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ABSTRACT 

To reach an acceptable controller strategy and tuning it is important to state what is considered “good”. To do so one 
can set up a closed-loop specification or formulate an optimal control problem. It is an interesting question, if the two 
can be equivalent or not. In this article two controller strategies, model predictive control (MPC) and constrained direct 
inversion (CDI) are compared in controlling the model of a pilot-scale water heater. Simulation experiments show that 
the two methods are similar, if the manipulator movements are not punished much in MPC, and they act practically the 
same when a filtered reference signal is applied. Even if the same model is used, it is still important to choose tuning 
parameters appropriately to achieve similar results in both strategies. CDI uses an analytic approach, while MPC uses 
numeric optimization, thus CDI is more computationally efficient, and can be used either as a standalone controller or 
to supplement numeric optimization. 
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1. Introduction 

Every local control problem is an inverse task. The de- 
sired output of the system, the set-point, is prescribed, 
and the input of the system, the MV, is obtained in the 
feasible range. MPC solves this inverse task in the form 
of a constrained optimization problem, while CDI uses 
an analytical rule to calculate the MV, but the two meth- 
ods can be very similar. Goodwin [1] also states that 
most control problems are inverse problems. On the other 
hand some differences were also found, mainly because 
of the tuning of the compared methods. In the present 
study the tuning of the two methods are analyzed, with 
special respect to the closed-loop specification and the 
objective function. 

The direct synthesis method for the tuning of PID con- 
trollers is similar in idea to the constrained direct inver- 
sion [2]. A closed-loop specification is prescribed, and 
the transfer function of the controller needed in the con- 
trol loop is calculated, such that the control loop satisfies 
the closed-loop specification. If manipulator constraints 
are not present, the closed loop acts just like we want it. 
The problem is that usually the goals of fast settling and 
low overshoot are contradicting each other. 

In literature several PID tuning methods are described 
with one degree of freedom in tuning. One notable ex- 
ample is DS-d tuning [3], which is based on the direct 

synthesis, but the closed-loop specification is about dis- 
turbance rejection. In the [3] article we can see compari- 
sons of different τc values. Unfortunately there is no sin- 
gle rule for the decision. 

The SIMC method described by Skogestad [4] is theo- 
retically confirmed, while easy to use in practical situa- 
tions. There is a suggestion of τc in fast control, and also 
a suggestion for slower controller tuning. This article has 
the advantage that one can override the suggestions, be- 
cause the formulas are also provided. 

Tuning a MPC is even more complicated: the three 
time horizons (control, prediction, model horizons), the 
weighting factors of manipulator punishment, and in case 
of MIMO control, the weighting of controlled variables 
are the most apparent parameters [5]. Further complica- 
tions come, if the signals are filtered. It is not always 
evident, which signal to use in an objective function. 

In [6] a practical application of MPC is shown. The 
decision over time horizons is based on simulation ex- 
periments. 

This paper does not aim to answer the question about 
the best objective function or closed loop time constant. 
Here we compare controller strategies with two different 
philosophies to reveal equivalencies and differences. The 
article is built around a case-study, which is introduced 
in the first section. The following parts of the article in- 
troduce the controller strategies, and then they are com- 
pared. Finally the conclusions are drawn. *Corresponding author. 
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2. The Controlled System 

The example system chosen for this control study is a 
pilot-scale water heater [7] (Figure 1). The water runs 
through a pipe, in which it is heated by electric power. 
The power of the heater can be adjusted by a pulse-width 
modulated signal. This input of the system will be treated 
as a measured disturbance. The flow rate is adjusted by a 
pneumatic valve. The valve position will be the MV. The 
outlet temperature is measured, and this is the CV. The 
goal is to change set-points of the outlet temperature 
(servo mode) and keep the temperature on the given set- 
point despite disturbances (regulatory mode). There is 
also a third measurement: the flow rate is measured by an 
orifice plate and attached differential pressure meter. This 
signal is used in the calculation of the model outputs. 

Modeling the process relies on first principles. Some 
assumptions are made: only a heat balance equation is 
needed, in which convection and heat transfer from the 
heater rod towards the flowing water is accounted. The 
heat loss towards the environment can be neglected. Per- 
fect plug flow is assumed. The temperature dependence of 
material properties can be neglected. The model can be 
written in the following form: 

p

T F T Q

t A x V c
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          (1) 

Solving a partial differential equation can be hard, so 
division into discrete units (cascades) is a good approxi- 
mation with ordinary differential equations. Also it should 
be noted, that the signal of the differential pressure meter 
is transformed in a way that it is in linear correlation with 
the actual flow rate. By merging the constants of the 
equation, the following form is the result: 
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Figure 1. Schematic of the controlled system. 

where 
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             (3) 

This equation describes the process well, but the MV 
appears only indirectly in it. To create connection be- 
tween the valve position and the flow rate the steady-state 
characteristic was obtained, and it was used as a lookup- 
table. The relationship of uv and p is zero order with dead 
time: 

   ,v d pp t f u t t            (4) 

The last step before identification is to discretize the 
model. Previous studies revealed that the identification 
may benefit from turning the model to discrete from con- 
tinuous. The model gets the following form: 
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Index i marks the number of the cascade, while index k 
marks the time instance. 

The constants a, b, q and dead times td,p, td,q and td, in 
were subject to identification. A measurement was car- 
ries out in which all the inputs changed, but only one at 
once. The resulting data set was used for identification. 
Figure 2 shows that the model describes the process very 
well, and further experiences also justified this model. 

3. Constrained Direct Inversion 

The studied object is a relative first order system, thus a 
first order specification is prescribed: 

d

d
n

c n

T
T T

t
   ref               (6) 

τc is the closed-loop time constant. The smaller the τc is, 
the faster and more aggressive the control becomes. By 
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Figure 2. Measurement for identification. 
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substituting the derivative from the model equation, we 
get an algebraic equation. It can be rearranged to express 
the signal p, which is in direct connection with the MV: 

 
    

     

1

,

1

n n

ref n
q d q

c

p t
bn T t T t

T t T t a
qu t t

b



 


 
    








2

   (7) 

The valve position is looked up from the previously 
obtained steady-state characteristics. 

4. Model Predictive Control 

This paper is not meant to present a novel MPC method, 
but rather to use the flexibility of well-known elements. 
The model behind the MPC is the discrete nonlinear 
model discussed above. The optimization algorithm is 
the built in Matlab fmincon function, which was set to 
use SQP algorithm. The control horizon would be either 
too small for efficient control or too large for reaching 
optimality, if the value of the MV would be optimized in 
every discrete time instance. To overcome this difficulty 
only some of the points were optimized, while the ones 
between them were interpolated. The MV after the con- 
trol horizon was the steady-state value, calculated from 
the steady-state model. The starting guess of the optimi- 
zation was the sequence found to be optimal in the pre- 
vious time instance, with the according time shift. Mod- 
eling error is not studied here, thus feedback is not in- 
cluded in the algorithm. 

5. The Objective Function and the 
Closed-Loop Specification 

The most widely used objective functions are the sum of 
squared errors and the sum of absolute errors, although 
there are numerous other possibilities. Here the squared 
error is studied, because the main effects are similar with 
absolute error. As a recent example [8] uses the same 
objective function for a MIMO case. 

Let the cost function be the following: 
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pr denotes the prediction horizon, c the control horizon, k 
the index of the present time sample.  

It is important to note, that the errors are averaged in 

time, thus the differences in control and prediction hori- 
zon do not affect the weighting between the two terms. 
Because of this, the same function can be used for the 
evaluation of the whole time series. Figure 3 represents a 
typical simulation experiment, in which both the set- 
point and the disturbance changed. Figure 4 shows the 
numeric values of the cost function obtained with MPC 
control. 

Although MPC optimizes the MV with regards to a 
short part of the time series, it is still very close the opti- 
mality of the whole time series, as the MV found to be 
optimal has little effect on the CV (and the cost function) 
outside the prediction horizon. 

The question is how these results can be compared to 
the direct constrained inversion. Constrained inversion of 
a relative first order system has one degree of freedom, 
the filtering time constant of the closed-loop specifica- 
tion. By varying the time constant, different cost function 
values can be obtained for the time series. Further if the λ 
weighting factor changes, the value of the cost function 
also changes. The obtained surface is represented on 
Figure 5. The line marks τc with the lowest cost function 
at a given λ. 

Here we can see the relationship between the closed- 
loop time constant and the λ weighting factor. It is visible, 
that there is some kind of discontinuity between λ values 
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Figure 3. Typical simulation experiment. 
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Figure 4. Terms of the objective function with different 
weighting factors. 
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Figure 5. Objective function values achieved by different 
closed-loop specifications, evaluated with different weight-
ing factors. The lowest value for a given λ is marked with 
the white line. 
 
of 0.35 and 0.4. The reason is that there are multiple lo- 
cal minimums, and the location of the global minimum is 
suddenly transferred from one local minimum to another. 
To understand this effect, let the derivative of the cost 
function to be equal with zero, which is a necessary con- 
dition of optimality: 
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By rearranging we get: 
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Figure 6 represents the relationships of 2
ye  and , 

and it is visible, that there are inflexion points on this 
function, meaning that for some λ values the Equation 
(12) is valid at multiple points. The practical cause for 
this may be that the optimality can be either approached 
from the side of fast control or the side of sparing the 
manipulator. Further local optimums may appear due to 
manipulator constraints. 

2
ue

On Figure 6 the Pareto-front of the optimization is 
also visible. The direct inversion method gives a good 
estimation of the optimality when  can be left high, 
or otherwise said, the λ is low. However the direct inver- 
sion performs badly in decreasing , it significantly 
falls behind the optimality. By applying the available 
best τc values for a given cost function, the values 
achievable are presented on Figure 7. These results also 
assure us that the goodness of the optimality in the case 
of direct inversion falls below the MPC approach. 

2
ue

2
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The main reason to this effect is that the system, which 
is nonlinear by its nature, is forced to act as a linear sys- 
tem because of the direct inversion closed-loop specifi- 
cation. This causes sometimes that the system cannot act 
as fast as desired, and the MV hits the constraints, while 
in other cases the system would have more reserves to  
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Figure 6. Error of set-point tracking as the function of MV 
punishment term. 
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Figure 7. Comparison of achievable optimums while vary-
ing the weighting factor. 
 
act faster, but because of the specification this is not ex- 
ploited. The result is generally more rapid handling of 
the MV, which results that low  values are hard to be 
achieved. 

2
ue

The two approaches become similar, when the ma- 
nipulator constraints rule the controlled system. Figure 8 
shows the number of time samples spent on either lower 
or upper MV constraint. This means that the reserves of 
the system are totally exploited, and there is no possibi- 
lity to make the system act even faster. Of course this 
increases the manipulator punishment term, but when λ is 
low, this does not increase objective function value sig- 
nificantly. 

6. Using Filtered Reference Signal in MPC 

Although our primary idea was that the two approaches 
are very similar in their inversion capabilities, by now a 
lot of differences were found. To resolve these differ- 
ences some further changes have to be made on the ob- 
jective function of the MPC. It is generally accepted to 
filter the set-point signal to obtain the reference signal in 
the objective function. The reason for this is the same as 
including a manipulator punishment term: preserving the 
stability of the MPC algorithm. 
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Figure 8. Time spent on constraints as the function of λ. 
 

If λ is set to zero, then only the control error is pun- 
ished. This way any reference signal can be followed, 
until MV constraints are not hit. If the same filtering and 
time shift is applied, as the closed-loop specification of 
the constrained inversion, then the difference seems to 
disappear. Still there are some minor sources of differ- 
ence: numeric inaccuracy of the optimizer, and different 
handling of constraints. These results are summed up in 
Figures 9 and 10. 

7. Conclusions 

Simulation results show that objective function is a key 
point in optimal control. Even the parameters of the in- 
troduced simple objective function can cause significant 
differences in the behavior of the closed loop. It was also 
shown, that there are some differences, but with a well- 
chosen closed-loop time constant, the CDI can act in a 
very similar way as the MPC does. It is evident that MPC 
usually performs better in reaching optimality, as the 
process is evaluated with the same objective function as 
it was used in its optimization, while CDI follows a rule 
that is not meant to be an optimal solution. Modifying the 
reference signal resolves most of the differences. When 
MV constraints are not hit, MPC and CDI act almost the 
same. 

Finally the source of differences in the two methods 
can come from different filtering of the reference signal, 
constraint handling and the difference of numeric and 
analytic approach. For lower level control it is advanta- 
geous to use a fast controller, and as simple as possible. 
CDI is able to calculate the MV analytically, which is a 
great advantage when compared to the computationally 
less efficient or less precise numeric optimization. For 
more complex systems CDI can also support the optimi- 
zation of the process by calculating the initial guess that 
is already close to optimality. 
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Nomenclature 

Symbol Meaning Unit 

A Flow area m2 

a identified parameter - 

b identified parameter - 

C Cost function - 

c Size of control horizon - 

cp Specific heat J/kgK 

d Discrete dead time of diff. pressure signal - 

dq Discrete dead time of heater - 

dt Sample time s 
2

ue
2

 MV punishment term - 

ye  Control error term - 

F Flow rate m3/s 

λ Cost function weighting factor - 

k Present discrete time - 

n Total number of cascades - 

p Signal of differential pressure meter - 

pr Size of prediction horizon - 

Q Heater power W 

ρ Density of water kg/m3 

t Time (general) s 

T Temperature (general) ˚C 

τc Closed-loop time constant s 

td,in Dead time, inlet temperature s 

td,p Dead time, diff. pressure signal s 

td,q Dead time, heater s 

Ti Temperature at ith cascade ˚C 

Tin Inlet temperature ˚C 

Tout Outlet temperature ˚C 

uq Heater driving signal % 

uv Valve position % 

V Volume of the equipment m3 

x Length coordinate m 
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