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ABSTRACT 

The analysis and design of observed-based nonlinear control of a heartbeat tracking system is investigated in this paper. 
Two of Zeeman’s heartbeat models are investigated and modified by adding the control input as a pacemaker, thereby 
creating the control-affine nonlinear system models that capture the general heartbeat behavior of the human heart. The 
control objective is to force the output of the heartbeat models to track and generate a synthetic electrocardiogram (ECG) 
signal based on the actual patient reference data, obtained from the William Beaumont Hospitals, Michigan, and the 
PhysioNet database. The formulations of the proposed heartbeat tracking control systems consist of two phases: analy- 
sis and synthesis. In the analysis phase, nonlinear controls based on input-output feedback linearization are considered. 
This approach simplifies the difficult task of developing nonlinear controls. In the synthesis phase, observer-based con- 
trols are employed, where the unmeasured state variables are estimated for practical implementations. These observer- 
based nonlinear feedback control schemes may be used as a control strategy in electronic pacemakers. In addition, they 
could be used in a software-based approach to generate a synthetic ECG signal to assess the effectiveness of diagnostic 
ECG signal processing devices. 
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1. Introduction 

The human heart is a complex yet robust system. One of 
the most important signals that are being generated dur- 
ing the operation of the human heart is the electrocardio- 
gram (ECG). It is a time-varying signal measuring the 
potential of the electrical activities in the cardiac tissue. 
A single cycle of the ECG consists of the contraction and 
relaxation of the heart, which is the heart pumping action. 
The ECG can be measured by recording the potential 
differences between two electrodes placed on the skin at 
pre-determined positions. The characteristic information 
extracted from the ECG can be used to assess the state of 
the cardiac health and potential heart problems [1,2]. 

The research and development of mathematical models 
for heartbeats or heart rhythms have been very active in 
the literature [3-17]. One of the important developments 
was accomplished by Zeeman [3], where the models 
captured, at least qualitatively, three essential character- 
istics of the cardiac dynamics: 1) a stable equilibrium; 2) a 
threshold for triggering the action potential; and 3) the 
return to equilibrium. The resulting models are a 2nd- 
order nonlinear ordinary differential equation (ODE) of 
the Liénard-type representing the heartbeat dynamics, 
and a 3rd-order nonlinear ODE that can be applied to the  

nerve impulse. These models are based on the normal 
pacemaker generated by the sino-atrial (SA) node [4], 
which is the dominant pacemaker as compared to the 
slower one produced by the atrio-ventricular (AV) junc- 
tion. This slower pacemaker is regarded in [5] as a pas- 
sive conduit. In [6], the authors modified the 2nd-order 
ODE heartbeat system in [3] by incorporating an on-off 
control variable representing the pacemaker mechanism 
of contraction-relaxation of the heart. Reference [7] modi- 
fied the 3rd-order nonlinear ODE model in [3] by adding 
control parameters that affect the frequency of the oscil- 
lation to control the heart rate variability and used a neu- 
ral network to produce the ECG signal. 

Another well-known approach to modeling the cardiac 
induction system is based on the van der Pol (VdP) type 
oscillators [8]. The idea of this approach stems from the 
analogy between the properties of relaxation oscillators 
and those of biological pacemakers. In contrast to [3], a 
coupled VdP oscillator assumes a more active role for the 
AV pacemaker, and considers the coupling effect be- 
tween the SA and the AV pacemakers in the normal elec- 
trophysiological dynamics. A study of the synchroniza- 
tion properties of the rhythms produced by the SA and 
AV nodes using two coupled VdP oscillators was inves- 
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tigated in [9-13]. Furthermore, reference [14] proposed a 
proportional feedback control algorithm to synchronize 
the rhythm of the SA and AV pacemakers using the 
model from [11,12]. Recently, Gois and Savi [15] pro- 
posed a heart rhythm model that consists of three coupled 
modified VdP oscillators with time delay. Numerical 
simulations were carried out to reproduce the ECG signal 
that could be altered by changing the coupling parame- 
ters. A dynamical model that generates a synthetic ECG 
signal, based on statistical information such as the mean, 
standard deviation of the heart rate, and the power spec- 
trum of the RR tachogram was proposed in [16]. The 
model does not rely on the dynamics of the heart but the 
ECG statistical information as a priori data to generate 
the signal. Reference [17] studied the synchronization 
between the models from [15,16] as a tracking control 
problem by using the model from [15] as a process plant 
and the ECG generated by the model from [16] as a ref- 
erence signal, and proposed a heart rhythm proportional 
controller with  tracking error as one of the control 
parameters. 

L

This paper considers the analysis and design of ob- 
server-based controls of the modified Zeeman’s models 
in [3] using the input-output feedback linearization tech- 
nique. A previous investigation without observers was 
presented in [18]. Observer-based techniques and tech- 
nology are motivated by the needs of practical imple- 
mentations: for systems with inaccessible state variables, 
it will be difficult to implement most control schemes 
requiring feedback of the inaccessible states without an 
observer for state estimation. An observer-based control 
scheme is, in general, more difficult to analyze and de- 
sign. The importance of the observer-based nonlinear 
feedback tracking control technique developed in this 
paper is that it may be used as a control strategy for elec- 
tronic pacemakers, or a software-based generation of a 
synthetic ECG signal for assessing the effectiveness of 
diagnostic ECG signal processing devices. 

The paper is organized as follows. In Section 2, the 
dynamic model and its characteristics are investigated- 
phase portraits and stability analysis are conducted. Sec- 
tion 3 provides the fundamental of nonlinear feedback 
linearization control and observer theory. The results of 
the observer-based nonlinear tracking control systems 
and the simulation results are demonstrated in Section 4. 
The conclusions are presented in Section 5. 

2. The Heartbeat Models 

A cycle of the heartbeat consists of two states: diastole 
which is the relaxed state, and systole which is the con- 
tracted state. The cycle starts when the heart is in the 
diastolic state. The pacemaker that is located at the top of 
the right atrium—one of the upper chambers of the heart 
—triggers an electrochemical wave that spreads slowly 

over the atrium. This electrochemical wave causes the 
muscle fibers to contract and push the blood into the 
ventricles—the lower chambers of the heart. The elec- 
trochemical wave then spreads rapidly over the ventricles 
causing the whole ventricle to contract into the systolic 
state, and pumping the blood into the lung and the arter- 
ies. Immediately following the systolic state, the muscle 
fibers relax quickly and return the heart to the diastolic 
state to complete one cycle of the heartbeat [6].  

A mathematical model that describes the behavior of 
the heartbeat was developed in [3], where it was sug- 
gested that such a model should contain three basic fea- 
tures: 

1) A stable equilibrium state representing diastole; 
2) A threshold for triggering the electrochemical wave 

causing the heart to go into systole; and 
3) The return of the heart to the diastolic state. 
The resulting models that address the characteristics 

above are given below. 

2.1. The 2nd-Order Nonlinear Heartbeat Model 

The 2nd-order nonlinear heartbeat model is given by 
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 x t1  represents the length of the muscle fiber, where 
 x t2  is a variable related to electrochemical activities, 

and can be measured as the potential across the mem- 
brane of the muscle fiber—the ECG signal; the parame- 
ter   is a small positive constant associated with the 
fast eigenvalue of the system, dx  is a scalar quantity 
representing a typical length of muscle fiber in the dia- 
stolic state, and  represents tension in the muscle 
fiber. 

0T 

x

Figure 1 illustrates the phase portrait of (1) with the 
initial conditions along the left and right diagonals across 
the 1 2x  plane. The parameter values used to produce 
the phase portrait are 0.2 , T = 1, and d 0.x   The 
cubic line (dashed curve) represents the steady-state of 
the first equation in (1). When d , the equilibrium 
point of the system is at the origin. All trajectories initi- 
ated above the cubic line, i.e., 1 21  direct 
downward toward the origin along the cubic line. 

0x 

3 0,x Tx x  

3 0x Tx x
Likewise, all trajectories started below the cubic line, 

that is, 11 2   , direct upward toward the ori- 
gin along the cubic line. All trajectories end up at the 
limit cycle around the equilibrium point. It is obvious 
that the equilibrium point is unstable as the vector field 
inside the limit cycle directs away from the point. This 
conclusion can be affirmed by analyzing the stability of 
the equilibrium point using the well-known Lyapunov 
indirect stability theorem [19]. For this purpose, let A be 
the constant Jacobian matrix of (1) at the origin, it fol-  
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Figure 1. Phase portrait of the 2nd-order heartbeat system 
for ε = 0.2, T = 1, xd = 0. 
 
lows that 
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The eigenvalues of A are given by 1   and 

2 1.38   for 0.2  , and  therefore, the origin 
is unstable since both eigenvalues are real and positive. 

1,T 

In Figure 1, since the vector field around the segment 
AB and CD always points toward the cubic line, and 
away from the cubic line in the BC portion, any point 
along the cubic line in the AB and CD segments is con-
sidered to be stable whereas points along the BC section 
are unstable. The points B and C are important as they 
specify the threshold—the second basic feature (ii) of the 
heartbeat model mentioned earlier. These points can be 
computed easily by considering the eigenvalues of the 
matrix A in (2) 

   2
 1,2 1 1
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  (3) 

The condition that the real part of the eigenvalue is 
negative is . Therefore, the system is stable  2

13 0x T 
if 1 3x T  which refers to the section AB, and 

1 3x T   which describes the section CD. In other  

words, the thresholds for switching between the diastolic 
and the systolic states at point B is 1 3x T , and 

1 3x T   at point C. 
The stable equilibrium point that represents the state of 

diastole can be determined by changing the value of dx  
in the second equation of (1) such that it satisfies the sta- 
bility condition above. Figure 2 displays the phase por- 
trait of the system with d 1.024x  . The equilibrium 
point is stable at (1.024, −0.0497), and qualifies to be the  
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Figure 2. Phase portrait of the 2nd-order heartbeat system 
during diastole for ε = 0.2, T = 1, xd = 1.024. 
 
diastolic equilibrium state, i.e., satisfies the first feature 
(i): a stable equilibrium. 

In Figure 2, all of the trajectories, regardless of their 
initial condition, end up at the diastolic equilibrium point. 
Since the equilibrium point is stable, the system will stay 
at this point forever unless there is an external excitation 
that forces the system to a new equilibrium point. In [6], 
the authors modified the system by adding a control input 
u(t) as shown below: 
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where the additional parameter sx  represents a typical 
fiber length when the heart is in the systolic state, and 

 represents the cardiac pacemaker control mecha- 
nism that directs the heart into the diastolic and the sys- 
tolic states. By setting the cardiac pacemaker control 
signal u(t) in the form of {0} and {1} (on-off controls), 
the equilibrium point of the system can be switched be- 
tween the diastolic and the systolic states. Figure 3 dis- 
plays the phase portrait with s  the stable 
equilibrium point is located at (−1.3804, 1.25).  

( )u t

1.3804,x  

2.2. The 3rd-Order Nonlinear Heartbeat Model 

The 3rd-order nonlinear heartbeat model is given by 
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 x t1  refers to the length of the muscle fiber, where 
 x t2  represents tension in the muscle fiber,  x t3  is 

related to electrochemical activities,   is a positive 
constant, and u(t) represents cardiac pacemaker control  
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Figure 3. Phase portrait of the 2nd-order heartbeat system 
during systole for ε = 0.2, T = 1, xd = –1.3804. 
 
signal which directs the heart into the diastolic and the 
systolic states.  

The dynamics of the 3rd-order system are similar to 
those of the 2nd-order system except that the dynamic of 
the muscle fiber tension is taken into consideration, that 
is, the constant T in the 2nd-order system becomes a state 
variable  in the 3rd-order system.  2x t

,

,

n n

n

 

3. Theoretical Background 

3.1. Nonlinear Input-Output Feedback 
Linearization 

Consider a control-affine single-input single-output (SISO) 
nonlinear system described by 

( ) ( ) ,  , :

( ),               :
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where  is the state vector,  are the 
control and output, respectively; f, g are smooth vector 
fields in a domain D and h a smooth function in D, where 
D is an open set in  

Given the nonlinear system in (6), our goal is to find a 
transformation function (diffeomorphism)  z T x
  T 0 0

 

 with 
 that transforms the nonlinear system in the 

x-coordinates to a linear system in the z-coordinates. One 
of the most important reasons for finding the transforma- 
tion is that the powerful linear system theory and meth- 
odologies can be applied once a nonlinear system has 
been linearized. 

Differentiating the output y t

   

 with respect to t 
yields 

y L h
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where  and g  denotes the Lie deriva- 
tives of  with respect to  and 

L hf x
 h x f x  g x , re- 

spectively. If g , then x  ty  is not a function 
of  u t . Continuing successive differentiation ρ times 
until the input  u t

     1y L h L L h u   f fgx x

 appears explicitly, we obtain 

       (8) 

The smallest integer   for which u(t) appears is re- 
ferred to as the relative degree. The nonlinear system in 
(6) is said to have a well-defined relative degree   in a 
region  if , oD D   0kL L h fg x 0 1k    ; and 

 1 0L L h g f , ox D x

n

. When the relative degree is 
equal to the dimension of the nonlinear system, that is, 
  , the system is said to be fully linearizable, 
whereas it is only partially linearizable if n   (both 
heartbeat systems considered in Section 4 below have 

1  ; hence both are partially linearizable). 
From (8), we define 
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 

   (9) 

where v(t) is a one-dimensional transformed input cre- 
ated by the feedback linearization process. Equation (9) 
yields the linearizing feedback control law [19-21]  
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To develop an overall representation of the system for 
the partially linearized case with 

 is nonsingular. 

  , the transforma- 
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where ξ  n, η    ,  1, ,i n and i   x   
are chosen such that  

D D
T x  is a diffeomorphism in a 

domain o . In other words, the Jacobian matrix 
associated with  T x
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for all ox

v ξ Aξ

. 
The transformation (11) leads to the normal form [20] 
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              (15) 

  A B  1 and where C   are in con- 
trollable canonical forms given by, respectively, 
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Equation (13) represents the external dynamics, while 
(14) is referred to as the internal dynamics of (6). Setting 

 in (14) for all  yields 

 0 0,η f η              (16) 

which represents the zero dynamics for (6). The stability 
of the zero dynamics in (16) is an important issue in de-
signing a controller. A system whose zero dynamics are 
asymptotically stable in the domain of interest is called a 
minimum phase system. The local asymptotic stability of 
the zero dynamics is, clearly, the necessary and sufficient 
conditions for the local asymptotic stability of the feed- 
back linearized system described in (13)-(15) [21,22]. In 
the case that the zero dynamics are unstable in the region 
of interest, the system is known as a non-minimum phase 
system. Generally, a system of this type cannot be used 
for state-feedback control system design because some of 
the state variables will escape to infinity. In this case, the 
stabilization of the unstable zero dynamics needs to be 
considered, if possible. 

3.2. Asymptotic Output Tracking 

Let the control objective be steering the output  y t  to 
a desired reference signal  ry t

 y t y
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. This gives rise to an 
output tracking control problem. Defining the output 
tracking error as r , the main objective 
is to force  such that 
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A suitable tracking control law for the transformed 
input v(t) is given by 
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constant gain matrix to be determined such that 

cl  is Hurwitz, that is, all of the eigenvalues 
of cl  lie in the open left-haft complex plane. Combi- 
nation of (18) and (10) yields the nonlinear tracking con- 
trol law 
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3.3. Observer for Normal Form 

The design of observer-based nonlinear control system is 

addressed in this section to provide real-time estimates of 
the inaccessible dynamical states required for the imple- 
mentation of control laws. It is well-known that a Luen- 
berger observer for a nonlinear control system based on 
input-output feedback linearization when    exists, 
since the transformed system in the z-coordinates is in 
linear controllable canonical form. However, this is not 
true for the normal form, i.e., when n  , because the 
internal dynamics (14) are unobservable by the chosen 
output  y h x  [19,20]. Nonetheless, by applying the 
results of [23,24], we will show that an observer for such 
systems may be possible. Without loss of generality, we 
assume that the normal form (13)-(15) has the equilib- 
rium point at the origin. First, we linearize the normal 
form given by (13) and (14) in the following partitioned 
form: 
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z Bz A q z

C

ξξ

η q ξ ηη
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z


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
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
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 (20) 

  1n
owhere o

A  1nB  1 n
o

C , o , , q z  , 
z is given in (11), and where 

 
 

 
 

 
 

 
 

11 12
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0,0 0,

2
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,
,            ,

,
 

v v  
   

  


      

ξ η ξ η

ξ η

ξ

A

η ξ η

A B A B

f f
A A

ξ η

 (21) 

   
 

 
 

   
0,0 0,0

0 21 22

,
, ,

,

, , .

v v
v v

 
   

 
 



q f A ξ A

ξ η ξ η
ξ η ξ

η η

η
ξ η

ξ ξ η

    (22) 

Equation (20) is in a standard linear system with oq z  
being considered as a disturbance vector. If  ,o oA C

 1 TT T T n T
o o o o orank n 

 is 
an observable pair, that is, 

 C A C A C    (23) 

and the term q z  is Lipschitz so that there exists a 
Lipschitz constant   such that 

    22
ˆ ˆ q z q z          (24) z z

oD Dfor all z in a region , then an observer for (20) 
can be formulated as 

 ˆ ˆ ˆocl o ov y   z A z B q z L

1n

     (25) 

Lwhere the gain matrix 
A A LC

 is determined in such a 
way that  is Hurwitz. ocl o o

Now, let the estimation error associated with (20) and 
(25) be defined by      ˆt t t z z z . We need to show 
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that  converges to zero asymptotically. It follows 
from (20) and (25) that 

 tz

   ˆo oqocl A zz z q z

  TV 

       (26) 

Consider a Lyapunov candidate function 

z z Pz  

ocl  

               (27) 

where P is a real symmetric positive definite matrix and 
is the solution of the Lyapunov equation 

T
oclA P PA Q

   ˆ2 .o o  q z q z

 q z  oq z

          (28) 

with Q a positive definite symmetric matrix. It follows 
that 

  T TV   z z Qz z P       (29) 

Since  is Lipschitz, so is . Substituting 
(24) into (29) yields 

  2
2
22TV  z z Qz   P z 

 
       (30) 

Since min

2
2T z Qz  Q z , it follows that 

     2
222 minV   z Q P z

 

      (31) 

is negative definite, provided  min , so 
that the estimation error  as t . 

2
2Q P


 

  0t z
Finally, with reference to (11), the observer given by 

(26) can be expressed in the x-coordinates as 

      ˆv y x
1

ˆ
ˆ ˆ

ˆ
ocl o o


     

 T x
x A T x LT

x
B q  (32) 

4. Application to the Heartbeat Systems 

We apply the theoretical results above to develop an ob- 
server-based nonlinear tracking control for the heartbeat 
systems (4) and (5). First, we consider the 2nd-order 
heartbeat system (4), with    2y t x t

 
 as the output 

measurement (recall that 2x t  can be measured as the 
potential across the membrane of the muscle fiber). 

Differentiating the output with respect to t yields 

 d d s1y x x  x x u 

1

          (33) 

where u(t) appears, hence the relative degree is   . 
The diffeomorphism T is given by 

 
 
 

2

1

  

 

 

x

h x


   
    
      

   x t x

   2


 

   
  

x
z T x

x
 (34) 

where 1  satisfies (12). Equation (34) shows 
that the original system in (4) is already in a normal form 
when the output is chosen as y t x t

 2

. We note that 
(34) reveals that  and  1x t x t

 d s

 are the internal and 
external dynamics, respectively. Rewriting (4) using (34) 
yields the normal form 

d x x u         (35) x  

 31
T   


     

.y

       (36) 

             

The zero dynamics satis

         (37) 

fy 

   3

0

1
0 ,f T





  


      (38) 

There are three equilibrium points for (38)



: 0  , 
T . We need to analyze the stability of the zero dy- 

na
rem [

mics. Applying the Lyapunov indirect stability theo- 
19] to (38), the Jacobian matrices at the origin and 

T   are given by 

 2

0

3 T


1

1 T
A

 

           (39) 

  T2
2,3

1
23

T

TA



 

       (40) 

Since T and   are positive constants, it follo
0A   and 3 0A

ws that 
1 2, , hence the equilibrium point at the 

origin is unstable and the equilibrium points at  
T  are totically stable. In other words, re- 

gardless of the unstable equilibrium at the ori
te of the zero dynamics will end up at either the 

point 

    asymp
gin, the 

steady-sta
T   or T    depending on the initial 

condition. As a result, the zero dynamics are asymptoti- 
cally s erefo -order heartbeat system is a 
minimum-phase system.  

To proceed to the output tracking control design, we 
let the tracking error b

table. Th re, the 2nd

e      e t y t y t  where r

   2y t x t . Using (18), the transformed input v(t) is 
given by 

v Ke yr                  (41) 

where K = 100 is obtained by placi
–100 of the complex plane. Consequently, the linearizing 

ng the real pole at s = 

feedback control law according to (19) is given by 

  1

1
r d

d s

Ke y xu x
x x

  


    (42) 

The development of an observer is accomplis
rewriting (35)-(37) in the form of (20) as: 

hed by 

  

 

(

3

)

,1 1
0

1 0 ,

o

o o

o

vT

y

 
  



0 1 0
   1   

                                         

 



q z
z Bz

A

C

z




   (43) 

where 



 d d sv x x x u    . It follows that  ,o oA C  in 
(43) is observable, and the term  o

Lipschi server for (43) is give  by 
q z  is locally 

tz. Therefore, the ob n
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bas
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, th

(25) where the gain matrix  225 0
TL  is cho- 

sen by placing the observer poles at  120, 100s     
of the complex plane. Finally ed track- 
ing control law for the 2nd-order hea
given by 

e observer-
rtbe

 

normal form is written as 

  1 d

1
ˆr r

d s

K y yu y   

2nd-order heartb
   2

xx   (44) 

The simulation of the eat contro
tem 

x x

l sys- 
(4) with the output y t x t  and t

 real discret

he control 
law (44) was conducted using MATLAB. Figure 4 dis- 
plays the tracking result of e ECG data from 
PhysioNet database [25]. In Figure 4(a), the output 

 2x t  converges and tracks the ECG reference signal 
very well. Figure 4(b) displays the pacemaker signal or 

ntrol law described in (44). 
Figure 5 demonstrates the result of the observer in the 

x-coordinates along with the estim

the co

on errors. The initial ati
condition of  1 2,  x x  is  0.3,  0.01 , and that of the 
estimated states  1 2ˆ ˆ,  x x  is (0, 0). Both estimated states 
converge quickly to the rea especially l states,  2x t . 
Finally, the multiple pulses ECG signal is illustrated in 
Figure 6. 

Next, consider the 3rd-order heartbeat system (5) with 
  3 y t x t  as the output m Differentiating 

th

The 

easurement. 

1

e output with respect to t yields 

2 1y x u                (45) 

relative degree is   . We o

 
 
 

btain the transfor- 
mation function  

 
3

1

2

1 1

2 2

 x

x

h

x


 
 

 
    
  

x

z T x x

x

 
       
      

   (46) 

which also shows that the original system (5) is already 
in a normal form when the  

 

output is  3y t x t . Note 

2 1 ,u   

that    1 1 ,tx x  and    2 2x t x  satisfy (12). The 

            (47) 

 3
1 1 1 2

1
,   


   

2 1 22 2 ,

     (48) 

    

y

           (49) 

.                    (50) 

The zero dynamics are given by 

 3
1 1 1 2

2 1 22

1
,

2 .





 

 

   

   




       (51) 

There are two equilibrium points associated with (51): 
the origin, and  ,1 2  = (1,–1). Applying the Lyapunov 
indirect stability theorem [19] to the latter equilibrium 
point yields 

 2
1 2 1

1

(1, 1)
2 2 2 2

1 1 2 1
3  

   



         
   

         


A . (52) 

 Re 0,  1, 2i   i  where iIt follows that   re- 
presents the  eigenvalue; hence, matrix 1  is Hur- 
witz. Therefore, the equilibrium point at (1, –1) is as- 
ymptotically stable. Next, consider the equilibrium point 
at the origin 

thi A

 2
1 2 1

2

(0,0)

1 1
0 0

2 2
2 2

3  
 

              





A

A

 (53) 

The eigenvalues of 2  are 0 and –2. Since one of the 
eigenvalues is zero, we cannot draw the stability conclu- 
sion by the Lyapunov indirect stability theorem. How- 
ever, using the application of the center manifold theory 
[19] to determine the stability of the equilibrium point at 
the origin by analyzing a reduced-order system—a sys- 
tem whose order is exactly equal to the number of the  
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Figure 4. ECG tracking simulation results for the 2nd-order heartbeat system. (a) ECG tracking; (b) Pacemaker signal. 
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Figure 5. Observer simulation results and the estimation errors. 
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Figure 6. ECG signal produced by the 2nd-order heartbeat tracking system. 
 

alues of 2A  wit
brium point at the origin is asymptotically stable. 

eigenv
quili

h zero real part, we found that the 
e
This conclusion is illustrated by the phase portrait of the 
zero dynamics (51) as shown in Figure 7. All trajectories 
with initial condition 1 0   converge to the origin. We 
conclude that the normal form system in (47)-(50) is a 
minimum-phase system

We proceed to the output tracking control design. 
Since the relative degree 

n

. 

in this case is the same as in the 
2

2 2r

Similar to the 2nd-order case, the normal form
can be expressed in the form of (20) as 

d-order case, the transformed control law v(t) is of the 
same form as in (41). Subsequently, the tracking control 
law is given by 

 1 1x Ke yu v x          (54) 
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Figure 7. Phase portrait of zero dynamics of the 3rd-order 
heartbeat system. 
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11545trix L

ing the observer poles at  of the 
complex plane. Finally, the observer-based tracking con- 
trol law for the 3rd-order heartbeat system is given by  

          (56) 

The simulation result for the ECG tracking is shown in 
Figure 8(a) with the control pacemaker signal displays 
in Figure 8(b). The results show an effective output 
tracking of the discrete ECG data from the William 
Beaumont Hospitals, Michigan. 

Figure 9 displays the real and estimated state of 
 1  3t  to x x t  including their estimation errors. It 

shows that the estimated states converge quickly to the  
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Figure 9. Observer simulation results and estimation error for the 3rd-order

 

 heartbeat system. 

Copyright © 2012 SciRes.                                                                                  ICA 



W. THANOM, R. N. K. LOH 260 

0 2 4 6 8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

M
us

cl
e 

fib
er

 le
ng

th
, x

 1
(t

)

Time (s)
0 2 4 6 8

-1.5

-1

-0.5

0

0.5

M
us

cl
e 

fib
er

 te
ns

io
n,

 x
 2

(t
)

Time (s)

0 1 2 3 4 5 6 7 8
-1

1.5

1

0.5

0

-0.5

E
C

G
, x

 3
(t

)

Figure 10. ECG signal produced by the 3rd-order heartbeat tracking system.  
 
real states with asymptotically stable error dynamics. 
Finally, Figure 10 illustrates the multiple pulses ECG 
signal created by the 3rd-order heartbeat tracking system. 

5. Conclusion 

We applied the nonlinear control system theory, based on 
input-output feedback linearization and observer theory, 
to a model for the biological heartbeat systems. Two 
Zeeman models were chosen in this study as they not 
only describe the heartbeat, but also offer direct biophy- 
sical relationship to the dynamic variables. The two 
models were modified by incorporating a control input 
into the systems, thereby creating two interesting control- 
affine SISO nonlinear systems. We showed that the re- 
sulting heartbeat models are minimum-phase systems 
suitable for the design of output tracking control laws; 
these control laws were also used to generate synthetic 
ECG signals. In addition, an observer was applied to es- 
timate the unknown variables in the transformed coordi- 
nates. The simulation results show that the observer- 
based tracking control laws effectively force the outputs 
of the systems to track the real ECG data from the 
PhysioNet database (Figure 4), and William Beaumont 
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