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ABSTRACT 

Under the constraint that the initial capital is not enough for a perfect hedge, the problem of deriving an optimal partial 
hedging portfolio so as to minimize the shortfall risk is worked out by solving two connected subproblems sequentially. 
One subproblem is to find the optimal terminal wealth that minimizes the shortfall risk. The shortfall risk is quantified 
by a general convex risk measure to accommodate different levels of risk tolerance. A convex duality approach is used 
to obtain an explicit formula for the optimal terminal wealth. The second subproblem is to derive the explicit expression 
for the admissible replicating portfolio that generates the optimal terminal wealth. We show by examples that to solve 
the second subproblem, the Malliavin calculus approach outperforms the traditional delta-hedging approach even for the 
simplest claim. Explicit worked-out examples include a European call option and a standard lookback put option. 
 
Keywords: Partial Hedging; Malliavin Calculus; Convex Duality; Convex Risk Measure 

1. Introduction 

A replicating (self-financing) portfolio  designed to 
eliminate the risk exposure of the target contingent claim 
completely is called a perfect hedge. Since the value of a 
perfect hedging portfolio achieves exact replication of 
the payoff of the target security at the expiration date T, 
one can offset the risk of the target claim by selling the 
replicating strategy. In a financial market that is complete 
and arbitrage free, a perfect hedging strategy exists for 
any contingent claim with a sufficiently integral terminal 
payoff . The cost of replication  C  given by the 
expected value of the discounted payoff under the unique, 
risk neutral equivalent martingale measure 0P , i.e., 
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where is the price of the risk-free asset. 
that the 

in

l hedging 

en

 B T  
 theOne of  drawbacks of a perfect hedge is 

itial cost of the exact replication (i.e.,  0C  in (1)) is 
high. In addition, avoiding risks complet ans losing 
out on the potential gain that accepting the risk may have 
allowed. To this end, we discuss the position of an agent 
who is unwilling to commit at time = 0t  the entire 
amount  0C  necessary for implementing a perfect 
hedge an us interested in a partial hedging strategy 
that offers the balance between the cost and the risk ex- 
posure. Our goal is to derive optimal partial hedging 
strategies for various target contingent claims. 

Since the shortfall risk is intrinsic in a partia

ely me

d is th

vironment, one natural way to find the optimal partial 
hedging strategy would be to minimize the shortfall risk 
under the constraint that the initial capital x  is less than 
 0C  (i.e., the amount required for a p fect hedge). 

iterion used to quantify the shortfall risk is the ex- 
pectation of the shortfall   ,πmax ,0xC X T  weighed 
by a convex loss function g  terminal 
payoff of a target contingent claim an

er

is t

The cr

, where C  he
d  ,πxX T  is the 

value of the hedging portfolio. Compare he lin- 
ear loss function criterion adopted by [1] and [2], con- 
vexity of the loss function g offers the flexibility to ac- 
commodate different types of market participants with 
different levels of risk tolerance. For example, pension 
funds and foundations are usually risk-averse whereas 
hedge funds are more likely to have risk-seeking behave- 
iors. Moreover, individual investors’ attitudes towards 
risk are unique depending on their own personal and 
financial circumstances. 

The problem of solvin

d with t

g for an optimal partial hedging 
portfolio so as to minimize the shortfall risk is decom- 
posed into two subproblems. One subproblem is to find 
the attainable terminal wealth that minimizes the shortfall 
risk under the insufficient initial capital constraint. A 
convex duality approach is used to obtain an explicit 
formula for the optimal terminal wealth  *X T . We are 
the first to use the convex duality approa tudy this 
problem in a systematic way for a general convex loss 
function. A similar problem was solved in [3] applying 
the Neyman Pearson lemma. The second subproblem is 
to derive the explicit expression for the admissible repli- 
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cating portfolio that generates the optimal terminal 
wealth  *X T . There are two different approaches to 
solving ond subproblem. One is the well-known 
delta-hedging approach and the other is the Malliavin 
calculus approach. [4] compared these two approaches in 
the Black and Scholes environment. The author com- 
mented that the difficulty of applying the delta-hedging 
approach is to verify the continuous differentiability con- 
dition of the price process of the target claim. In the case 
of perfect hedge, the difficulty noted above does not exist 
for a standard call option. The Malliavin calculus ap-
proach is only needed for certain path dependent op- 
tions such as lookback options. However, this is no long- 
er the case in the partial hedging environment. We find 
that to derive an optimal partial hedging portfolio even 
for the simplest claim such as an ordinary call option, it 
is not trivial to verify the continuous differentiability 
condition for the price process of the optimal terminal 
wealth. Nevertheless the machinery of the Malliavin 
calculus approach help circumvent this difficulty. Al-
though the full range of cases remain to be investigated, 
we illustrate by examples that in the context of partial 
hedging, the Malliavin calculus approach is not only 
mathematically rigorous, but also straightforward and 
easy to implement. Explicit worked-out examples in pre- 
vious partial hedging studies are only restricted to stan- 
dard European options. In this paper, by applying the 
Malliavin calculus approach, we are able to obtain the 
explicit partial hedging formula for a lookback option. 

It is worth noting that the Malliavin calculus approach 

the sec

ha

anized as follows. Section 2 
se

s gained considerable interest since it was first intro- 
duced to the portfolio theory literature by [5]. For exam- 
ple, [6] applied the Clark-Ocone formula and the gradient 
operator in Malliavin calculus to derive an explicit rep- 
resentation for the optimal trading strategy in the case of 
partial information. The Malliavin calculus approach has 
also been used to derive perfect hedging strategies for 
lookback and barrier options (see [7,8]). [9] found the 
Malliavin calculus approach useful in deriving the hedg- 
ing portfolios for an expected-utility-maximizing inves- 
tor whose consumption rate and terminal wealth are sub- 
ject to downside constraints. 

The rest of the paper is org
ts up the model for the financial market, presents the 

dynamics of the agent’s wealth process  ,πxX  , and 
defines the class of admissible portfolios  x ction 
3 solves the problem of minimizing the expected short- 
fall loss using the convex duality approach. The main 
result is an explicit expression for the optimal terminal 
wealth  *

. Se

X T . The existence of an optimal hedging 
strategy wn as well. The Malliavin calculus ap- 
proach is summarized in Section 4 and is used to derive 
the optimal partial hedging portfolios for two specific 
examples in Section 5. 

2. The Economy 

 is sho

Since our ultimate in
sions for the optimal p

terest is to obtain explicit expres- 
artial hedging portfolios, the 

model under consideration here is a typical Black and 
Scholes economy as in [10], wherein there are one risk- 
less asset of price B  and one risky asset of price S . 
We shall assume that the riskless asset B  earns a 
constant instantaneo s rate of interest r , and that e 
price S  of the risky asset follows a geometric Brow- 
nian motion. More specifically, the respective prices 

u th

 B   d an  S   evolve according to the (stochastic) 
differential equations 

     d = d , 0 = 1;B t rB t t B                 (2) 

     d = d dS t S t t S t W     , 0 = .t S s    (3) 

All our problems are treated on a finite time-
[0

horizon 
,T]. In Equation (3),  is a standard Brownian 

motion on a complete probability space  , , P   en- 
dowed with an augmented filtration 
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generated by the Brownian motion  W  ume 
that r  (interest rate), 

. We ass
  (stock retur  rate), n   (stock 

volatility), and s  are positive constants. 
Set “the market-price-of-risk”  1=   r . We 

introduce the fo owing processes ll

   0 = , 0W t W t t t T ,    (4)              
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he auxiliary probability measure 


    (5) 

and t  defined on 0P
 , F  

    .0 0= 1AP A E Z T            (6)    

According to the Girsanov theorem the process  0W t  
is a 0P -Brownian motion on  0,T . 

In the context of the above market model, consi  
agen who is endowed with 

der an
t initial wealth > 0x , can 

decide, at each time  0,t T , which amount  π t  to 
invest in the risky asset without affecting its p . We 
shall denote by 

rice
 X t  the wealth of this agent at time t . 

With  π t  chosen, the investor places the amount 
   πX t t  in the bank account. The agent’s wealth 

process satisfies the equation  

           d = π d π d d

       0= d π d , 0 = .

X t X t t r t t t W t  

rX t t t W t X x

 


  (7) 

Formally, we say that a trading strategy  π   over 
the time interval  0,T  is self-financing if its wealth 
process satisfies (7). We require that the wealth process 

 X   in (7) to be al st surely uniformly bounded from mo
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below by zero for the trading strategies  π   to be 
ssible. The class of all such admissible trading stra- 

tegies is denoted by  
admi

x . Let us introduce t otation he n

   = ,rtX t e X t                (8) 

the discounted versi e wealon of th th process  X  . We 
have the equivalent   equation

       d = π d , 0 = .rt
0X t e t W t X x   (9)     

alWe can discounted wededuce that the th process 
 X t  is a contin cal martingale

D
uous lo  under P . 0

enoting the process 

   
 

0
0 = ,

Z t
H t

e “Bayes 

B t
         (10) 

with the help of th rule”,
process 

      

 we can deduce that the 
   0H t X

on of Fatou

t  is a co

’

ntinuous lo rtingale cal ma
under P . This process is also bounded from below. An 
applicati s lemma shows that    0H t X t  is 
a super ingale under P . Consequently, we have 

   0 .E H T X T x               (11) 

mart

Moreover, it is known th
complete in the fo

well-
wing

at this market is 
ery initial wealth llo  sense: for ev

> 0  such that  x  0 =E H T X T x    and every non- 
negative random variable C , there exists an admissible 

g strategy π s satisfies  
  =

tradin  value proceswhose 
X T C , P-almost surely

izing the Expec

. 

3. Minim ted Shortf sk 

on 
x-

all Ri

This section is devoted to finding an explicit expressi
of the optimal terminal wealth that minimizes the e
pected shortfall risk. Consider a contingent claim whose 
terminal payoff is given by a  T -measurable, non- 
negative random variable C. Recall  0C  defined in (1) 
and assume  0 <C  . The valu 0  is the smallest 
amount 

e C
0X  such that there exist missible stra- 

tegy  π   whose value process satisfies 
s an ad

  =,πxX T C , 
P-almost surely (  perfect hedge). Notice that the 
notations  X   a  ,πxX   are interchangeable. In 

e choose to use the latter to emphasize the 
value of the portfolio is achiev  a certa t of 
initial capital 

i.e
n

w

., a
d 

this section, 
ed by in amoun

x  and a specific admissible strategy 
 π  . 
Now assume that the initial capital x  is not enough 

to do a perfect hedg e.,e, i.  

n

 < 0x C

e is the 

. The risk easure 
us

m
ed to find the optimal partial hedging strategy takes 

account of two factors. O size of the shortfall 
  ,πxC X T


 , where  max ,0x x  . The other is the 

investor’s attitude towards the shortfall risk, which is 
ss functicaptured by a lo on g . We assume that g  is an 

increasing and strictly convex function defined on 
 0, , with  0 = 0g . We f her assume that urt g  is in 

  1 0,C  ,   =g   , and 

  < .E g C               (12)   

al definition
hortfall risk 

We now 
Definition

pe

give the form
 3.1 The s

 of the risk measure. 
is defined as the ex- 

ctation 

   ,πxE g C X T
   

          (13) 

of the shortfall  by the loss funcweighed tion g .  
Remark 3.1 A special case of the risk measure defined 

 [  with above is the lower partial moment (e.g., 11])
  = pg x x , for some > 1p .  
Our aim is to find an admissible portfolio  π   which 

ptimization lemsolves the o  prob  

   
   ,π

π
inf

x

x
E g C X T



 

   
     (14)    

for any  < 0x C . 
stic control

timal termin
This stocha

op
 problem is solved by first find- 
al wealthing the   ˆ,πxX T  that mini 

mizes the shortfall risk in (13) under the constraint that 
 < 0x C . We first make the follow ul observa- 

tion. 
 3.1 Let 

ing usef

Lemma  π A x  such that  
 ,πx T > > 0C . TheP X n t  1π A x  here exists a 

such that 

   ,π= .,π1x xX T X T C  

The proo
view of Lem

f of the lemm
ma 3.1, 

a is deferred to t e Appendix. In 
we can (and d ) assume that 

h
o

 ,π ,xX T C  P-almost surely in (14). Hence the risk 
measure can be written as   ,πxg C X T . As noted 
earlier,  ,πxX T  is assumed to be nonnegative. Hence 
for any admissible portfoli  we have o strategy π ,

 T,xX π0 C C   . Define     : 0 , 0,I g     as 
the inverse of g . In the case of  0 > 0g , we can 

f extend the domain o I  to  0,  by letting  I y = 0  
for  0, 0y g  . We shall adopt use from con- 
vex duality: starting wit  the fu n  


h

ful tool
nctio

s 
g z , consid  

(ran
er its

dom,  T - measurable) Legendre transform  

   := sup
C0 z

g z g z  
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Lemma 3.2 The function g  enjoys the following 
properties. 

1)  for all   0g    . g  is nondecreasing on 
 0, . 

2) The function g  is convex and continuous.  
Proof. a) It follows from the explicit expr sioes n of g  

in (16) that g  is nondecreasing. From the facts that g  
is nondecreasing and  fo  = 0g  r 0  , it is easy to 
see that    0  for all g  . 

b) We see immediately from (15) that g  is a conve
fu  th amily 
of

x 
nction, since it is e pointwise supremum of a f
 convex (indeed, affine) functions of  . Note that th  

is true whet r or not 
is

he g  is convex. g  is continuous 
on  0,  since a conv tion is nuous on an 
open int ntinuity o  

ex func
val. Co f

 conti
er g  at = 0  follows di- 

rectly from the explicit expression of g  i (16).  
It follows that for any initial capital  

  

n 

  we 0, 0 ,π , and > 0x C x    ,  have 

       
 

,π ,π
0
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x x
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al  (11)most surely. Thus, in conjunction with (6) and , we 
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<
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Now assume that for every , we have 

0.          (22) 

Remark 3.2 Note that (22) is not as
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 0,  

   0 = =P g C H T   

sumed for = 0 . 
So the above assumption still allows  = 0 > 0 ,P C  
w ular optio

 possesses t owing 
useful property. 

Lemma 3.3 Assume that 

hich is the case for many pop ns. 
The function  G   in (20) he foll

g  satisfies (22). The func- 
tion  G   in (20) is continuous on  0, . 

Proof. First we show that the function  

      01 0 >
1

H T g C
G E C  =  

   

is continuous. Let   1n n



 b a sequence of non-nega- 

tive numbers converging to 
e 
 . If > 0 , then by as- 

sumption (22), 

         0 0> >
1 = 1lim

n
n H T g C H T g    C

, 

almost surely. Hence  0 <E C 
mp

 and the dominated 
m iconvergence theore lies the continuity of  1G  . 

Assume now that = 0 . Then ne ca by separating 
the cases = 0C 

 o
= 0C  that  

n see 

 0 , 

applicatio
u

 and 

    0 >
1 =lim

n
n H T g C

C  

almost surely. Another n of the dominated 
convergence theorem implies that  2G   is continuo s 
even at = 0 . The co ty of  ntinui

  = [ ( ))1G E T       02 0 0 0
(

g H g C
I H   T

]  

follows similarly using the bound  

       00 0
1

g H T  g C
I H T C    

in rem.  
To derive the maximum of 

 

and the dom ated convergence theo
 F   in (19), we ssume 

that 
 a

 is in  2C g  and 

      0 0 < , 0E H T I H T   .       (23) 

From (16) it follows that  ,g   is convex and 
continuous on  0, , and continuously differentiable on 
 ,0  . 

In particular, 

 
    , if g 0 ζ g

f ζ>g

I    




C ;

 
 
= , i C ;

0, if ζ<g 0 .

g C 
 

    (24) 

, we have For every 0 

    0 0 < .E H T g H T           (25) 

Indeed, by assumption (23), 

         
 

0 0 0 0

0

'

< .

E H T g H T E H T I H T

H T C

 

E

     
  

 


 (26) 

We now establish the following auxiliary



 result. 
Lemma 3.4 Define  G   0= E g H T    . Then 
 G   is convex on  0, , continuously differentiable 

on  0, , and 

   = ,G G   > 0.         (27) 

Proof. Convexity of  G   is inherited from  g  . 
For any > 0 , let   number 

that 
be an arbitrary positive 

such   belongs to  0, . Then 
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0 0H T g

as 0h  ost su ely, and by the convexity of 
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Relation (25) and the dominated convergence theorem 
imply 

       (28) 

The right hand side of (28) is exactly 

H T g H T  

      0 0= .G E H T g H T    
 

 G   by (24) 
and (20). We know from Lemma 3.3 that  G   is 
co

 we have 
ntinuous. So G  is indeed continuously differentiable. 
Now       = 0F C x G     . The func- 

tion F  is concave on  0, , belongs to  1 0,C  , 
and satisfies      = 0F C x G    . Note also that 

   
0

= 0 > 0limF C x





   

and 

 < 0.limF x


  

So  




 

F   r  0,  at achieves its maximum ove

    = inf > 0 = 0 .G C    x     (29) 

erefore, (19) gives Th

    ,π ˆ .xE g C X T F            (30) 

n in th lity 
approach. 

conditions for 
st uality of (19) holds as equality 
for some 

The following is the crucial observatio e dua

Remark 3.3 (Sufficient and necessary 
rong duality) The ineq

 π̂ x  and with  i
we have  

ˆ > 0  , f and only if 

   ˆ,π
0 = ,xE H T X T x             (31) 

and 

 

ˆ,π
ˆ{ ( )> ( )}0

= 1

ˆ

x

H T g C
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g H T g C
I H T    
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oposition 3.1 For every  the value 

esult of this sec- 
tion. 

Pr   0, 0x C ,
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0
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sa

     (33) 

tisfies 

 0  ˆ,π = .xH T X  E       (34) 

Proof. From (20), (1), and th t that  

T x    
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Remark 3.4 Notice that whenever  the 
optimal terminal wealth in (33) has a rm of  

 0 = 0g ,
simple fo

    ˆ,π
0

ˆ=xX T C I H T


   . A typical example is the  

case of lower partial moment with   = pg x x ,

include an

 for some 
. 

he sake of completeness, we  existence 
result of the optimal hedging strategy. 

Theorem 3.1 Existence of optimal strategy. For any 
gi

> 1p
For t

ven   0, 0x C , and with  ˆ 0,    (29) 
and 

 given by
 ˆ,πxX T  given by (33), there exists a portfolio 

process    π̂ x 
 is optimal for th

 for whic
wh e proble

.

h (31) and (32) hold and 
m of (14): ich

   ˆ,π= xV x E g C X T 0

        
     (35) 

In particular, it is equal to that portfolio which re- 
plicates the claim  ˆ,πxX T  of (33). 

Proof. F om Pro osition 3.1, we an ind an r c fp  T - 
measu ndom variable  ˆ,πxrable ra X T  such that (34) 
holds. C er now the 0P -martingale (in the notation 
of (33)) 

onsid

     

   

* *
0

0

is given by (29) and the  T -measurab le random 
variable 

0

:=

ˆ= π d , 0 ,
t rs

X t E X T t

e s W s t T

 
 

x   



astic integral with 
re

   (36) 

written in its representation as a stoch
spect to  0W   for a suitable portfolio proces  π̂ s  

(see [12], p. 93). The process  * X sfies  sati  * 0 = ,X x  
   ˆ* ,πxX X    and the quirement that it’s bounded 

from belo
re

 zero, so w by    π̂ x  . The optimality of 
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   π̂ x   

rtf

w

briefly recap t

is then a consequence of Remark 3.3. 

4. The Malliavin Calculus Approach 

lio inal 
two pproaches

e
s a pro

To solve the second subproblem of deriving the partial 
hedging po o s that generate the optimal term
wealth in (33), we consider different a . 
One is the ll-known  -hedging approach and the 
other is the Malliavin cal p ach. For easy refer- 
ence and to make the paper self-contained, we first 

he concept of 

culu

 -hedging. Then we intro- 
 a random duce the definition of the Mallivin derivative of

variable and the Clark-Ocone formula. Thereafter, we 
present a Mallivin calculus approach for deriving the re- 
plicating portfolio as first used in [5]. 

In the standard Black and Scholes framework, the 
 -hedging approach works in the following way. In a 
complete financial market, the optimal wealth process 

 *X t  (The notations  *X   and  ˆ,πxX   are used 
interchangeably.) is given by the discounted conditional 
expectation of the optimal terminal wealth  *X T  
under the risk neutral probability measure 0P , i.e., 

     * *
0= r T t

tX t e E X T   
  . In many situations, the 

optimal wealth process  *X t  is a Markov process and 
in the form of   ,is f t S t , where  S t  is the time t 

stock price. If the condition that   ,f t S t  is a 
1,2C -function is verifiable, we can apply the Itô formula 

to  ,f t S t  to obtain 

     

        , dt S t t S t 

rtfolio is   

 number of units to be held at 
sk-free asset , and  denotes the 

ts to be held i  stoc  at tim
the relationship between 

* 2 21
d =

2

, d .

t s ss

s

X t f S t f S t f

f t S t W t

        (37) 

The replicating po  denoted by

      0 1= ,h h h   , 

wher denotes thee  0h t  
time t  in th
number of un
Notice 

e ri
i

B
n the

 1h t
k S

 and 
e t . 

 1h t  π t  given 
by      1 = πh t
a s

0t S t for

d

t T . By the definition of 
elf-financing portfolio, we have 

         
     

* 0 1
0

1

d =

d .

X t h t rS t h t S t  t    (38) 

 It ral it
pl

.              (40) 

0) is the famous -hedging formula. As 
n [4], the major difficulty of using the 

h t S t W t

Fro  the uniqueness of the ô integ  follows that 
we can use (37) and (38) to identify the re icating port- 
folio  0 1= ,h h h , where  

        0 * 1= ,rth t e X t h t S t         (39) 

m

Equation (4
pointed out i

    1 = ,sh t f t S t



 -hedging approach is to verifty  *X t  satisfies the 
necessary differentiability condition. We show by exam- 
ples in ection how th the next s n calculus ap- 

ach can help us get around this di
ging context. 

The main components for the M
ach to work are the gradient op

he

e Malliavi
fficulty

erator an

pro
hed

pro
Oc

 in the partial 

alliavin calculus ap- 
d the Clark- 

one formula. Let   denote t  family of all random 
variables :F   of the form  

   1= , , nF      

where  1, , =nx x a x   is a polynomial in n  

variables 1, , nx x  and     T

0= d
0i if t W t  for som   e

  2 0,if L T  (deterministic). Notice that the set   
is dense in  2L  . Next, we define the Cameron-Martin 
space   according to  

   
    2 d < ,

T
s s  

and identif bability  with  

2

0 0

= : 0, :

= d , =
t

T t

s s

 

 



  


 

y our pro  space  0, , P 

       00, , 0, ,T C T0C   

such th   0,t Tat    0 , =W t t   for all . Here  
    denotes the Wi

s, real-valued fu
0

cont
0,C T

inuou
ener sp pace of all 
nctions 

ace—the s
  on  0,T  such 

that  0 = 0 ,     0 0,C T  de ond- notes the co esprr
ing Borel  -algebra, and   de e Wie- 

ct- 
e 

not
e

b 

es the
defin

le F 

 uniqu
ner measure. With this setup we can  the dire
ional derivative of a random varia  in all th
directions    by 

   
=0d

F





       (

Notice from the above equation that the ma

d
D F   41) 

p  

= .

 D F  is r all   continuous fo   and linear, 
consequent there exists a stochastic variable ly  F   
with values in the Cameron-Martin space   such that  

       
d

t
t

 
0

= , := dt t     


. 

Moreover, since 

dT F
D F F



 F   is an 
riable, the map 

 -valued stochastic 
va  ,tt F   is absolutely continu- 
ous with respect to the Lebesgue measure on  0,T . 

we let Now the Malliavin derivative  t D F   denote 
the Radon-Nikodym derivative of  F   with  
to the Lebesgue measure such that 

 respect

   
0

T

tD F D F    = dt t .       42) 

expres
lt, wh

 (

If we define this sion with Equation (41) we 
have the following resu ich in many cases is taken 
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directly as a definition. 
Definition 4.1 The Malliavin derivativ ochastic 

variable F   is the stochastic p  


e of a st
rocess 

 : 0,tD F t T  given by 

     1
=1i i

We note that the Malliavin derivative is well defined 
almost everywhere d dt P . 

= , ,
n

t n iD F f t
x

  
  .  

0

Let us introduce a norm 
1,2
  on the set   accord- 

ing to 

  
1

2 2

0 01,2 0
= d .

T

tF E D F t 
        (43) 

Now, as the Malliavin derivative is a closa le operator 
(see [13]), we define by the Banach space which is 
th

2E F  

b

1,2
e closure of   under the norm 

 

1,2
 . 

The Clark-Ocone la  formu the cornersto e of the 
Malliavin calculus hedging oach. This formula is a 
general

is n
appr

ization of the Itô representation theorem (see [14]) 
in the sense that it gives an explicit expression
integrand. The original Clark-Ocone formula (s
ap

 for the 
ee [13]) 

plies to any  T -measurable stochastic variable in 
the space 1,2 . 

[8] shows that the Clark-Ocone formula is valid for 
any  T -measurable stochastic variable in  2L   
and therefore the Malliavin calculus approach to deriving 
the replicating portfolio of a contingent claim as in [5] 
can be extended in a similar way. However, since all of 
the examples discussed later in the paper only use the 
Clark-Ocone form to the stochastic variables in 1,2 , 
we only state th inal Clark-Ocone formula in [13] 
an

ula 
e orig

de
d the results in [5] as a theorem. We refer the inter- 

ested rea rs to [8] for the extensions. 
Theorem 4.1 Let the stochastic variable F  belong to 

1,2 . Then we have the representation formula 

     0 0 00
= d .

T

tF E F E D F t W t      

Following the above Clark-Ocone formula and e 
results in [5], any optimal portfolio  *

1,2X T   can 
be replicated by the self-financing portfolio 

     

 th

 1 *π = r T tt e E D X T   
0 t t       (44) 

 order to derive the replicating portfolio 

.

In using the 
above theorem, we need to calculate the Malliavin de- 
rivative of  *X T . When  *X T  

ssic Chain

is a Lipsch func- 
tio

n [13] can 

Propositi Cla  Rule in
be a function such that  

itz 
n of a stochastic vector process belonging to 1,2 , the 

following classic chain rule as proved i used 
to calculate  *

tD X T . 
be 

on 4.1 (  [13]) Let 
: n    

    ,x y K x y     

for any , nx y  and some constant K. Suppose that 
 1= , , nF F   a stochas or whose components 

belong to the space 1,2  and suppose that the la f 
F  is tic vect

w o F  
is absolutely continuous with respect to the Lebesgue 
measure on n . Then   1,2F   and 

   
=1

=
n

t
i

D F F D
x

 
 .t i

i

F  

In the context 

5. Derivation of the Replicating Portfolios 

of perfect hedging, the  -hedging 
formula in (40) is the standard me  to obtain the rep- 
licating portfolio for a European call option (see, e.g., 
[15], Chapter 5). The rea  the  pproach

thod

son -hedgi  
works in this case is that the price of the European call 
option has a closed-form expressi i. , e famous 
Black-Scholes formula) and theref  it is  hard to 

t 
the 

ng a

 th
 not

on (
ore,

b

e.

verify the required differentiability condition. The firs
example in this section shows that this is no longer 
case in the partial hedging environment. Since the opti- 
mal wealth process for partial hedging a standard call 
option does not possess a closed-form formula, the veri- 
fication of the continuous differentia ility condition is no 
longer a trivial issue. In the second example, we derive 
the explicit representation for the partial hedging portfo- 
lio of a standard lookback put option. For explicit com- 
putational purpose, the loss function we shall use in both 
examples is   2= 2g x x , in which case   1= =I y g y . 
Note that our approach can be straightforwardly adapted 
to solve the problem with a more general convex loss 
function. 

Example 5.1 Consider partial hedging a standard 
European call option with payoff function  

  =C S T K


 . It follows from Remark 3.4 and the 
facts   =g C C ,   =I y y  that the optimal terminal 
wealth  *X T  is given by 

       
    

*
0=

= .

X T S T K H T

S T K H T









 

 
        (45) 

0



From (3), (4), (5), and (10), we have the time T stock 
price 

    2
0

1
exps W T r T =

2
S T

       
  

and the time T state price density 




   (46) 

    2
0 0

1
= exp

2
.H T W T r  T

      
  

    (47) 

To apply the  -hedging approach, one needs an 
expression for      * ( ) *

0= r T tX t e E X T t   
 

 (45), is given by 
, which 

according to
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        0 0 .r T te E S T K H T t
      
  

From the formulae (3) and (10), 

   (48) 

 0H T  can be 
written in terms of  S T  by  

      0 = expH T S T s bT
 

, 

where  
21 1r

b r
2 2

     . 

Let us put  



2
0

1

2tX W t r   t  
 

. The expression 

(48) can be rewritten as 

     

    

0 exr T te E S t X

/

p

exp .

T t

T t

X K

S t
X X bT t

s

 






  

 
  

       
   

 

  

 (49) 

Note that T tX X   is independent of  t  and 
 S t  is  t -measurabl

the Brownian motion, we
e. By the basi ties of 

 can rewrite (49) as
c proper

 

   

   
/

exp d ,

r T t ye S t e K

S t
y bT y y

s

 
 


 






 



           


 

w

 (50) 

here   is the normal density function mean with 

 21

2
t 


 

 and variance  2 T t  . To proceed r T  

with the -hedging approach, one has to assume that 
(50) is a  function of owever, in gen- 
eral, (50 y not have a cl  expression. Fur- 
thermo notice that the in  (50) is no
once differe tiable. Therefore ption that (50) is 

seem  verify. or comparison 
pose, nore this tech ulty for now and 

t
ferentiation can b r the int
obtain 


 1,C
) ma

re, 
n

 we
he

2

s hard to
 ig

  ,t S t . H
osed-form

tegrand in
, the assum

Nevertheless, f
nical diffic

t even 

1,2C  
pur
pursue   -hedging formula. Assuming that the dif- 

e carried out unde egral sign, we 

   
   

 

11 =

exp d

T t y
Dh t e e t

y bT y y

  r s S


 


 



 
     

 1

      (51) 

 
   




 

   

1

0= exp

exp ,

r T t
T tD

T t

e E X X s S t

X X bT t

  





     

      


1  

  
(52) 

    0= 0D S T K H T  

  

where the set . Recall the 
relationship      1 = πh t t S t . After further simplifica- 
tions, we have 

   
       0 0π = .r T t

Dt e E S T H T t



      
  

1   (53) 

We now derive the partial hedging portfolio using the 
Malliavin calculus approach. The following prope
which are proved in the Appendix, hold. 

Corollary 5.1 

rties, 

        
*

0 DX T S T K H T  1  
belongs to  2L   and 

        0t DD X H T 1  * = ,T S T 

    0 0D S T K H T  
llary 5.1 and Theorem 4.1, the 

where the set .  
From Coro repli

portfolio is given by 
cating 

       

        

       0 0

π

,

D

t
D

t

H T t





1 *
0

( ) 1
0 0

= |

=

r T t
t

r T t

t e E D X T t

e E S T H T



  

  

  

  

( )= r Te E S T

  
    
  

1

1





(54) 

es with the hedging formula in ). Notice 

much less derivation work. 
Example 5.2 Now let us consider deriving the partial 

hedging portfolio for a standard lookback put option 
with terminal payoff  where 



which coincid (53
that the Malliavin calculus approach not only avoids the 
technical difficulty encountered by the  -hedging ap- 
proach, but also uses 

 0,= ,S
TC M S T

   0, 0,= supS
T t TM S t

given by 
. The optimal terminal wealth is 

      (55)       * = .S
TX T M S T H T


 0, 0

To pursue the  -hedging approach, one needs an ex- 
pression for the optimal wealth process  

       
       

0

0= .r T t Se E M S T T t
 

 
* *= r T tX t e E X T t   

0, 0T H    

pendix, w




(56) 

In the Ap e show that (56) can be rewritten as 

    
    , d d ,

0,

2

max ,r T t S y
tx

x

e M e S t

f e

  
 

where 

S t x y y x
x y

  


 

      (57) 

   
/

exp
x

f x x bT
s

 




   
 

  and   is given  

in (68). First of all, it is very hard, if not impossible to 
obtain a closed-form expression for (57). Furthermore, 
the integrand in (57) is not differentiable with respect to 
 S t . Therefore, verification of the differentiability con- 
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dition is not easy. Even if we ignore this technical diffi- 
culty, formal differentiation (disregarding t
where it is non-differentiable) would be poss
algebraically very messy in addition to being non-rigor- 
ous. For these reasons we abandon the delta-hedging 

h and pursue the Malliavin s
 

he points 
ible but gets 

approac calculu  approach 
instead.

Corollary 5.2 Let the optimal terminal wealth be 
defined by       *

0, 0= S
TX T M S T H T


  . Then 

 *
1,2X T   and 

   
      

        

* *

0, , 0, 0 0,

0 0, 0

=

<

.

t

S S S S
t t T t t

S
T

X T X T

M M M S T H T M

H T M S T H T



 

   

  

   

1 1

1

 

Proof. See Appendix. 
It then follows from Theorem 4.1 and Corollary 5.2 

that the r

D

eplicating portfolio is given by  

       

     
   

 

        

1 *
0

*
0, 0 , 0,

0 0,

0

= ,

<

1

.

t
t

t S S S
t t T t

S
t

r T t

E D X T t

0 0, 0T

π = r T

r T

t e

S

X t e M P M M S T

H T M t

e E

H T M S 1 T H T t





 








 

 
 





   
 









   (58) 

 



 

Define the Radon-Nikodym derivative 

 
   00

0 0 0

d
=

d

H H TP
on T

P E H T  
  ,

such that 0
HP

 with resp
HW t

 is a probability measure absolutely con- 
tinuous ect to . By the Girsanov theo
process 

0P
 t

rem, the 
 0 0W t
obability measu

 is a Brownian motion 
under th re e pr 0

HP
hat 

. Moreover, 
Lemma ws t for every stochast
variable 

from 
ic  8.6.2 in [14], i lot fol

X  such that 
0P

<HE X    , 

   
     00 0

= .P HP
E H T t E X t      

     (59)

Now the last conditional expectation on the right 
ati

00PE H T X T  
 

hand 
side of Equ on (58) can be written as  

       

   

     
       

2

0,

0

0 0 0, 0=

T

T

r T t H S
T

M S T

T t

e H t P M S T H T



  




 



(60) 

  | .t

0 0 0

0 0
0

0,

=

S

HP

S

E H T H T t

E H T t E

M S T H





   
  

  

1

1




 

Formulae (58) and (60) yield the optimal partial 
hedging strategy 

       
   

    

      

2

*
0, 0 , 0,

0 0,

2

0

0 0, 0

π = ,

<

1

.

r T t S S S
t t T t

S
t

r T t

H S
T

t X t e M P M M S T

H T M t

e H t

P M S T H T t





 




 

  

 



   
 

  





  (61)

6.

chastic control problem of minimizing 
the expected shortfall risk (quantified by a general con- 
vex risk measure) under the constraint that the initial 
capital is insufficient for a perfect hedge. We showed by 
examples that the Malliavin calculus approach is
for finding the replicating portfolios in the partia
ing environment. Further research consists of investigat- 
ing other target contingent claims and extending the re- 
sults to incomplete markets. 
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Appendix 

roof of Lemma 3.1. 
Let 

    2 31 2 2 ,π,π ,π= 0x xx xX t X t X t 
P

    ,π
2 0= .xx E H T X T C x     

pleteness there exists a π

 .  

By (64) By the mark- 
t com  2 2A x

 ,π= .x
       2 31 2 2 ,π,π ,π ,π= =x xx x x such that 

2 2,πx
e .X T X T X T X T C   
X X T C  If 2 =x x  then 

ent of the lemma. Suppose
1 2π π
 that 

 satis- 
Proo  5.1. From Corollary 1 in [7], we 

know that 
f of Corollary

2 <x x . 
 3.4.20)

fies the statem
By Dudley’s theorem
the x

 ([16] or [17], Th
ists a process  , ; 0t tY F t T   s

eorem  

Let  

T

and 

re e atisfying  

2d < ,
T

tY t a
and  

  = 0.
T

t   

    2
0

1
= exp

2
S T s W T r T        

  

 and  
0

. .s  
belongs to the Banach space 1,2

   tD S T S T . To show  

2 00
dtx x Y W     2

0H T

  2 00
inf 0 : d = 0

T

tt x x Y W t      

0 1,2

1
= exp

2
W T r T        

  
  

and    0 0=tD H T H T , we approximate  0H T  by 
a sequence in   and use Definition 4.1 together with 
the closability of the Malliavin derivative. Notice also 
that both  1t t tY Y 

  . It follows that 

0           (62) 

and for every 

 S T  and 0  H T  
. Then 

are absolute inu- 
ous

ly cont
    0H

ous
  must, as the 

en ctions, b tely 
G T S T 

ce of absolutely continu
T

 fun
differ-

e absolu 2 00
d =

T

tx x Y W t   
continuous. Since  x K piecewise Lips
function for all x, it follows m Propositio


 
 fro



   2G T K L


is a chitz 
at n 4.1 th

 0,t T  

  t
u 2 00

dux x Y W     

 
  with 0.           (63) 

Let         0= .tD G T K S T H T D   1  3

1  π rt
tt e Y


 . Relations (9), (6

ply that 

     (64) 

Finally we define 

2), and (63) im- 

De  (57). We are goin rive 
an expression fo the conditional expectation 

    

rivation of Expression g to de
r    2 3,π

3 2 and = 0.x xA x x X Tπ  

have  1π A x   0 0, 0 .S
TE M S T H T t


  1 2 3π π π . We 

  
      (65) 

since 
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Expression tained by multiplying 
the above conditional expectation by  r T te  . Equations 
(3) and (10) imply th n  

 

 (57) can then be ob

e relatio

   0 = exp .
S T

H T bT
s 

 

Recall the definition for the function  

 
 
 

   exp
x

f x x bT
 




    . 
s 

Then (65) can be written as 

     0 0, .S
TE M f S T t

  
        (66) 

Define the notations X



  ,, maxu t Tt T u tM X X  
 and 

   ,, max
S

u t Tt TM S u

 0, ,max ,S S
t t TM M . Recall th

. Then 0,
S

TM  can be written

e notation 

 as 

  2
0

1

2tX W t r t   
 

  . In conjunction with the ex-  

pression  , for 

 

    = exp u tS u S t X X   ,u t T , it  

follows that    t T


, = expS

t TM S t M ,
X . There  

be written as 

fore (66) can 

    
     

0 0,

xp .

t t

T t

,max , exp

e

S X
TE M S t M

f S t








     

We note that 

X X t


 

  
 (67) 

X
,t TM


 and T tX X   are independent of 
, whereas  and t  S t  0,t

SM  are  t -measurable. 
rties of the Brownian motion, By the well-kn ope

istrib
own pr
ution of the joint d t , ,X

t T TM X   
known

X  co with 
that of M X  [15]  

incides 
, Corollary It is  (see0,

B.3.1, p. 469)
,X

T t



 th
T t 
 . 

at 

   
 

 

0 0,

2

2

2

1
2 2

xp 1

,y x P ,

1
2

=

2
e

X
T t T tM y X x

x r T t
N

T t

x y T t
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r
r
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(68) 

r ,x y  such that  and  0y  x y . We can now 
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The expression (57) is obtained by multiplying (69) by 

(69) 
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