.25 58.31 44.00 1 L2  75.71 66.42 61.22 50.92 68.46 58.31 
L1   37.93 36.84 25.46 42.81 30.19 2 L2    50.87 36.84 56.17 42.81 
L1     37.93 48.09 40.86 3 L2      55.11 48.09 

4 L1       37.93 

Tab 8 The orientation for the GB model with 150 epochs (Degree) 

1 2 3 4  
L2 L1 L2 L1 L2 L1 L2 

L1 37.93 80.11 69.80 59.00 47.67 66.90 55.73 1 L2  83.82 80.11 67.55 59.00 73.87 66.90 
L1   37.93 36.68 24.61 44.43 31.02 2 L2    51.91 36.68 58.04 44.43 
L1     37.93 48.66 41.46 3 L2      55.63 48.66 

4 L1       37.93 

 
The orientation for the GF model does not change as the 
number of epochs increases. The orientation of L1 and L2 
for the same satellite is exactly °93.37 , i.e., the slope is 

21 / λλ=k , and the semi-minor axes for the GB are 
equal to those of the GF model, while the semi-major 
axes for the GF model are longer than those of the GB 
model, which means that the ellipse for the GF model 
always contains the ellipse for the GB model (see Fig.1). 
The geometry is the same for every epoch solution, as 
long as the stochastic model remains unchanged.  

 

 
Fig.1 The ellipse of L1-L2  

The orientation for the GF model does not change for 
every epoch, while the orientation of two different 
satellites for the GB model is closer to the axes as the 
number of epochs increases, which means that these two 
ellipses overlap each other partly (see Fig.2).  

 
 

 
Fig. 2 The ellipse of SV1-SV2 

As can been seen from Tab. 1 to 8 and Fig.1, the ellipse 

of L1-L2 is almost a straight line with a slope of 
21 / λλ=k . If ( 1La , 2La ) is the nearest point to the line, 

the next nearest points are ( 1La ± 9, 2La ± 7), which 
means if ( 1La , 2La ) is an ambiguity candidate, the next 
candidates are exactly ( 1La ± 9, 2La ± 7). Because the 
semi-minor axes are very short, the ellipse nearly only 
contains points such as ( 1La ± k*9, 2La ± k*7), 
k=0,1,2… Therefore, the key task for ambiguity 
resolution is to obtain the float ambiguity solution. 

 
4 Linear Combination of Two Frequency 

Observations  
 
Let’s consider a linear transformation (e.g., Han & Rizos, 
1996, Teunissen, 1995): 

21
,

LL
nm nm φφφ +=                                           (17) 

 
If we set ( m , n ) = (-7,9), all points like 
( 1La ± k*9, 2La ± k*7), k=0,1,2…will be mapped to one 
point ( 1La ， 2La ). In other words, the semi-major axes 
(or the ellipse because of very short semi-minor axis) is 
mapped to a point (see Fig.1). But if the integer solution 

nma ,
(  has been obtained, the solution ( 1La( ， 2La( ) can 

not be determined by an inverted transform. So let’s 
consider another linear transform: 

21
,

LL
ji ji φφφ +=                                             (18) 

 
As ( 1La ± 5, 2La ± 4) are the next points near to the 
semi-major axes, we choose ( i , j ) = (+4,-5). Using these 
two transforms at the same time: 
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the ambiguities are: 
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Fig.3 shows the single epoch DD ambiguity float solution 
for satellites 31 to 11 of rover1 versus rover2 (refer to 
Fig.8) processed using the GB model. The horizontal axis 
is GPS Seconds of Week (GSW), the vertical axis is the 
float solution, and “0” is the integer ambiguity solution. 
Fig.4 shows the single epoch ambiguity float solution 
processed using the GF model. From Fig.3 and Fig.4, we 
can see that the float solution undulates around the fixed 
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solution. 

 

 
Fig.3 Single epoch ambiguity float solution processed by the GB model 

 

 
Fig.4 Single epoch ambiguity float solution processed by the GF model 

5 Ambiguity Search Strategy 

Let us assume that the observables 
1Lφ , 2Lφ , CAR , 2PR are not correlated, and that the 

standard errors of the observables are 1Lσ =0.0019m, 
2Lσ =0.0024m, CAσ =3.0m, 2Pσ =0.3m, then the 

standard errors of the linear combination ambiguities are 

jia ,σ ＝0.35, nma ,σ ＝0.23 with ( i , j ) = (+4,-5) and 

( m , n ) = (-7,9), and the ratio of semi-major axis to semi-
minor axis is 35:22, which means that the area of the 
search ellipse is almost equal to that of the confidence 
interval determined by ( â ± k ∗ âσ ), see Fig.5. 

  

 
 

Fig. 5 Difference between the confidence ellipse and the confidence 
interval of the ambiguity parameters 

 
We obtain the ambiguity search space of the GF model 
(GF) by estimating jia ,  and nma , . On the other hand, we 
can construct the ambiguity search space of the GB 
model (GB) by processing the original observables 

1Lφ , 2Lφ . When the jia ,  and nma ,  are fixed, 1La  and 
2La  can be determined from equation (20), and vice 

versa. But other candidates may not keep the map 
relation, i.e. if we map a candidate of GB using equation 
(20), it would not belong to GF, and vice versa, due to 
these two spaces being constructed using two different 
models. Assume the GF is ( jia , , nma , )∈F, F= 

( â ± k ∗ âσ ), k=4; and GB is ( 1La , 2La )∈B, B=[-
10,10]× [-10,10], i.e. 441 candidates. Then we get Tab. 9. 

Tab 9 The relationship between GF and GB 

jia ,  -1 0 -1 0 1 0 1 

nma ,  1 -1 0 0 0 1 -1 
1La  -4 -5 -9 0 9 5 4 
2La  -3 -4 -7 0 7 4 3 

| ∆ | 0.15 0.13 0.02 0.00 0.02 0.13 0.15 
 
In Tab.9, |∆ | is the distance of an ambiguity candidate 
( 1La , 2La ) to the semi-major axis. For example:  

Assume the integer ambiguity solution is: 
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( 1La( , 2La( )=(-2035428, -1583755) 
and the float solution processed by the GF model is: 

( jia ,ˆ , nma ,ˆ )=(-226937.146, 1201.609) 
 
whose nearest integers are: 
 
(-226937, 1202) 
 
the candidates within the confidence interval F= 
( â ± k ∗ âσ ), k=4 become: 
 
(-226937 ± 1, 1202), (-226937, 1202), (-226937 ± 1, 
1201), (-226937, 1201) 
 
While the float solution processed by the GB model is: 
 
( 1ˆ La , 2ˆ La )=(-2036430.867, -1583757.208) 
 
whose nearest integers are: 
 
(-2036431, -1583757) 
 
and assuming the confidence intervals are: 
 
(-2036431 ± k, -1583757 ± k), k=-10,-9… -
1,0,+1,…,+9,+10 
 
then the candidates selected by Tab. 9 become: 
 
(-2036428+5-9, -1583755+4-7), (-2036428+5, -
1583755+4), (-2036428-9, -1583755-7), (-2036428, -
1583755) 
 
Only four candidates need to be considered further, see 
Fig. 6.  
 

 
 

Fig. 6 Ambiguity candidates 

 
Tab. 9 also means that ambiguities 1La  and 2La  or 

jia , and nma , should be searched in pairs in one loop, not 
two individual loops! In other words, if there are five 

satellites, eight double-differenced observables are 
formed, and the number of ambiguity search loops is 
four, not eight.  

The next step is to consider the search ellipses of 
different satellites. The selected candidate which is 
processed by the GF model should be located in the 
search ellipse of the GB model. In other words, the 
distance of the candidate to the semi-major axis of the 
search ellipse of the GB should be not longer than the 
length of the semi-minor axis of the search ellipse, see 
Fig.7.  

 
 

 
 

Fig. 7 The distance of the candidate to the semi-major axis. 

6 Test and Results 

6.1 Vehicle Test 

A vehicle kinematic test was performed (see Fig.8). The 
following are details of the experiment: 

Site: MingZu Road, Wuhan City, China 
Time: 19-12-2001, 15:00-16:30 (Local time); 
Receivers: Three Trimble 4700; 
Sample: 1 second; and 
Elevation: 15 degree. 

One receiver was set as a static reference (named “base 
station”), the other two were mounted on two vehicles, 
(named “rover1” and “rover2”). First, 30 minutes of static 
observations were collected by the three receivers. Then 
rover1 moved fast and rover2 followed. 20 minutes later 
these two receivers stopped moving and a five-minute 
period of static observations were collected. Then back to 
the starting place, and another five minutes of static 
observations were again collected. 
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Rover 1 Rover 2 
 
 
              Mingzu Road 
 
 
  Rover 2  Rover 1                Rover 2    Rover 1 
 
           

 Base Station 
 

Fig.8 Kinematic test scenario 

6.2 Ambiguity Resolution 

The kinematic test data were processed by the proposed 
DARA (Dual-space Ambiguity Resolution Approach) 
method, i.e., searching ambiguities in two spaces at the 
same time, also using a least squares (LS) ambiguity 
search approach, i.e., searching ambiguities only in the 
GB ambiguity space (and validating by the “Ratio” test). 
Tab. 10 is a summary of the ambiguity resolution results. 

Tab 10 Summary of ambiguity resolution results 

 

6.3 Positioning 

Fig.9 (a) shows the “static-kinematic” results, the solid 
line is rover1 to base station and the dotted line is rover2. 
Fig.9 (b) shows the “kinematic-kinematic” results, i.e. 
rover2 is a moving reference. As we can see, the three 
receivers started observing at 284530 GSW, rover1 and 
rover2 began moving at 286930 GSW, relative static (not 
static) at 287870 GSW, then back at 288230, then relative 
static at 289260, and the test was stopped at 289618 
GSW. 

 

 
(a) 

 
                (b) 
 

Fig.9 Distances between receivers 

 
Fig.10 (a) shows the comparison of static-kinematic to 
kinematic-kinematic. The solid line is the distance 
between rover2 and rover1, while the dotted line is 
calculated from the two static-kinematic baselines, i.e. 
base station-rover1 and base station-rover2. Fig.10 (b) 
shows the difference between the two lines of Fig.16 (a). 

 

 
(a) 

 
         (b) 
 

Fig.10 A Comparison of static and kinematic results 

 

LS DARA 
Baseline Epochs 

True Wrong Success 
Rate True Wrong Success 

Rate 

5 885 132 0.87 989 28 0.97 Rover2 
-Rover1 10 440 68 0.86 501 7 0.99 

5 909 108 0.89 1007 10 0.99 Base 
-Rover1 10 456 52 0.89 502 6 0.99 

5 915 102 0.89 993 24 0.97 
Base 

-Rover2 10 461 47 0.90 501 7 0.99 

6.5Km 
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Fig.11 shows the misclosure of the three baselines. The 
results show that millimeter-level misclosure was 
achieved.  

 
 

 
(a) 

 
        (b) 

 
(c) 

 
      (d) 

 
Fig.11 Misclosure of the three baselines 

 

7 Conclusion 

Carrier phase ambiguity resolution is the key to fast and 
high precision GPS parameter estimation. The float 
solution can be estimated by two kinds of models which 
may have the relative receiver-satellite geometry included 
(GB) or excluded (GF), and used to construct “GB” or 
“GF” ambiguity search spaces. These two models have 
their advantages and disadvantages. Further analysis 
shows these two spaces are different but have the same 
true ambiguity resolution result. A new concept for 
ambiguity resolution, called Dual-space Ambiguity 
Resolution Approach (DARA), involving a search in both 
spaces at the same time, is proposed. In this paper the 
vehicle test shows that the DARA performed well, 
resulting in millimeter-level misclosure. 
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