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ABSTRACT 

Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant 
time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality conditions for the 
Neumann problem with the quadratic performance functional are derived. 
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1. Introduction 

Distributed parameters systems with delays can be used 
to describe many phenomena in the real world. As is well 
known, heat conduction, properties of elastic-plastic ma- 
terial, fluid dynamics, diffusion-reaction processes, the 
transmission of the signals at a certain distance by using 
electric long lines, etc., all lie within this area. The object 
that we are studying (temperature, displacement, concen- 
tration, velocity, etc.) is usually referred to as the state. 

The optimal control problems of second order distri- 
buted parabolic and hyperbolic systems involving time 
lags appearing in the boundary condition have been widely 
discussed in many papers and monographs. A funda- 
mental study of such problems is given by [1] and was 
next developed by [2] and [3]. It was also intensively in- 
vestigated by [4-14] and [15,16] in which linear qua- 
dratic problem for parabolic and hyperbolic systems with 
time delays given in the different form (constant time de- 
lays, time-varying delays, time delays given in the integral 
form, etc.) were presented. 

In this paper, we consider the optimal control for in- 
finite order hyperbolic systems and for (n × n) infinite 
order hyperbolic systems involving constant time lags 
appearing in both in the state equation and in the boundary 
condition. Such an infinite order hyperbolic system can 
be treated as a generalization of the mathematical model 
for a plasma control process. 

The quadratic performance functional defined over a 
fixed time horizon are taken and some constraints are 
imposed on the boundary control. Following a line of the 
Lions scheme, necessary and sufficient optimality condi- 
tions for the Neumann problem applied to the above system 

were derived. The optimal control is characterized by the 
adjoint equations. 

This paper is organized as follows. In Section 1, we 
introduce spaces of functions of infinite order. In Section 
2, we formulate the mixed Neumann problem for infinite 
order hyperbolic systems involving constant time lags. In 
Section 3, the boundary optimal control problem for this 
case is formulated, then we give the necessary and 
sufficient conditions for the control to be an optimal. In 
Section 4, we concluded and generalized our results. 

2. Sobolev Spaces with Infinite Order 

The object of this section is to give the definition of some 
function spaces of infinite order, and the chains of the 
constructed spaces which will be used later. 

Let   be a bounded opesn set of  with a smooth 
boundary 

nR
 , which is a -manifold of dimension C

 1n  . Locally,   is totally on one side of  . We 
define the infinite order Sobolev space   , 2W a   
of infinite order of periodic functions  x  defined on 
  [17-19] as follows:  

       2

2
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 1, , n     being a multi-index for differentiation, 
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conjugate space to the space , namely: 
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The duality pairing of the spaces  , 2W a
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 is postulated by the formula    , 2W a
 

   , dD x x
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where 

  , 2 ,W a W     

From above,  is everywhere dense in 
 with topological inclusions and  

 denotes the topological dual space with 
respect to , so we have the following chain of 
inclusions:  

 2 
  , 2W a

 
2L 

    2, 2W a L W
      

We now introduce  which we shall 
denoted by  2L Q , where  0, ,Q T 

 t t
 denotes the 

space of measurable functions  such that  

    
1

2 2

2
d <t t 

    2, d
L

2
0

T

L Q
   

endowed with the scalar product  

  
0

,
T

f g f  t g t t


W   

, L2(Q) is a Hilbert space. 

In the same manner we define the spaces  

   , 2a 2 0, ;L T  , and   , 2a
2 0, ;L T W   ,  

as its formal conjugate. 
Also, we have the following chain of inclusions:  

   
   

2 ( )
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with norm defined by: 
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The construction of the Cartesian product of n-times to 
the above Hilbert spaces can be construct, for example  
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Finally, we have the following chain of inclusions:  
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n n
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n
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where     2 0, ; , 2
n

L T W a
   are the dual spaces 

of     0, ; , 2
n

L T W a
  . The spaces considered in  

 paper are assumed to be re

3. Mixed Neumann Problem for Infinite 
me 

The object of this section is to formulate the following 

2

this al. 

Order Hyperbolic System Involving Ti
Lags 

mixed initial boundary value Neumann problem for 
infinite order hyperbolic system involving time lags which 
defines the state of the system model.  

       

   
2

, , , ,

, 0,

2 y
A t y x t b x t y x t h u

t
x t T
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       0, = , , , ,0x t x t x t h          (2) y
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   1,0 ,  y x y x x                    (4) 

       = , , , , 0,
A

y
c x t y x t h v x t T




  


 (5) 

       0, , , , ,0y x t x t x t h          (6) 

where nR   has the same properties as in Section
e  

 1. 
We hav

       
   

0, ; ,  ,0; ,  , ; ,

, ,  ,

x t v y y x v y T y x T v

u u x t v v x t

 

 
 

y y

    
 

0

0

0, ,  0, ,  ,0 ,

0, ,  ( ,0),

Q T Q T Q h

T h

      

      
 

 T is a specified positive number representing a finite 

 positive number representing a time 

 given real C

time horizon; 
 h is a specific

lag; 
 ,b c  are   functions defined on Q , 

  respectively; 
 y is a function defined on Q such that  
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Lemma 2.1. rm  π ; ,t yThe bilinear fo   is coercive 
on   , 2W a

   that is  

  ,2 ( )
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Equations (1)-(6) constitute a Neumann problem. Then 
the left-hand side of the boundary condition (5) m
written in the following form: 

and π t y

ay be 

        cos , ,k

y u
D y u n x q x t


 

where 
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, 0,  
A

x t T
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A
 is a normal derivative at  , directed to-  

wards the exterior of , and  cos , kn x  is the k th  
direction cosine of n, with n being the normal at   
exterior to .  

Then (5) can be written as:  

       ,c x t h v x  

 
, = , , ,

, 0, .

q x t x t y t

x t T
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(10)

ent conditions for the exi- 
st he mixed boundary value 
problem (1)-(6) for the case where the boundary control 

 f late suffici
ence of a unique solution of t
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 ,2W Q  [20] (p. 6) defined by:  
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 (12) 

where the space  

       


 2 20, ;W T L   denotes the So
space of second order of functions defined on 

bolev 
 0,T  

and taking values in  2L   [20] . 
The existence of a unique solution for the mixed 

initial-boundary value problem (1)-(6) on the cylinder Q 
ng a constructiv

nd in
il the e covers the whole 

cy

can be proved usi e method, i.e., solving 
at first Equations (1)-(6) on the sub-cylinder Q1 a  
turn on Q2 etc., unt procedur

linder Q. In this way, the solution in the previous step 
determines the next one. 
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For simplicity, we introduce the following notation:  

  1 , , ,j j j j jE j h jh Q E E       

   0 0= ,0 , = ,0 for 1,Q h h j        

Using Theorem 6.1 of [20] (Vol. 2, p. 33), then the 
following result holds. 

Theorem 2.1. 1y , 0 Let y0,  , 0 , v and u be g   

  , 2a
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Let us denote by  =U L2   the space of contro
The time horizon T  is fixed in our problem. 
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fined si
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. 
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We note from Theorem 2.1 
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necessary and sufficient conditions of optimality for the 
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seeking a adv such that  
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From the Lion’s scheme [21] (Theorem 1.3 of, p. 10), 
it follows that for 2 > 0



  a unique optimal control v  
exists. Moreover, v  is characterized by the following 
condition:  

    0 adv v v v U          (17) I 

For the performance functional of form (15) the re- 
lation (17) can be expressed as  

      1 d ddQ
y v z y v y v x t     

2 ( )d d 0Nv v v t v U  
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In order to simplify (18), we introduce the adjoint equ- 
ation, and for every adv U , we define the adjoint 
variable    = , ;p p v p x t v  as the solution of the 
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2
* , , ;

p v

     
2

1= , , 0,d

A t p v b x t h p x t h v

t


   


t

y v z x T h


   
  (19) 

     

      

*

1= , , ,d

A t p v
t

y v z x t T h T



  
        (20) 

2

2

p v



 , ; = 0,p x T v x                      (21) 

 , ; = 0,p x T v x                     (22) 

       

   
*

, = , , ;

, 0,
A

p v
x t c x t h p x t h v

x t T h




 


 

        (23) 

     
*

, = 0, ,
A

p v
 ,x t x t





where 

T h T         (24) 

     
| |=0

( )
, = cos ,

A

p v t D p v n x
x

 


 

      | |* 2| |

| |=0

= 1 ,

 

A t p v a D p x
 








As in the above section with change of variables, i.e. 
versed sense of time. i.e., =t T t  r given 

t       (25) 

with re , fo
 2

dz L Q  and any  2v L  , there exists a unique 
solution    ,2p v W Q  for problem (19)-(24). 

The existence of a unique solution for 
(19)-(24) on the cylinder Q can be proved using a con- 
st

lved b
time startin T , i.e. fi

ylinder 

the problem 

ructive method. It is easy to notice that for given dz  
and v, the problem (19)-(24) can be so ackwards in 

g from =t rst solving (19)-(24) on 
the sub-c KQ  and il the  in turn on 1KQ  , etc. unt
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pr

ng

, R

   0 ,0;p p x v  and 

y
int

ocedure covers the whole cylinder Q. For this purpose, 
we may apply Theorem 2.1 (with an obvious change of 
variables). Hence, using Theorem 2.1, the followi  
result can be proved. 

Lemma 3.1. Let the hypothesis of Theorem 2.1 be 
satisfied. Then given  2

dz L    and any 
 2v L  , there exists a unique solution  

   ,1p v W Q  for the adjoint problem (19)-(24). 
We simplify (18) using the adjoint equation (19)-(24). 
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Using the Equation (1), the second integral on the 
right-hand side of (26) can be written as  
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Using Green’s formula, the third integral on t
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Substituting (31) into (18) gives  

0 adv U     (32) 

The foregoing result is now summarized. 
Theorem 3.1. For the problem (1)-(6), with the per- 

formance functi  d  and 2 > 0

   20
d d

T
p v Nv v v t  


   

onal (15) with  2z L Q   
and with conditions ere exists a unique optimal 
control v  maxi (32). 

Mathematical Examples 

Example 3.1. Consider now the particular case where 
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 2L Q . We can also consider 

I u y x t u z x t

Nu u x t





   






     (42) 

where  2
dz L Q . 

From Theorem 2.1 and the Trace Theorem
p. 9), for each 

 [20] (Vol. 2, 
 2u L Q , there exists a unique solution 

   ,1u W Q . Thus, I is well defined. Then, they  
optimal control u  is characterized by  

    

2 Q

y u y

N

 

 
   (43) 

 1 d ddQ
y u z u x t    

 d d 0 adu u u x t u U    

We define the adjoint variable    = = , ;p p u p x t u  
as the solution of the equations:  

         
2

* , , ; = 0
p u

A t p u b x t h p x t h u


   
 (44) 

   , 0,x t T h 

2t

         
2

*
2

= 0, , ,
p u

A t p u x t T h T
t


  


   (45) 

 , ; = 0,p x T u x                       (46) 

     1, ; = , ,dp x T u y u x t z x          (47) 

       

   
*

, = , , ;

, 0,
A

p u
x t c x t h p x t h u

x t T h


 



 

     



     (48) 
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     , = 0, ,u x t x t   ,T h T         (49) 

ve section
Lemma 3.3. 

 any 
 u L Q unique solution  

  W e adjoint problem (44)-(49
4)-(49) in this c

condition (43) can also be written in the following form:  

0, adu U    (50

The following result is now summarized. 
Theorem 3.3. For the problem (1)-(6), (44)-(49

 Q , 2 > 0

*A

As in the abo , we have the following result. 
Let the hypothesis of Theorem 2.1 be 

satisfied. Then, f given  2
dz L Q  and

2

p

or 
, there exists a 

 ,2 Q   to th
Using the adjoint equations (4

p u ). 
ase, the 

   20
d d

T
p u Nu u u x  


   ) t

), (16) 
with 2

dz L  , there exists a unique o
which satisfies the maximum condition (50). 

5. Generalization 

The optimal control problems presented her can be ex- 
tended to certain differe

rol for 2 2  coupled infinite orde
s involving constant time lags. Cas

rol for n n  coupled infinite order hyperbolic 
systems involving constant time lags. Such extension can 
be applied to solving many control pro
nical engineering. 

Case 1: Optimal control for 2 × 2 coupled infinite 
order hyperbolic systems involving consta

    ormance 



ptimal 
control u  

nt two cases. Case 1: Optimal 
cont
system
cont

r hyperbolic 
e 2: Optimal 

blems in mecha- 

nt time lags.  
We will extend the discussions to study the optimal 
ntrol for 2 2  coupled infinite order hyperbolic sys-co

fu

 
tems involving constant time lags. We consider the case 
where   2 2

1 2= ,v v v L L  , the perf
is given by:  

2

nctional 

    2

1
=1

= , ; d di idQ
i

 2 d di i i

I v y x t v z x t    
   (51) 

N v v x t


 

wh

 

ere    

 2
, 2a  , 

 22
1 2= ,d d dz z z L Q . 

The following results can now be proved. 
Theorem 4.1. Let 0y , 1y , 0 , 0 , v  and u  be 

given with 

   0 0,1 0,2= ,y y y W 

     2

1 1,1 1,2= , , 2y y y W a
  , 

    2,2
0 0,1 0,2 0= , W Q   , 

   0,2 

2, 2 

ts a unique solution  

tia

 22
0 0,1 0= , L    , 

    22
1 2,v v v L     

an    d  1 2= ,u u u W Q . 

    2, 2
1 2= ,y y y W Q   for the following mixed ini-  

Then, there exis

l-boundary value problem:  

 

   

 

   

2
| |=0

2 1

2
| | 22

22
| |=0

2 2 1 2

= , in 

1 1

 , , = , in 

t

h y u Q

y
a D y

t

b x t y x t h y u Q




 






2
| | 21

1

1 1

1 1

, ,

y
a D y

b x t y x t

 
  

    
  

   


         
   


    (52) 



   



1 0,1, ; = ,y x t u x t 

   2 0,2, ; = ,y x t u x t

  , ,0  x t h

,

         



      (53) 

 

  1 0,1 2 0,2,0; = , ,0; = ,y x v y y x y xv    (54) 

   1 1,1 2 1,2,0; = , ,0; = ,y x v y y x x  v y    (55) 

   

   

1
1 1 1

2
2 2 2

= , , , on ,

= , , on

A

A

y
c x t y x t v

y
c x t y x h v





 

, t

h   
   
 

  (56) 

       
     

1 0,1, ; = , , , ,0

, ; = , , ,0

y x t u x t x t h

y x t u x t t h

     
 ,x2 0,2

     
 (57) 

where  

   ,2, ;v W Q  

         2, 2
1 2, = , , ,u u x t u x t u x t W Q    

         22
1 2, = , , ,v v x t v x t v x t L

     1 2, ; = , ; ,y y x t v y x t v y x t
2

    

Lemma 4.1. Let the hypothesis of Theore

satisfied. Then for given     22
1 2= ,d d dz z z L Q  and 

any     22
1 2= ,v v v L

m 4.1 be  

  , there exists a unique solu- 

tion          2,2
1 2= ,p v p v p v W Q  for the adjoint  

problem: 

     

        
   

      

      
   

2
| |1 2

12
| |=0

1 1 2 1 1

2
| |1 2

2 22
| |=0

2 1 1 2 2

1 1

, , ; =

, 0, ,

1 1 ,

, ; = ,

, 0,                   

d

p v
a D p v

t

b x t h p x t h v p v y v z

x t T h

p v
a D p v b x t

t

p x t h v p v y v z

x t T h



















  
  

h

1d

 
   

     
  


            
  

  




 

(58) 

Copyright © 2012 SciRes.                                                                                  ICA 



B. G. MOHAMED 218 

   

 
 

 

 

   

2
| |1 2

2
| |=0

2
| |2 2

2
| |=0

1 1

, , ,

1 1

, , ,

p v
a D

t

 

1

2

= 0

= 0

p v

t T h T

p v
a D p v

t

x t T h T















  
       

x    


          
  




 (59) 

,

= 0,

= 0, ,

x

x



 

 1 , ; = 0, ,p x T v x 
                   (60) 

 2 , ; = 0,p x T v x

, 
                   (61) 

 , ;p x T v

 
1

2 , ;p x T v

   

   
 

 

 

   

 

1 1
*

2
2 2

*

= , , ; ,

, 0,

,
= , , ; ,

, 0,  

A

A

c x t h p x t h v

x t T h

p x t
c x t h p x t h v

x t T h
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1p ,x t

   

   

*

2

*

,
= 0, ,

A

A

p x t
x t












Theorem 4.2. The optimal co
   

 

1 ,
= 0, , , ,

, . 

p x t
x t T h T

T h T

 
  



 


      (63) 

ntrol  

         22
1 2, = , , ,v v x t v x t v x t L    is charac-  

mum condition  terized by the following maxi

   T
p v N v  
  
    

2 2 2 2

22
1 2= ,

p v N v v

v v v L

    

 

where     ,2
2 , ;p x t v W Q


1 2 1 1 1 10

2 2 d d 0

v v

v t







   

  



    (64) 

is the adjoint state. 

 result is now summarized. 
For the pr

performance function (51) with 

    22
1 2= ,d d dz z z L Q  and 2 > 0

2

The foregoing
Theorem 4.3. oblem (52)-(57) with the 

 , and with con-  

 convex subset of   22Lstraint: adU is closed,  , and  

with adjoint equations (58)-(6 exists a unique 
optimal control  

         22
1 2, = , , ,v v x t v x t v x t L        

ndition (64). 

Case 2: Optimal control for n × n coupled infinite 
order hyperbolic systems involving constant time lags.  

We will extend the discussion to n × n coupled infi- 
nite order hyperbolic systems involving con
lags. We consider the case where  

    2
1 2, , ,

n

nv v v v L

3), then there 

which satisfies the maximum co

stant time 

   , the performance functional  

is given by (El-Saify, 2005; 2006):  

   
  

2

1
=1

2

, ; d d

d d

n

i idQ
i

i i i

I v y x t v z x t

N v v x t






   



 


    (65) 

where     2
1 2, , ,

n

d d d ndz z z z L Q  . 
The following results can now be proved. 

0 , v  and u  be 
gi

     = , , , , 2
n

y y y y W a  ,

     1 1,1 1,2 1,= , , , , 2ny y y y W a
  ,  

    ,1
0 0,1 0,2 0, 0, , ,

n

n W Q      ,  

    2
0 0,1 0,2 0, 0= , , ,

n

n L      , 

   2
2 ,

n

nv v L

Theorem 4.4. Let 0y , 1y , 0 , 
ven with 

0 0,1 0,2 0,n 

n

  

 1, ,v v    

and    

   ,2
1 2= , , ,

n

ny y y y W   for th

1,2, , n 

 , 2= , , ,
n

u u u u W Q  .  1 2 n
Then, there exists a unique solution  

 Q e following mixed  

initial-boundary value problem: , =i i  we 
have  


2

2
iy

S t
t





      

   

, , , =

, 0,

i i i iy x t b x t y x t h u

x t T

 


 (66) 

       0,, = , , ,0i iy x t x t x t h       (67) 

   0,, 0 = ,i iy x y x x                (68) 

   1,, 0 = ,i iy x y x x                 (69) 
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i
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y
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S
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t L   
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respectively, h is a time lags, 

u u

Copyright © 2
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That is 
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wher

Lemma 4.2. Let the hypothes
satisfied. Then for given  

n
 any  

  , L   , there  

exists a unique solution  

 is an  matrix takes the form 
[22-25] (El-Saify & Bahaa 2000; 2001; 2002; 2003). 
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timal control 





Theorem 4.5. The op
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is of Theorem 4.4 be 
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1 2, , ,d d d ndz z z z L Q   and

        1 2, , , , , , nv x t v x t v x t v x t

       2, , , ,
n

nx t v x t L  
 

is characterized by the following maximum condition 
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i

n
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where  

2 n
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, ;
n

1 1, ; , , ; , , , ;np v p x t v p x t

W Q

  v p x t v p x t v




 

for the adjoint problem: , = 1,2, ,i i n  , we have 



         



2
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2
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, ;

= , ; , , ; , , , ;
n
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p v p x t v

p x t v p x t v p x t v W Q

 

   




 

is the adjoint state. 
The foregoing result is now summarized. 
Theorem 4.6. For the problem (66)-(71) with the 

performance function (65) with 

    2
1 2= , , ,

n

d d d ndz z z z L Q  and 2 > 0 , and with  

constraint: adU  is closed, convex subset of   2 n
L  , 

and with adjoint Equations (73)-(78), then there exists a 
unique optimal control 

           2
1 2, = , , , , , ,

n

nv v x t v x t v x t v x t L    

= ,id        (7  

p x                     (75) 

           (76) 

4)

 , , = 0,T v x  i

 , , = 0,ip x T v x            

       , = , , ; ,i
i i

p v

   
*

, 0, ,
S

x t c x t h p x t h v


 
   




       (77) 

x t T h 

   

which satisfies the maximum condition (79). 
In the case of performance functionals (15, 33, 42, 51 

and 65) with 1 > 0  and 2 = 0  , the optimal control 
problem reduces to minimization of the functional on a 
closed and convex subset in a Hilbert space. Then, the 
optimization problem is equivalent to a quadratic pro- 
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gramming one, which can be solved by the use of the 
well-known Gilbert algorithm. 

6. Conclusions 

The optimization problem presented in the paper consti- 
tutes a generalization of the optimal boundary control 
problem of a second order hyperbolic systems involving 
constant time lags appearing in the boundary condition 
have been considered in [4-16,22]. 

In this paper, we have considered the boundary control 
or infinite order hyperbolic system and also for 
finite order hyperbolic systems involving con- 

stat time lags appearing both in the state equations 
the Neumann boundary conditions. We can also co

ry optimal contro  for  n n

problem f
 n n  in

and in 
nsider 

the bounda l problem   infi- 
r parabolic or hyp rbolic systems with time- 

varying delays appearing in th ons and in the 
Neumann or Dirichlet bound itions. We can also 
co

g i e integral form with 
 or  0,h b  both i uations and 

ann or Dirichlet b  conditions. 
Also it is evident that by modifying: 

ns, (Dirichlet, Neumann, mixed, 
etc.); 

 The nature of the control (distributed, boundary, etc.)
 The nature of the observation (distributed, boundary

etc.); 
 system; 

 The time delays (constant time delays, time-varying 
delays, multiple time-varying delays, time delays 
in the integral form, etc.); 

 The number of variables (finite number of variables, 
infinite number of variables systems, etc.); 

 The type of equation (elliptic, parabolic, hyperbolic, 
etc.); 

 The order of equation (second order, Schrödinger, in- 
finite order, etc.); 

 The type of control (o
optimal control problem
on the above problem ar
help of [21] and Dubovitskii-Milyutin formalisms 
[23-32]. Those problems need further i
and form tasks for future research. Thes
tioned above will be developed in forthcoming papers. 
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