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ABSTRACT

Under the constraint that the initial capital is not enough for a perfect hedge, the problem of deriving an optimal partial
hedging portfolio so as to minimize the shortfall risk is worked out by solving two connected subproblems sequentially.
One subproblem is to find the optimal terminal wealth that minimizes the shortfall risk. The shortfall risk is quantified
by a general convex risk measure to accommodate different levels of risk tolerance. A convex duality approach is used
to obtain an explicit formula for the optimal terminal wealth. The second subproblem is to derive the explicit expression
for the admissible replicating portfolio that generates the optimal terminal wealth. We show by examples that to solve
the second subproblem, the Malliavin calculus approach outperforms the traditional delta-hedging approach even for the

simplest claim. Explicit worked-out examples include a European call option and a standard lookback put option.
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1. Introduction

A replicating (self-financing) portfolio n() designed to
eliminate the risk exposure of the target contingent claim
completely is called a perfect hedge. Since the value of a
perfect hedging portfolio achieves exact replication of
the payoff of the target security at the expiration date T,
one can offset the risk of the target claim by selling the
replicating strategy. In a financial market that is complete
and arbitrage free, a perfect hedging strategy exists for
any contingent claim with a sufficiently integral terminal
payoff C . The cost of replication C(O) is given by the
expected value of the discounted payoff under the unique,
risk neutral equivalent martingale measure B, i.e,

C(0)= E{%}, (1)

where B(T) is the price of the risk-free asset.

One of the drawbacks of a perfect hedge is that the
initial cost of the exact replication (i.e, C(0) in (1)) is
high. In addition, avoiding risks completely means losing
out on the potential gain that accepting the risk may have
allowed. To this end, we discuss the position of an agent
who is unwilling to commit at time t=0 the entire
amount C(O) necessary for implementing a perfect
hedge and is thus interested in a partial hedging strategy
that offers the balance between the cost and the risk ex-
posure. Our goal is to derive optimal partial hedging
strategies for various target contingent claims.

Since the shortfall risk is intrinsic in a partial hedging
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environment, one natural way to find the optimal partial
hedging strategy would be to minimize the shortfall risk
under the constraint that the initial capital X is less than
C(0) (i.e, the amount required for a perfect hedge).
The criterion used to quantify the shortfall risk is the ex-
pectation of the shortfall max(C - X*" (T),O) weighed
by a convex loss function g, where C is the terminal
payoff of a target contingent claim and X*"(T) is the
value of the hedging portfolio. Compared with the lin-
ear loss function criterion adopted by [1] and [2], con-
vexity of the loss function g offers the flexibility to ac-
commodate different types of market participants with
different levels of risk tolerance. For example, pension
funds and foundations are usually risk-averse whereas
hedge funds are more likely to have risk-seeking behave-
iors. Moreover, individual investors’ attitudes towards
risk are unique depending on their own personal and
financial circumstances.

The problem of solving for an optimal partial hedging
portfolio so as to minimize the shortfall risk is decom-
posed into two subproblems. One subproblem is to find
the attainable terminal wealth that minimizes the shortfall
risk under the insufficient initial capital constraint. A
convex duality approach is used to obtain an explicit
formula for the optimal terminal wealth X" (T) We are
the first to use the convex duality approach to study this
problem in a systematic way for a general convex loss
function. A similar problem was solved in [3] applying
the Neyman Pearson lemma. The second subproblem is
to derive the explicit expression for the admissible repli-
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cating portfolio that generates the optimal terminal
wealth X*(T). There are two different approaches to
solving the second subproblem. One is the well-known
delta-hedging approach and the other is the Malliavin
calculus approach. [4] compared these two approaches in
the Black and Scholes environment. The author com-
mented that the difficulty of applying the delta-hedging
approach is to verify the continuous differentiability con-
dition of the price process of the target claim. In the case
of perfect hedge, the difficulty noted above does not exist
for a standard call option. The Malliavin calculus ap-
proach is only needed for certain path dependent op-
tions such as lookback options. However, this is no long-
er the case in the partial hedging environment. We find
that to derive an optimal partial hedging portfolio even
for the simplest claim such as an ordinary call option, it
is not trivial to verify the continuous differentiability
condition for the price process of the optimal terminal
wealth. Nevertheless the machinery of the Malliavin
calculus approach help circumvent this difficulty. Al-
though the full range of cases remain to be investigated,
we illustrate by examples that in the context of partial
hedging, the Malliavin calculus approach is not only
mathematically rigorous, but also straightforward and
easy to implement. Explicit worked-out examples in pre-
vious partial hedging studies are only restricted to stan-
dard European options. In this paper, by applying the
Malliavin calculus approach, we are able to obtain the
explicit partial hedging formula for a lookback option.

It is worth noting that the Malliavin calculus approach
has gained considerable interest since it was first intro-
duced to the portfolio theory literature by [5]. For exam-
ple, [6] applied the Clark-Ocone formula and the gradient
operator in Malliavin calculus to derive an explicit rep-
resentation for the optimal trading strategy in the case of
partial information. The Malliavin calculus approach has
also been used to derive perfect hedging strategies for
lookback and barrier options (see [7,8]). [9] found the
Malliavin calculus approach useful in deriving the hedg-
ing portfolios for an expected-utility-maximizing inves-
tor whose consumption rate and terminal wealth are sub-
ject to downside constraints.

The rest of the paper is organized as follows. Section 2
sets up the model for the financial market, presents the
dynamics of the agent’s wealth process X*"(-), and
defines the class of admissible portfolios .A4(X). Section
3 solves the problem of minimizing the expected short-
fall loss using the convex duality approach. The main
result is an explicit expression for the optimal terminal
wealth X*(T). The existence of an optimal hedging
strategy is shown as well. The Malliavin calculus ap-
proach is summarized in Section 4 and is used to derive
the optimal partial hedging portfolios for two specific
examples in Section 5.
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2. The Economy

Since our ultimate interest is to obtain explicit expres-
sions for the optimal partial hedging portfolios, the
model under consideration here is a typical Black and
Scholes economy as in [10], wherein there are one risk-
less asset of price B and one risky asset of price S.
We shall assume that the riskless asset B earns a
constant instantaneous rate of interest r, and that the
price S of the risky asset follows a geometric Brow-
nian motion. More specifically, the respective prices
B(-) and S(-) evolve according to the (stochastic)
differential equations

dB(t)=rB(t)dt, B(0)=1; 2)

dS(t) = 4S(t)dt+oS(t)dW(t), S(0)=s (3)

All our problems are treated on a finite time-horizon
[0,T]. In Equation (3), W(-) is a standard Brownian
motion on a complete probability space (€, F,P) en-
dowed with an augmented filtration F F=F (t)m<T
generated by the Brownian motion W(-). We assume
that r (interest rate), u (stock return rate), o (stock
volatility), and S are positive constants.

Set “the market-price-of-risk” @=0c"'(u-r). We
introduce the following processes

W, (1) =W(t)+6t, 0<t<T, )
z, (t)—exp{—H\N(t)—%ﬁzt}

(%)
=exp{—t9\/\/0(t)+%92t}, 0<t<T,
and the auxiliary probability measure P, defined on
(Q.F)

PO(A):EI:ZO(T)'lA} (6)

According to the Girsanov theorem the process W, (t)
isa P, -Brownian motion on [0,T].

In the context of the above market model, consider an
agent who is endowed with initial wealth x>0, can
decide, at each time te[0,T], which amount =(t) to
invest in the risky asset without affecting its price. We
shall denote by X (t) the wealth of this agent at time t.
With 7(t) chosen, the investor places the amount
X (t)-m(t) in the bank account. The agent’s wealth

process satisfies the equation

dX (t)= (X (t)—m(t))rdt+m(t)( udt+odw(t))
(7
=rX(t)dt+n(t)odW,(t),X(0)=x

Formally, we say that a trading strategy m(-) over
the time interval [0,T] is self-financing if its wealth
process satisfies (7). We require that the wealth process
X(+) in (7) to be almost surely uniformly bounded from
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below by zero for the trading strategies n(-) to be
admissible. The class of all such admissible trading stra-
tegies is denoted by .A(X). Let us introduce the notation

X(t)=e"X(t), (®)

the discounted version of the wealth process X () . We
have the equivalent equation

dX (t)=e"n(t)odW,(t), X(0)=x ©
We can deduce that the discounted wealth process

X(t) is a continuous local martingale under B .
Denoting the process

_Z(Y)

(0= (10)
with the help of the “Bayes rule”, we can deduce that the
process H,(t)X(t) is a continuous local martingale
under P . This process is also bounded from below. An
application of Fatou’s lemma shows that H,(t) X (t) is
a supermartingale under P . Consequently, we have

E[H,(T)X(T)]<x (11

Moreover, it is well-known that this market is
complete in the following sense: for every initial wealth
x>0 such that E[H0 (T)X (T)] =X and every non-
negative random variable C, there exists an admissible
trading strategy m whose value process satisfies
X (T)=C, P-almost surely.

3. Minimizing the Expected Shortfall Risk

This section is devoted to finding an explicit expression
of the optimal terminal wealth that minimizes the ex-
pected shortfall risk. Consider a contingent claim whose
terminal payoff is given by a F (T )-measurable, non-
negative random variable C. Recall C(0) defined in (1)
and assume C(0)<oo. The value C(0) is the smallest
amount X (O) such that there exists an admissible stra-
tegy 7(-) whose value process satisfies X*"(T)=C,
P-almost surely (i.e., a perfect hedge). Notice that the
notations X () and X*"(-) are interchangeable. In
this section, we choose to use the latter to emphasize the
value of the portfolio is achieved by a certain amount of
initial capital X and a specific admissible strategy
w(-).

(I\?ow assume that the initial capital X is not enough
to do a perfect hedge, i.e, x<C(0). The risk measure
used to find the optimal partial hedging strategy takes
account of two factors. One is the size of the shortfall
(C —X*" (T)) , where X" £ max{x,0}. The other is the
investor’s attitude towards the shortfall risk, which is
captured by a loss function g. We assume that g is an
increasing and strictly convex function defined on
[0,0), with g(0)=0. We further assume that g is in
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(o} ((0,00)), g'(w) =, and
E[g(C)]<w. (12)

We now give the formal definition of the risk measure.
Definition 3.1 The shortfall risk is defined as the ex-
pectation

E[g((C—XX’“ (T))ﬂ (13)

of the shortfall weighed by the loss function g .

Remark 3.1 A special case of the risk measure defined
above is the lower partial moment (e.g., [11]) with
g(x)=xP, for some p>1.

Our aim is to find an admissible portfolio 7(-) which
solves the optimization problem

inf E|g((C—x**(T )} 14
g ELol(e-x(m) 19
forany x< C(O) .

This stochastic control problem is solved by first find-
ing the optimal terminal wealth X** (T) that mini
mizes the shortfall risk in (13) under the constraint that
Xx<C(0). We first make the following useful observa-
tion.

Lemma3.1Let ne A(x) suchthat
P[X**(T)>C]>0. Then there exists a =, < A(x)
such that

X (T)=X*"(T)AC.

The proof of the lemma is deferred to the Appendix. In
view of Lemma 3.1, we can (and do) assume that
X*™(T)<C, P-almost surely in (14). Hence the risk
measure can be written as g(C— X*" (T)) As noted
carlier, X*(T) is assumed to be nonnegative. Hence
for any admissible portfolio strategy m , we have
0<C-X**(T)<C. Define |:[g'(0),%)+>[0,0) as
the inverse of g'. In the case of g'(0)>0, we can
extend the domain of | to [0,00) by letting 1(y)=0
for ye [O, g’(O)) . We shall adopt useful tools from con-
vex duality: starting with the function ¢(z), consider its
(random, F (T)-measurable) Legendre transform

g(:)z=0s<ugc[z;—g(zﬂ (15)
1($)¢-9g(1(¢)). if g0)<t<g'(C);
=: C¢-g(C), if &>¢'(C); (16)
0, if Z;<g'(0).

The supremum is attained by
1(¢), if g'(0)<¢<g'(C);
2(¢)=4 C, if {>g'(C); 17)
0, if {<g'(0).
For the convenience of the reader, we summarize
below some basic properties of the function § .
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Lemma 3.2 The function § enjoys the following
properties.

1) §(¢)=0 for all ¢. §
[0,0).

2) The function § is convex and continuous.

Proof. a) It follows from the explicit expression of §
in (16) that § is nondecreasing. From the facts that §
is nondecreasing and §({)=0 for <0, it is easy to
see that §(£)>0 forall ¢ .

b) We see immediately from (15) that § is a convex
function, since it is the pointwise supremum of a family
of convex (indeed, affine) functions of ¢ . Note that this
is true whether or not g is convex. § is continuous
on (O,oo) since a convex function is continuous on an
open interval. Continuity of § at =0 follows di-
rectly from the explicit expression of § in (16).

It follows that for any initial capital
Xe (0,C(0)),1t(~) e A(x),and £ >0, we have

g(C—X*"(T)) = ¢H, (T)(C-X*"(T))
—g({HO(T))

almost surely. Thus, in conjunction with (6) and (11), we
obtain

is nondecreasing on

(18)

B(T)
_45{XB’ET(;)}—E[Q(éHO(T))] (19)
> £(C(0)-x)-E[G(¢Hy (T))]

= ¢[(C(0)-%)-G() ]+ A(S) = F ().

where we set

G(é’) = EO |:e’rT (CI{Q'HO(T)N}]'(C)}
S (EH T orcmrrsie) )}o < <o,

AC)=E[ 9(C) 1100y

+9 (I (¢H, (T)))1{9’(0)§§H0(T)§g’(c)} )}30 <g <o,

Now assume that for every ¢ €(0,%0), we have
PLg'(C)H,(T)=¢]=0. (22)

Remark 3.2 Note that (22) is not assumed for £ =0.
So the above assumption still allows P[C=0]>0,
which is the case for many popular options.

The function G(-) in (20) possesses the following
useful property.

Lemma 3.3 Assume that g satisfies (22). The func-
tion G(-) in(20)iscontinuouson [0,0).

(20)

21
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Proof. First we show that the function

G(¢)=E [Cl{ma»g'(c)}}

is continuous. Let (&), be a sequence of non-nega-
tive numbers converging to ¢ . If >0, then by as-
sumption (22),

limn—w:l{(nHo(Tpg’(C)} - 1{gH0(T)>g'(C)} ’

almost surely. Hence E,[C]<o and the dominated
convergence theorem implies the continuity of Gl(o).
Assume now that ¢ =0 . Then one can see by separating
the cases C#0 and C=0 that

lime-«Cligp,ry-g(cy =0

almost surely. Another application of the dominated
convergence theorem implies that G2(~) is continuous
even at ¢ =0 . The continuity of

Gz (é’) = E()[I (é’HO(—r))l{g'(o)ggHo(T)gg'(C)}]
follows similarly using the bound
H(&Ho (T))ligioyzcrrsgiey <C

and the dominated convergence theorem.
To derive the maximum of F(-) in (19), we assume
that g isin C’(R) and

E[H,(T)1(¢H,(T)) <o, ¢ 0. (23)

From (16) it follows that §(-@) is convex and
continuous on [0,oo) , and continuously differentiable on

(0,0).
In particular,
I (é’), if g'(0)<¢<g'(C);
§'(¢)=49 C, if ¢>g'(C); (24)
0, if ¢<g'(0).
Forevery ¢ >0, we have
E[H,(T)a'(¢H,(T))] <. (25)

Indeed, by assumption (23),

E[H,(T)@(¢Ho (T))]<E[Hy (T)1(¢Ho(T))]

(26)
+E[H,(T)C] <.

We now establish the following auxiliary result.
_Lemma 34 Define G(¢)=E[§(¢H,(T))]. Then
G(-) is convex on [0,0), continuously diffefentiable
on (0,:), and

G'(£)=6G(¢), ¢>o. (27)

Proof. Convexity of G(-) is inherited from §(-).
For any £ >0, let & be an arbitrary positive number
such that & belongsto (0,¢). Then
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S[8((6-+)Hy (T)-0(¢H, (T))]

= Hy(T)g'(¢Ho(T))
as h— 0, almost surely, and by the convexity of §
for |h|£5
Sa((&+MH,(T)-a(¢H, ()
T)|g' (¢ +0)H, (T))
)[g'((¢+0)Hy(T))]

Relation (25) and the dominated convergence theorem
imply

G(¢)= E[HO(T)Q’(gHO(T))]. (28)

The right hand side of (28) is exactly G(¢) by (24)
and (20). We know from Lemma 3.3 that G(-) is
continuous. So G is indeed continuously differentiable.

Now we have F(¢)=¢(C(0)-x)-G(¢). The func-
tion F is concave on [0,»), belongs to C'(0,00),
and satisfies F'(¢{)=C(0)—x—G(¢'). Note also that

lim*(¢) = C(0)=x>0
and

limF'({)<-x<0

{0

So F(:) achieves its maximum over [0,%0) at
£=inf{{>0G()=C(0)-%}. (29
Therefore, (19) gives

E[g(C—XX’" (T))}z F(¢). (30)

The following is the crucial observation in the duality
approach.

Remark 3.3 (Sufficient and necessary conditions for
strong duality) The inequality of (19) holds as equality
for some #te.A(x) and with ¢ =¢>0, if and only if
we have

E[H, (T)X**(T)]=x, (1)
and

X, _
C-X C1{5H0<T>>g'<c>}

+ (éVHo (T))l{g'(o)S§Ho(T)Sg’(C)}'

Now we are ready to state the main result of this sec-
tion.
_Proposition 3.1 For every xe(0,C(0)), the value
¢ isgiven by (29) and the A (T)-measurable random
variable

(32)
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Xxﬁ (T) = Cl{{‘Ho(T)>g’(C)} (33)
- (gHo (T))1{9'(0)S¢H0(T)£9’(C)}
satisfies
E[ H, (T) X" (T)]=x G4

Proof. From (20), (1), and the fact that
G(¢)=c(0)-x,

we see that

+1 (5 H, (T))1{gf<o>s5Hn<T>sg'<C)}ﬂ
=C(0)-6(¢)=x

Remark 3.4 Notice that whenever g¢'(0)=0, the
optimal terminal wealth in (33) has a simple form of

X**(T)=[C=1(£H,(T))| . A typical example is the

case of lower partial moment with g(x)=x", for some
p>1.

For the sake of completeness, we include an existence
result of the optimal hedging strategy.

Theorem 3.1 Existence of optimal strategy. For any
given x<(0,C(0)), and with ¢ e(0,0) given by (29)
and X**(T) given by (33), there exists a portfolio
process 7(-)e.A(x) for which (31) and (32) hold and
which is optimal for the problem of (14):

Vo(x)=E[g(C—XX”“(T))+] 35)

In particular, it is equal to that portfolio which re-
plicates the claim X**(T) of (33).

Proof. From Proposition 3.1, we can find an A(T)-
measurable random variable X**(T) such that (34)
holds. Consider now the P, -martingale (in the notation
of (33))

X (t):= Eo[z* (T)|#(t)]

(36)
=X+ j 1 (S) o dW, (

(s), 0<t<T,

written in its representation as a stochastic integral with
respect to W, (-) for a suitable portfolio process 7(-)
(see [12], p. 93). The process X "(+) satisfies X"(0)=Xx,
X"()=X**(-) and the requirement that it’s bounded
from below by zero, so #(-) € A(X). The optimality of
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i(-)e A(x) is then a consequence of Remark 3.3.

4. The Malliavin Calculus Approach

To solve the second subproblem of deriving the partial
hedging portfolios that generate the optimal terminal
wealth in (33), we consider two different approaches.
One is the well-known A -hedging approach and the
other is the Malliavin calculus approach. For easy refer-
ence and to make the paper self-contained, we first
briefly recap the concept of A -hedging. Then we intro-
duce the definition of the Mallivin derivative of a random
variable and the Clark-Ocone formula. Thereafter, we
present a Mallivin calculus approach for deriving the re-
plicating portfolio as first used in [5].

In the standard Black and Scholes framework, the
A -hedging approach works in the following way. In a
complete financial market, the optimal wealth process
X"(t) (The notations X'(-) and X**(-) are used
interchangeably.) is given by the discounted conditional
expectation of the optimal terminal wealth X (T)
under the risk neutral probability measure PR, , i.e,
X" (t)=e"™ E0 X Q}" In many situations, the
optimal wealth process is a Markov process and
is in the form of f (t S(t )) Where S(t) is the time t
stock price. If the condition that f(t, S(t)) is a
C"* -function is verifiable, we can apply the It formula
to f(t, S(t)) to obtain

dX*(t)=[ft CuS() 1,420’ (1) fS}

(£,S(t))dt+oS(t) f,(t,S(t))dW(t).
The replicating portfolio is denoted by
h()=(h"(-).H'(-)).
where h’(t) denotes the number of units to be held at
time t in the risk-free asset B,and h'(t) denotes the
number of units to be held in the stock S at time t.
Notice the relationship between h'(t) and =m(t) given

by h /S ) for 0<t<T . By the definition of
a self- ﬁnancmg portfolio, we have

dX" (t)=[h"(t)rs, (t)+h' (t) uS(t)]dt
+h'(t)oS(t)dw (t).

From the uniqueness of the It6 integral it follows that
we can use (37) and (38) to identify the replicating port-
folio h=(h',h'), where

" (1) =™ (X (1)1 (1) S(1)), (39)
h'(t) = f,(t.S(t)). (40)

Equation (40) is the famous A -hedging formula. As
pointed out in [4], the major difficulty of using the

G37)

(3%
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A -hedging approach is to verifty X*(t) satisfies the
necessary differentiability condition. We show by exam-
ples in the next section how the Malliavin calculus ap-
proach can help us get around this difficulty in the partial
hedging context.

The main components for the Malliavin calculus ap-
proach to work are the gradient operator and the Clark-
Ocone formula. Let P denote the family of all random
variables F:Q — R of the form

F(o)=9(6,.6,)

%)= a,x"

variables X,---,X, and 6’i=_[0 f (t)dw,

h(t) for some
fe Lz([O,T]) (deterministic). Notice that the set P
is dense in L*(Q) . Next, we define the Cameron-Martin
space ‘H according to

where (p( is a polynomial in n

H={y:[O,T]—>ﬂ?:y(t)

=[i7(s)dsf, = [[77 (s)ds<ee).
and identify our probability space (Q, F, F%)) with

(Co([0.T]).B(C, ([0.T]). 4)

such that W, (t,@)=w(t) forall te[0,T].Here
C, ([O,T]) denotes the Wiener space—the space of all
continuous, real-valued functions @ on [0,T] such
that @(0)=0, B(CO([O,T])) denotes the correspond-
ing Borel o -algebra, and g denotes the unique Wie-
ner measure. With this setup we can define the direct-
ional derivative of a random variable F e P in all the
directions y € H by

DyF(a))=di§[F(a)+§y)]§O. (41)

Notice from the above equation that the map

y— DyF(a)) is continuous for all weQ and linear,
consequently there exists a stochastic variable VF (o)
with values in the Cameron-Martin space H such that

D, (0) = (VF (0).7),, = [ )

Moreover, since VF (a)) is an H -valued stochastic
variable, the map t— VF (t,®) is absolutely continu-
ous with respect to the Lebesgue measure on [0,T].
Now we let the Malliavin derivative D,F (@) denote
the Radon-Nikodym derivative of VF (@) with respect
to the Lebesgue measure such that

7(t)dt.

D,F (@)= [ DF ()7 (t)dt. (42)

If we define this expression with Equation (41) we
have the following result, which in many cases is taken
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directly as a definition.

Definition 4.1 The Malliavin derivative of a stochastic
variable F e P isthe stochastic process
{DF te[0,T]} givenby

DF (0)= 3226,

i=1

6,) T (1)-

We note that the Malliavin derivative is well defined
almost everywhere dtxdP,.

Let us introduce a norm ||||12
ing to

on the set P accord-

N | —

IFl.=(B[F e[ oFra]f. @

Now, as the Malliavin derivative is a closable operator
(see [13]), we define by D), , the Banach space which is
the closure of P under the norm || ||l S

The Clark-Ocone formula is the cornerstone of the
Malliavin calculus hedging approach. This formula is a
generalization of the Itd representation theorem (see [14])
in the sense that it gives an explicit expression for the
integrand. The original Clark-Ocone formula (see [13])
applies to any F (T )-measurable stochastic variable in
the space D), .

[8] shows that the Clark-Ocone formula is valid for
any F(T)-measurable stochastic variable in L*(Q)
and therefore the Malliavin calculus approach to deriving
the replicating portfolio of a contingent claim as in [5]
can be extended in a similar way. However, since all of
the examples discussed later in the paper only use the
Clark-Ocone formula to the stochastic variables in D, ,,
we only state the original Clark-Ocone formula in [13]
and the results in [S] as a theorem. We refer the inter-
ested readers to [8] for the extensions.

Theorem 4.1 Let the stochastic variable F belong to
D, , . Then we have the representation formula

=& [F]+ [E[OFF ()]0 1)

Following the above Clark-Ocone formula and the
results in [5], any optimal portfolio X"(T)eD,, can
be replicated by the self-financing portfolio

n(t)=e" o B[ DX (T) £ ()] @4

In order to derive the replicating portfolio using the
above theorem, we need to calculate the Malliavin de-
rivative of X' (T). When X'(T) is a Lipschitz func-
tion of a stochastic vector process belonging to D), ,, the
following classic chain rule as proved in [13] can be used
to calculate D, X" (T).

Proposition 4.1 (Classic Chain Rule in [13]) Let
¢:R" >R beafunction such that

lo(x)-o(y)|<K[x-y],
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for any x,yeR" and some constant K. Suppose that
F=(F,,F,) isastochastic vector whose components
belong to the space ID,, and suppose that the law of F
is absolutely continuous with respect to the Lebesgue

measure on R". Then ¢(F)eD,, and

DI¢(F)=ZHZZ—Z(F)DF

i=1

5. Derivation of the Replicating Portfolios

In the context of perfect hedging, the A -hedging
formula in (40) is the standard method to obtain the rep-
licating portfolio for a European call option (see, e.g.,
[15], Chapter 5). The reason the A -hedging approach
works in this case is that the price of the European call
option has a closed-form expression (i.e., the famous
Black-Scholes formula) and therefore, it is not hard to
verify the required differentiability condition. The first
example in this section shows that this is no longer the
case in the partial hedging environment. Since the opti-
mal wealth process for partial hedging a standard call
option does not possess a closed-form formula, the veri-
fication of the continuous differentiability condition is no
longer a trivial issue. In the second example, we derive
the explicit representation for the partial hedging portfo-
lio of a standard lookback put option. For explicit com-
putational purpose, the loss function we shall use in both
examples is g(x)=X’/2, in which case | (y)=g""'=y.
Note that our approach can be straightforwardly adapted
to solve the problem with a more general convex loss
function.

Example 5.1 Consider partial hedging a standard
European call option with payoff function

C:(S(T) . It follows from Remark 3.4 and the
facts g (C) I (y)=y that the optimal terminal
wealth X" (T) |sg|ven by

+

X" (T)=((S(T)-K) =¢H, (T))
=(S(T)-K=¢H,(T))".

From (3), (4), (5), and (10), we have the time T stock
price

(45)

S(T)—Sexp{(d'\/\/0 (T)+(r—%O'2)Tj} (46)

and the time T state price density
HO(T)—exp{—H\NO(T)—[r—%QQJT}. (47)
To apply the A -hedging ap;iroach, one needs an

expression for X' (t)=e"TVE | X’ (T)|.7:(t)] , which
according to (45), is given by
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eV, (S(T)-K ~¢H, (T))

From the formulae (3) and (10),
written in terms of S(T) by

(t)}. 48)

Hy(T) can be

( /S) exp bT
where
béﬂ—loﬁ—r+192.
o 2 2

Letus put X, = oW, (t)+ (r —%o-z )t . The expression

(48) can be rewritten as

eﬁr(H)EO (S(t)exp{XT - )Zt} -K

A2 cof 215

Note that X;—X, is independent of F (t) and
S(t) is F(t)-measurable. By the basic properties of
the Brownian motion, we can rewrite (49) as

e‘r(T't)jm[S(t)ey -K

o[22 of-Lyeor) o1

where t is the normal density function with mean

(r —%GZJ(T —t) and variance o’ (T —t). To proceed

(49)

+

- )~(t)+bT}] F)|.

(50)

with the A -hedging approach, one has to assume that
(50) is a C'* function of (t,S(t)). However, in gen-
eral, (50) may not have a closed-form expression. Fur-
thermore, notice that the integrand in (50) is not even
once differentiable. Therefore, the assumption that (50) is
C'? seems hard to verify. Nevertheless, for comparison
purpose, we ignore this technical difficulty for now and
pursue the A -hedging formula. Assuming that the dif-
ferentiation can be carried out under the integral sign, we
obtain

() j 1 {eerg sg/"S(t)’g/”’1
(51)
-exp {—— y+bT H (y)dy

)Zt}+g§ sty !
syl
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exp X
(52)

where the set D=
relationship h'(t)
tions, we have

n(t):e—r(T—wE{l{D}(S(T)ngO(T)j‘f(t)}. (53)

We now derive the partial hedging portfolio using the
Malliavin calculus approach. The following properties,
which are proved in the Appendix, hold.

Corollary 51 X'(T)2(S(T)-K-¢H,(T))1p
belongsto L° (Q) and

)=(oS(T)+0H, (T)) L),

where the set D £ { (T ) K—¢H,(T)=0}.
From Corollary 5.1 and Theorem 4.1, the replicating
portfolio is given by

7(t)= "o ', [DX(T) £ (1)]
& 05 6, [ (S(T)+ oM, (T)) Ly | #(1) [54)

— e TUE, K (T)+ gg H, (T)]l{D} f(t)},

which coincides with the hedging formula in (53). Notice
that the Malliavin calculus approach not only avoids the
technical difficulty encountered by the A -hedging ap-
proach, but also uses much less derivation work.
Example 5.2 Now let us consider deriving the partial
hedging portfolio for a standard lookback put option
with terminal payoff C=Mg; —S(T), where
Mgy =sup,g,S(t) - The optimal terminal wealth is
g|ven by

LW/t

H,(T)>0}. Recall the
fter further simplifica-

X (T)=(M&-S(T)-¢H,(T)). (59

To pursue the A -hedging approach, one needs an ex-
pression for the optimal wealth process

X' (t)=e""E, [x T)|f(t)]
—r(T-t) s * (56)
= T8, (M5, - S(T)-¢H, (1)) |7 ()|
In the Appendix, we show that (56) can be rewritten as

e’r(T’I)J:ri(max{ Ot,e S(t )}

—f (exs(t)) SX(;I;(X y)dydx,

(57)

-0l
where f(x)% X+§(§j exp{bT} and ¥ is given

in (68). First of all, it is very hard, if not impossible to
obtain a closed-form expression for (57). Furthermore,
the integrand in (57) is not differentiable with respect to
S(t) . Therefore, verification of the differentiability con-
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dition is not easy. Even if we ignore this technical diffi-
culty, formal differentiation (disregarding the points
where it is non-differentiable) would be possible but gets
algebraically very messy in addition to being non-rigor-
ous. For these reasons we abandon the delta-hedging
approach and pursue the Malliavin calculus approach
instead.

Corollary 5.2 Let the optimal terminal wealth be
defined by X'(T)=(Mg —S(T)-¢H,(T)) . Then
X (T)e]D)12 and

DX’ (T)=oX'(T)
s
0t

MM <MEJL{S(T)+¢H, (T)< M3
+H(o+0)H, (T)LMS = S(T)+5H, (T)).

Proof. See Appendix.
It then follows from Theorem 4.1 and Corollary 5.2
that the replicating portfolio is given by

n(t) = o E, [ DX (T)| 7 (1)]
=X ( ) e t)MmPo(MtST < MOt’S(T)
+CH, (T) < M| 7 (1)) %)

+e '™ (1 +£j CE,
o

[ Ho(T)2{M Sy = S(T)+H, (T F (1) |
Define the Radon-Nikodym derivative
dR' _ H(T)
dR E,[H,(T)]

such that P/* is a probability measure absolutely con-
tinuous with respect to P, . By the Girsanov theorem, the
process W, (t)2W, (t )+t9t is a Brownian motion
under the probablhty measure P . Moreover, from
Lemma 8.6.2 in [14], it follows that for every stochastic
variable X such that EFbH [|X|] <o,

By, [Ho (T)X|7(T)]
=E, [H T)|f(t)]EOH[x|f(t)].

Now the last conditional expectation on the right hand
side of Equation (58) can be written as

B | Ho (T)2{M3; = S(T)+¢H, (T)}| 7 (1)
= Eo[Ho(T)P:(t)J EPOH
11{MS = S(T)+¢H, (T

EAG]
(r+¢92)(T—t)

-e Ho (1) R (Mgr = S(T)+¢H, (T)| 7 (1)).
(60)

on F(T),

(59)
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Formulae (58) and (60) yield the optimal partial
hedging strategy

n(t)=X"(t)-e"TIMSP, (M <Mg,S(T)
+¢H, (T)< M(f[|]-"(t))
e—(2r+02)(T71) [1+£J§H0(t) (61)

B (Mer = S(T)+¢H, (T)| £ (1)),

6. Conclusion

We solved the stochastic control problem of minimizing
the expected shortfall risk (quantified by a general con-
vex risk measure) under the constraint that the initial
capital is insufficient for a perfect hedge. We showed by
examples that the Malliavin calculus approach is useful
for finding the replicating portfolios in the partial hedg-
ing environment. Further research consists of investigat-
ing other target contingent claims and extending the re-
sults to incomplete markets.
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Appendix

Proof of Lemma 3.1.

Let X, = E[ H, (T)(X**(T)AC)]<x By the mark-
et completeness there exists a m, € A(X,) such that
Xe® = X*(T)AC. If X,=x then m £, satis-
fies the statement of the lemma. Suppose that X, <X.
By Dudley’s theorem ([16] or [17], Theorem 3.4.20)
there exists a process {Y;,F;0<t<T} satisfying

jOTdet<oo, as.
and
X—%, + [ YdW, (t) = 0.
Let
réinf{tzo:x—x2 +j;\qdv%(t):o} <T

and Y, £Y1_, . It follows that

X=X, + [ VAW, () =0 (62)
and for every te [O,T]
X=%, + [ ,dW, (u) > 0. (63)
Let m,(t) éie”Y;. Relations (9), (62), and (63) im-
ply that o
my € A(X=%,) and X 7™ (T)=0. (64)

Finally we define n, £m,+m,. We have =, e A(x)
since
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X Xm (t) = X %™ (t)+ XX *ms (t) >0.
By (64)
Xx,nl (T) — sz‘ﬂz (T)+ XX*XZ’“.? (T): XX‘T[ (T)/\C

Proof of Corollary 5.1. From Corollary 1 in [7], we
know that

S(T)-= Sexp{GVVO (T)+[r _%O—ZJT}

belongs to the Banach space D,, and
D,S(T)=0S(T). To show

H, (T)= exp{—H\NO (T)—(r —%QQJT} eD,,

and DH,(T)=-6H,(T), we approximate H,(T) by
a sequence in P and use Definition 4.1 together with
the closability of the Malliavin derivative. Notice also
that both S(T) and {H,(T) are absolutely continu-
ous. Then G(T)2S(T)-¢H,(T) must, as the differ-
ence of absolutely continuous functions, be absolutely
continuous. Since (Xx—K)' is a piecewise Lipschitz
function for all x, it follows from Proposition 4.1 that
(G(T)-K) el’(Q) with
D, (G(T)-K) =(oS(T)+¢0H,(T))1{D} o

Derivation of Expression (57). We are going to derive

an expression for the conditional expectation

EO[(M(fT—S(T)—gHO(T))+‘f(t)}. (65)
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Expression (57) can then be obtained by multiplying

the above conditional expectation by e, Equations

(3) and (10) imply the relation
Ho(T)= [@]6/5 exp{bT}.

Recall the definition for the function
f{x} £ x+cj(§j% exp{bT}.

Then (65) can be written as
6, [ (M3 -1 (s(T)))

Define the notations MfT 2 maXue[t,T]{Xu - )Zt} and

}'(t)}. (66)

M5 £ maxuqrS(u) . Then Mg; can be written as

max { My M5 } . Recall the notation
~ 1 . . .
X, £ oW, (t) +(r —Eazjt . In conjunction with the ex-

pression S(u)= S(t)exp{)zu - )Zt} , for uelt,T], it
follows that M = S(t)exp{M% }. Therefore (66) can

be written as
E, [(max{Mi,S(t)exp{Mé}}
—f (S(t)exp{f(T - )Zt}))+ f(t)}.

We note that MfT and X, - X, are independent of

(67)

F(t), whereas S(t) and Mg, are F(t)-measurable.

By the well-known properties of the Brownian motion,
the joint distribution of (Mf}, X, — )Zt) coincides with
that of Moxﬂm, )ZH). It is known (see [15], Corollary
B.3.1, p. 469) that

() 2R (M <y. X <X)

x—(r—;azj(T—t)
N “

[ i T

ax/T—t

Copyright © 2012 SciRes.

for X,ye®R such that y>0 and Xx<y. We can now
write (67) as

f;j; (max { My, eyS(t)}

+ O°W

(69)
~f(e's(v) @(x y)dydx.

"l("he) expression (57) is obtained by multiplying (69) by
e—r T-t )

Proof of Corollary 5.2. Write X" (T) as
o(S(T),Hy (T), Mgy )

where @(X,Y,z)=max((z—x-¢,0). From Corollary
1 in [7] and Corollary 5.1 above, My, S(T), and
Hy(T) all belong to D,,. Now as ¢ is a Lipschitz
function for all x, y, and z, we have by Proposition 4.1
that X" (T)eD,, ,and as the joint law of

(S(T), H,(T), M(fT) is absolutely continuous with
respect to the Lebesgue measure on R°  we get that

D, X" (T) :1{MfT > S(T)+§H0(T)}
MG > My D (M)
+1{S(T)+¢H, (T)> M}
A{S(T)+¢H, (T)> Mg | D (S(T)+¢H (T))
=D, (S(T)+¢H,(T))
=1{Mgr > S(T)+¢H, (T)|L{M5 > Mg foM
~1{S(T)+¢H, (T) <Mk H(oS(T)-¢oH, (T))
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