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ABSTRACT

Various optimal boundary control problems for linear infinite order distributed hyperbolic systems involving constant
time lags are considered. Constraints on controls are imposed. Necessary and sufficient optimality conditions for the
Neumann problem with the quadratic performance functional are derived.
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1. Introduction

Distributed parameters systems with delays can be used
to describe many phenomena in the real world. As is well
known, heat conduction, properties of elastic-plastic ma-
terial, fluid dynamics, diffusion-reaction processes, the
transmission of the signals at a certain distance by using
electric long lines, etc., all lie within this area. The object
that we are studying (temperature, displacement, concen-
tration, velocity, etc.) is usually referred to as the state.

The optimal control problems of second order distri-
buted parabolic and hyperbolic systems involving time
lags appearing in the boundary condition have been widely
discussed in many papers and monographs. A funda-
mental study of such problems is given by [1] and was
next developed by [2] and [3]. It was also intensively in-
vestigated by [4-14] and [15,16] in which linear qua-
dratic problem for parabolic and hyperbolic systems with
time delays given in the different form (constant time de-
lays, time-varying delays, time delays given in the integral
form, etc.) were presented.

In this paper, we consider the optimal control for in-
finite order hyperbolic systems and for (n X n) infinite
order hyperbolic systems involving constant time lags
appearing in both in the state equation and in the boundary
condition. Such an infinite order hyperbolic system can
be treated as a generalization of the mathematical model
for a plasma control process.

The quadratic performance functional defined over a
fixed time horizon are taken and some constraints are
imposed on the boundary control. Following a line of the
Lions scheme, necessary and sufficient optimality condi-
tions for the Neumann problem applied to the above system
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were derived. The optimal control is characterized by the
adjoint equations.

This paper is organized as follows. In Section 1, we
introduce spaces of functions of infinite order. In Section
2, we formulate the mixed Neumann problem for infinite
order hyperbolic systems involving constant time lags. In
Section 3, the boundary optimal control problem for this
case is formulated, then we give the necessary and
sufficient conditions for the control to be an optimal. In
Section 4, we concluded and generalized our results.

2. Sobolev Spaces with Infinite Order

The object of this section is to give the definition of some
function spaces of infinite order, and the chains of the
constructed spaces which will be used later.

Let Q be a bounded opesn set of R” with a smooth
boundary I', which is a C” -manifold of dimension
(n—1). Locally, Q is totally on one side of I'. We
define the infinite order Sobolev space W”{a,,2}(Q)
of infinite order of periodic functions ¢(x) defined on
Q [17-19] as follows:

W {a,,2)(Q) = {(x) eC (Q):goaa 1D} < oo}

where C” (Q) is the space of infinite differentiable
functions, a, >0 is a numerical sequence and ||||2 is
the canonical norm in the space L’ (Q), and

la|
D* = 0
(axl)al ...(axn)an

a=(a, -, a,) being a multi-index for differentiation,
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o] =200 i
The space W™ {a,,2}(Q) is defined as the formal
conjugate space to the space W™ {a,,2}(Q), namely:

:{mx):w(x)—;(—l)“ a0, <x>}

where vV, € r (Q) and z;:oaa ”l//a”z <

The duality pairing of the spaces W™ {a,,2}(Q) and
W {a,,2}(Q) is postulated by the formula

(h)= 3a. [ (5)0°9(x)as

where
pew” {aa,Z}(Q), wew™ {aa,Z}(Q)

From above, W”{a,,2}(Q) is everywhere dense in
I} (Q) with topological inclusions and
W {a,,2}(Q) denotes the topological dual space with
respect to L’ (), so we have the following chain of
inclusions:

W {0, 2)(@) < £ (Q) e I {a,.2)(@)

We now introduce L*(0,7;L°(Q)) which we shall
denoted by L*(Q), where Q=Qx]0,T[, denotes the
space of measurable functions # — ¢() such that

1
T 2 2
W20, = ([ W e <=0
endowed with the scalar product
(f.g)= Jor(f(t),g(t))Lz(Q) dr , L*(Q) is a Hilbert space.
In the same manner we define the spaces
2(0,1:w" {a,,2}(Q)),and L*(0,7:W  {a,,2}(Q)),

as its formal conjugate.
Also, we have the following chain of inclusions:

2(0.7:w {a,.2}(Q)) < L'(Q)
c I (0.T:W 7 {a,.2}(Q))

The construction of the Cartesian product of n-times to
the above Hilbert spaces can be construct, for example

(7" {a,.2}(Q))

=W {aa,2}(Q)>< w” {aa,Z}(Q)x---wa {a 2}(Q)

o’

n—times

n

=[1(7"{a..2}())

i=1

i

with norm defined by:
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"¢"(W“°{aa,z}(g))" - ;"@"W*{aa,z}(g)

where ¢ =(4.¢,.--.4,)=(4)_, is a vector function and

¢ eW{a,,2}(Q).
Finally, we have the following chain of inclusions:

(2 (0.7 {a,.2}())) <(£ ()

(2 (0.1:w ™ {a,.2}(Q)))
where (L2 (O,T;W’“’ {aa,Z}(Q)))" are the dual spaces

of (L2 (O,T;W” {aa,Z}(Q)))n . The spaces considered in

this paper are assumed to be real.

3. Mixed Neumann Problem for Infinite
Order Hyperbolic System Involving Time
Lags

The object of this section is to formulate the following
mixed initial boundary value Neumann problem for
infinite order hyperbolic system involving time lags which
defines the state of the system model.

2

‘ZTZMA(t)y(x,t)+b(x,t)y(x,t_h) -

(x,1)eQx(0,T)

y(x,0") =D, (x,1'), (x,t") € Qx(=h,0) 2

()

y(x,O) =Y, (x), x e 3)

y'(x,O) =y (x), xeQ @)

aay =c(x,t)y(x,t—h)+v,(x,1)eTx(0,T) (5)
VA

y(xt) =Y, (x1"), (x,t") €T x(~h,0) 6)

where Q c R" has the same properties as in Section 1.
We have

y=y(x6v), vy =y(x,00v), y(T)= y(x,T;v),
u Eu(x,t), V= v(x,t)

0=0x(0,T), 0=Qx[0,T], O, =Qx(-h,0),
2 =Ix(0,T), £, =T'x(-h,0),

e T is a specified positive number representing a finite
time horizon;

e / is a specific positive number representing a time
lag;

e b,c are given real C* functions defined on O,
Y respectively;

e yis a function defined on Q such that
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Qx(0,T)>(x,t) > y(x,1) eR;

e u, vare functions defined on Q and X such that
Qx(0,T)>(x,t) >u(x,t)eR and
'x(0,7)5(x,t) > v(x,t)eR;

o @, ¥, are initial functions defined on Q,,Z, such
that

Qx(—h,O) E) (x,t') -, (x,t’) eR.
I'x(=h,0)>(x,1") > ¥, (x,t")eR.

2
The hyperbolic operator 5—2+ A(t) in the state Equ-
t

ation (1) is an infinite order hyperbolic operator and
A(r) [19]is given by:

0

Ay =3 (-1)" a,D*y(x,1),

la=0

and
4= (-1 a, D%
la=0

is an infinite order self-adjoint elliptic partial differential

operator maps W”{a,,2}(Q) onto W *{a,,2}(Q).
For this operator we define the bilinear form as follows:
Definition 2.1. For each re(0,7)R, we define a

family of bilinear forms on W* {a,,2}(Q) by:

1(6:.0)=(A(1)7.0) o+ VHEW {a,.2}(Q)
where A(t) maps W*{a,,2}(Q) onto
W™ {a,,2}(Q) and takes the above form. Then

n(6:.0)=(A4(1)5.9)2.q,
:(ﬁo(_l)al aaDZay(x,t),gﬁ(x)]

2@

= . 3a, D y(x)D" (x)dx
lal=0
Lemma 2.1. The bilinear form n(t;y,¢) is coercive
on W*{a,,2}(Q) thatis
2
n(t;y,y) 2 ’1||y"w°°{a,z}(m » A>0 (M

Proof. It is well known that the ellipticity of A(z) is
sufficient for the coerciveness of w(z;y,4) on
w*{a,,2}(Q).

n(t:4.y)= IﬂiaaDWD‘“'l//dx
=0

Then

n(t;y,y) — J‘Q iaaD‘“‘yD'“‘ydx

la=0

© § ,
> ”=zoaa ||D2\ ‘y(X)"LZ(Q) > /1")/"51,00{%72}(9) A>0
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Also we have:
Vy,e W°° {aa’z}(Q)
the function ¢t — w(#;y,
(t:3) ®

is continuously differentiable in (0,7)
and n(t;y,¢) =n(t;¢, )

Equations (1)-(6) constitute a Neumann problem. Then
the left-hand side of the boundary condition (5) may be
written in the following form:

oy(u) _ &

2 S oot
xel,te (O,T)

where

is a normal derivative at I, directed to-
V4
wards the exterior of Q, and cos(n,x,) is the k—th
direction cosine of n, with n being the normal at I
exteriorto Q.
Then (5) can be written as:

q(x,t)=c(x,0)y(x,t=h)+v(x,1),
xeF,te(O,T). } (10)

We shall formulate sufficient conditions for the exi-
stence of a unique solution of the mixed boundary value
problem (1)-(6) for the case where the boundary control
veL’(Z). For this purpose we introduce the Sobolev
space W™?*(Q) [20] (p. 6) defined by:

(%)

11
= (0,7 {a,,2}(Q)) W (0,7; 2 () an
which is a Hilbert space normed by
/
"y"Ww’z(Q) = |:_[0T||y||iv°°(ua,2;(g) dr+ ||y||jV2(0,T;L2(Q)):|
12
V1S oo 2 |awa 12
= J.Q H=Zoaa y + 5 t ( )

2
+

D%y

5 ) 12
2 < Yy

= — |dxd

{Ig[aom +a, a” }

where the space > (O,T hn (Q)) denotes the Sobolev
space of second order of functions defined on (O,T )
and taking values in L’ (Q) [20].

The existence of a unique solution for the mixed
initial-boundary value problem (1)-(6) on the cylinder Q
can be proved using a constructive method, i.e., solving
at first Equations (1)-(6) on the sub-cylinder Q) and in
turn on Q, etc., until the procedure covers the whole
cylinder Q. In this way, the solution in the previous step
determines the next one.
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For simplicity, we introduce the following notation:

E 2((j-1)h ). 0 =OxE, T,=TxE,

J
0, = Qx(~h,0), £, =Tx(-h,0) forj=1,

Using Theorem 6.1 of [20] (Vol. 2, p. 33), then the
following result holds.
Theorem 2.1. Let yo, y,, ®,, ¥,,vand u be given

with yy eW*{a,,2}(Q), » eW”{a,,2}(Q),
O, W™ (Q,), Yoel'(%,), vel’(X) and
ueW72(Q) and the following compatibility rela-

tions:

Yy _
a(x,O) ql(x,O) on I' (13)

oy, o 0
XCUR [ Co O "

=%q, (x,O) onI

Then, there exists a unique solution y € W*?(Q) for
the mixed initial-boundary value problem (1)-(6). More-

over, y(.,tj)eW“’{aa,z}(Q)
y’<"tl')€VVOO {aa,Z}(Q),for j:1,"',K .

4. Problem Formulation and Optimization
Theorems

Now, we formulate the optimal control problem for (1)-
(6) in the context of the Theorem 2.1, thatis ve L* ().
Let us denote by U =L’(X) the space of controls.
The time horizon 7T is fixed in our problem.
The performance functional is given by:

I(v)= AJ.Q[y(x,t;v)—sz dxd?

(15)
+4, [ (Nv)vdTdi

where 4 >0, and A4 +4,>0, z, is a given element
in £° gQ); N is a positive linear operator on L’ (Z)
into L*(X).

Control constraints: We define the set of admissible
controls U,, such that

U, is closed, convex subset of U =L*(Z) (16)

Let y(x,t;v) denote the solution of the mixed initial-
boundary value problem (1)-(6) at (x,z) corresponding
to a given control veU . We note from Theorem 2.1
that for any veU,, the performance functional (15) is
well-defined since y(v)eW™*(Q) < L’(Q).

Making use of the Loins’s scheme we shall derive the
necessary and sufficient conditions of optimality for the
optimization problem (1)-(6), (15), (16). The solving of
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the formulated optimal control problem is equivalent to
seekinga v €U, such that

I(V*)SI(V),VVGUM

From the Lion’s scheme [21] (Theorem 1.3 of, p. 10),
it follows that for 4, >0 a unique optimal control v’
exists. Moreover, v° is characterized by the following
condition:

r'(v)(v-v)zo0 wveu, (17)

For the performance functional of form (15) the re-
lation (17) can be expressed as

@J.Q(y<v*)—zd)|:y(v)—y<v* )dedt

(18)
+4, [ W (v=v")d[dr 20 WveU,,

In order to simplify (18), we introduce the adjoint equ-
ation, and for every veU, , we define the adjoint
variable p=p(v)=p(x,t;v) as the solution of the
equations:

*p(v .
$+A(t)p(v)+b(x,t+h)p(x,t+h;v) )
:/71(y(v)—zd),(x,t)eQx(O,T_h)
*p(v)
or’ +4(1)p(v) 20)
=4 (y(v)=z,),(x1) eQx(T~hT)
p(x,T;v)=0, xeQ (21)
p'(X,T;V):O, xeQ (22)
(Z)V(;)(x,t)=c(x,t+h)p(x,t+h;v) o)
(x,1)eTx(0,T —h)
%ﬁ;(\/)(x’t)_o’ (x,1)eTx(T-h,T) 4)
Vo«

where ZPV(V) (x,1)= i (D“’p(v))cos(n,xw)

e |w|=0

0

A (t)p(v) = z (_1)\04 aaDz‘“‘p(x,t) (25)
=0

As in the above section with change of variables, i.e.
with reversed sense of time. ie., ¢'=T—t, for given
z;€L’(Q) and any velL’(Z), there exists a unique
solution p(v)eW™*(Q) for problem (19)-(24).

The existence of a unique solution for the problem
(19)-(24) on the cylinder Q can be proved using a con-
structive method. It is easy to notice that for given z,
and v, the problem (19)-(24) can be solved backwards in
time starting from ¢=T, ie. first solving (19)-(24) on
the sub-cylinder Q, and in turn on Q, ,, etc. until the
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procedure covers the whole cylinder Q. For this purpose,
we may apply Theorem 2.1 (with an obvious change of
variables). Hence, using Theorem 2.1, the following
result can be proved.

Lemma 3.1. Let the hypothesis of Theorem 2.1 be
satisfied. Then for given z,el’ (Q,Rw) and any
ve L’ (2), there exists a unique solution
p(v)eW™'(Q) for the adjoint problem (19)-(24).

We simplify (18) using the adjoint equation (19)-(24).
For this purpose denoting by p(0)= p(x,0;v) and
p(T) = p(x, T;v) respectively, setting v=v* in (19)-
(24), multiplying both sides of (19), (20) by y(v) — y(v"),
then integrating over Qx(0,7—h) and Qx(T—h,T)
respectively and then adding both sides of (19), (20), we get

Afy ()= z)[(v)=p(v") | dxde

J.J.{ ( )+A (t)p( )1 [y(v)—y(v*)]dxdt

+J. J'b x,t+h)p (x t+h;v*)x[y(v)—y(v*)}dxdt
__[ (x,55v) [ )—y(v*)de (26)
L (v )y[y v)=y(v") ] dxde

A @ p(v) [ 2(56v) =y (x50 dede
+J‘0T7h'fgb(x,t+ h)p(x,t+ h;v*)
x[y(x,t;v)—y(x,t;v*)]dxdt

Using the Equation (1), the second integral on the
right-hand side of (26) can be written as

L Lo () 2 [por=p(v) Jasa
a0 01 (v e
_.Ugb x,t) p(x.6v7)
x[y(x,:—h;v)—y(x,z—h;v*)]dxdt 27)
= ()AL (4) = () e
[t ) plxt + )
x[y(x,t';v)—y(x,t';v* )} dxds

Using Green’s formula, the third integral on the right-
hand side of (26) can be written as

.[OTJ.QA*(t)p(v*)liY(V)_J/(V*):Idth
:J.T.[ (v')4() f[ (v)-y (v*)dedt

! ay( )}dl"dt (28)

ot 2228
_.[oT.[r 51;7‘(/:* ) [J’(V) —y(v* )} drd:
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Using the boundary condition (5), one can transform
the second integral on the right-hand side of (28) into the
form:

JI (v )[ avv ay@(y )Jdrdt

_I I (x £y ) [y(x,t—h;v)—y(x,t—h;v*)]dl“dt
+I Irp(x t;v )(v \J )dth

—j I (xt+hv) xt+h)

<[ () =yt drar
# [y () (v=v7)aras

The last component in (28) can be rewritten as
I agiv: ) [y (v)=p(v")]drar
4
-2
4
+JTT,,LE}§£—T)[,V(V) ~y(v")]ard:
4

Substituting (29) and (30) into (28), and then (27), (28)
into (26), we obtain

%IQ(J’(V*)—Zd)[y(V)—y(v*)dedt
=—[, [ (v ) A(0) ()= »(v") | vatr
—I J (x t+h;v ) x t+h)x[y(x,t;v)—y(x,t;v* ):|dxdt
Jy " Jap (i Jo k)
[y(x t'v)—y(x L' )dedt
1, P(v) A0 y(v) -y (v") ] avar
+th.[rp(x’t+h=" ) (xaf+h)x[y(X,l;V)—y(x,t;v* )]dl‘dz
o))
x| y(x,6) = y(x6v") |drde
+J.OTLP(X, 69" )(v—v")drde

£l af;i:: ) [y (v)=p(v")]drar
_J.;—hJ.r 51;7‘(/: ) [y(v) —y(v )] drds
- [l )

(29)

)- (v )] drds (30)

v ) drde
(31)
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Substituting (31) into (18) gives
I()Tjr(p(v*)+2 Nv*)(v—v* )dFdz >0 weU, (32

The foregoing result is now summarized.

Theorem 3.1. For the problem (1)-(6), with the per-
formance functional (15) with z, € I’ (Q) and A,>0
and with conditions (16), there exists a unique optimal
control v which satisfies the maximum condition (32).

Mathematical Examples

Example 3.1. Consider now the particular case where
u,=U=r (Z) (no constraints case). Thus the maxi-
mum condition (32) is satisfied when

VI—@N'lp(v*)

If N is the identity operator on L’ (X), then from the
Lemma 3.1 follows that v’ € W™*(Q).

Example 3.2. We can also consider an analogous
optimal control problem where the performance functional
is given by:

I(V)I/?q'fz[y(x,t;v) |y —zd]z dr'ds

(33)
+ 2, [ (Nv)vdlde

where z,, € *(Z).

From Theorem 2.1 and the Trace Theorem [20] (Vol. 2,
p. 9), for each ve L’(X), there exists a unique solution
y(v)ew='(Q) with yl,el’(Z). Thus, I(v) is
well defined. Then, the optimal control v* is charac-
terized by:

ﬂ’l .[z(y(v*) |z -z, )[Y(V) |z _y(v* ) |2:|drdt 4)
+12J2Nv* (V—V*)drdt >0 WveU,

We define the adjoint variable p= p(v)= p(x,5;v)
as the solution of the equations:

00, N
o +A4 (t)p(v)+b(x,t+h)p(x,t+h,v)—0, (35)
(x,1)eQx(0,T -h),

d ;gv)+A*(t)p(v)—0,(x,t)eQx(T—h,T) (36)
p(x,T;v)IO, xeQ (37)
P'(x,T;v)=0, xeQ (38)
op(v)

5VA* (x,t)=c(x,t+h)p(x,t+h;v) 39)

+ A4 (y(v) |y (x,8) =2y, ).(x.1) €T x(0,T 1)
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?V(;) (xt)= 4 (3 () s () =254 ) o0

(x,1)eTx(T-h,T),

As in the above section, we have the following result.
Lemma 3.2. Let the hypothesis of Theorem 2.1 be
satisfied. Then, for given zy, € I’ (E) and any
vel’ (Z) , there exists a unique solution
p(v*) ew™? (Q) to the adjoint problem (35)-(40).

Using the adjoint Equations (35)-(40) in this case, the
condition (34) can also be written in the following form

[T (p(v')+ W) (v=v")drde 2 0. 9v U, (41)

The following result is now summarized.

Theorem 3.2. For the problem (1)-(6) with the per-
formance function (33) with zy, € I’ (2) and 4,>0,
and with constraint (16), and with adjoint Equations
(35)-(40), there exists a unique optimal control V'
which satisfies the maximum condition (41).

Example 3.3. Case: u € L’ (Q). We can also consider
an analogous optimal control problem where the perfor-
mance functional is given by:

I(u)= AIIQ[y(x,t;u)—zd T dxds

(42)
+4, jQ(Nu )udxdt

where z, € ’(0).

From Theorem 2.1 and the Trace Theorem [20] (Vol. 2,
p. 9), for each u e L*(Q), there exists a unique solution
y(u)ew™'(Q). Thus, I is well defined. Then, the
optimal control u” is characterized by

ALz e
+/lzIQNu* (u—u*)dxdt >0 YueU,

We define the adjoint variable p= p(u)= p(x,t;u)
as the solution of the equations:

opu) . e

¥ +A4 (t)p(u)+b(x,t+h)p(x,t+h,u) 0(44)
(x,1)eQx(0,T —h)
%SM)+A*(t)p(u)20,(x,t)€Q><(T—h,T) (45)
p(x,Tu)=0, xeQ (46)
p'(x,T;u)=A(y(u)(x,t)—zd), xeQ 47)
%(::)(x,t)=c(x,t+h)p(x,t+h;u) “8)

(x,1)eTx(0,T—h)
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p(u)VA* (x,t) = 0,(x,t) € Fx(T—h,T) (49)

As in the above section, we have the following result.
Lemma 3.3. Let the hypothesis of Theorem 2.1 be
satisfied. Then, for given z, €L’ (Q) and any
uel (Q) , there exists a unique solution
p(u* ) eW™*(Q) to the adjoint problem (44)-(49).
Using the adjoint equations (44)-(49) in this case, the
condition (43) can also be written in the following form:

T * *
.[0 jﬂ(p(u )+2 Nu )(u
The following result is now summarized.
Theorem 3.3. For the problem (1)-(6), (44)-(49), (16)
with z, e’ (Q) , A, >0, there exists a unique optimal
control u* which satisfies the maximum condition (50).

—u*)dxdt >0,VuelU, (50)

5. Generalization

The optimal control problems presented her can be ex-
tended to certain different two cases. Case 1: Optimal
control for 2x2 coupled infinite order hyperbolic
systems involving constant time lags. Case 2: Optimal
control for nxn coupled infinite order hyperbolic
systems involving constant time lags. Such extension can
be applied to solving many control problems in mecha-
nical engineering.

Case 1: Optimal control for 2 x 2 coupled infinite
order hyperbolic systems involving constant time lags.

We will extend the discussions to study the optimal
control for 2x2 coupled infinite order hyperbolic sys-
tems involving constant time lags. We consider the case
where v=(v,v,)eL’(X)xL*(Z) , the performance
functional is given by'

(/11_[ [y, x,tv)— ,d] dxdz

+22 [L (N, ) vidxde)

(5D

2
where z, =(z,,,2,,) € (L2 (Q)) :
The following results can now be proved.
Theorem 4.1. Let y,, », ®,, ¥,, v and u be
given with

(J’opyoz) ( w{aa’z}(Q))z’
()’11ay12) ( w{a 2}(9))2’

q)0: o> @ E(sz 0, ) >
Y, = e(L2 )
v= (V ) (L2 (2)

and u=(u,u,)e (W’””2 (Q))2 .

Then, there exists a unique solution
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y=(.»n)e (W_w’_2 (Q))2 for the following mixed ini-
tial-boundary value problem:

2 w
8_)2/1_{ > (-1)"a,D* + lJy1
|a|=0
+b, ( )y1 X,t— h)—y2 =u, inQ

2 0
0"y, +(Z( )\a\a D2a+1Jy2

la=0

(52)

+ by (x,0)y,(x,t—h)+y =u,,in Q
(xt u) q)O,(xt)

yQ(xt u) 2( ) (53)

(x,1") € Qx(—h,0)

y,(x,O;v) yOI,yz( 0; ) yoz,er 54)
yl'(x,O;v) =YV (x,O;v) =,,xeQ  (55)

aayl =¢ (x,1)y, (x,t=h)+v, onZ,

. (56)
@ =¢, (x,1)y, (x,t=h)+v,, onX
ov,

» (x,t';u) =Y, (x,t’), (x,t’) c FX(—h,O)
v, (x,15u) = Yo, (x,t"), (x,0")elx (—h,O)} 7

where

y= y(x,t;v) = (y1 (x,t;v),y2 (x,t;v)) 1S (W°°‘2 (Q))2

u=u(x,t)= (ul (x,1),u, (x,t)) € (W_°°’_2 (Q))2

v=v(xt)= (v1 (x,1),v, (x,t)) € (LZ (2))2
Lemma 4.1. Let the hypothesis of Theorem 4.1 be
satisfied. Then for given z, =(z,,2,,)€ (L2 (Q))2 and

any v=(v,v,)e (L2 (2)) , there exists a unique solu-

tion p(v) = (p1 (v),p2 (v)) € (W°°’2 (Q))2 for the adjoint
problem:

0 pl( )+ aio( )‘al aaD2+ljp1(v)
(xt+h)p1(x,t+h;v)+p2(v):/ll(yl(v)—zld)
(x,1)eQx(0,T-h),
‘32 ( o S0 0D +1] (V)b (x4 h)
pz(x,t+h V) ( ) (yz( ) ZZd)’
(x,) e Qx(0,7—h)
(58)
ICA
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(59)

Il
(e}

—+E i (-1)" a,D? +1Jp2 (v)

la=0

x €Q), }
(60)

er,}
(61)

(62)

19)
pl(x’t):o, (x,t)eFX(T—h,T),
61//1* ©3)
Gpaz(x,t)_o’ (x,t)eFx(T—h,T).
V o«

Theorem 4.2. The optimal control
Vi =v(xt)= (vl* (x,1),v; (x,t)) € (L2 (Z))2 is charac-

terized by the following maximum condition

LT[ (v )+ W ] s 1)
[ () Mo (v -3 ))dl"dtzo (64)
Vv=(v,v,)e (L2 (2))2

where p, (x,t;v) € (W“”z (Q))2 is the adjoint state.

The foregoing result is now summarized.

Theorem 4.3. For the problem (52)-(57) with the
performance function (51) with
z, :(zlﬂ,,zm)e(LQ(Q))2 and 2, >0, and with con-

2
straint: U, is closed, convex subset of (L2 (2)) , and

with adjoint equations (58)-(63), then there exists a unique
optimal control

V= () = (7 (600 (60)) < (£ (5)

which satisfies the maximum condition (64).

Copyright © 2012 SciRes.

Case 2: Optimal control for n x n coupled infinite
order hyperbolic systems involving constant time lags.

We will extend the discussion to n x n coupled infi-
nite order hyperbolic systems involving constant time
lags. We consider the case where

v=(v,v, v, ) € ( I? (Z))n , the performance functional
is given by (El-Saify, 2005; 2006):

I(v)= IZ:'(XIIQD}" (x,5,v) -z, ]2 dxdt
+ﬂQIZ(Nivi)vidxdt)

where z, :(zld,zz(j,--.,znd)e(L2 (Q))n.

The following results can now be proved.

Theorem 4.4. Let y,, y», ®,, ¥,, v and u be
given with

Yo = (J/o,lsJ’o,zv""yo,n)e (WOO {aa’z}(g))n >
= (yl‘lﬂyl,Z"”’yl,n) € (W3O {aa’z}(Q))n >

o, = ((Do,l’q)o,z""’q)&n) € (stl (QO))H ’

n

¥, :(kpo,lv\yo,m""kpan) E(L2 (20)) ’
vz(vl,vp“',v,,)E(LZ(Z))”

and u=(u,uy, -,u,)e (W’“’”2 (Q))’1 .
Then, there exists a unique solution
y= (yl,yz,---,y,, ) € (W°°’2 (Q))n for the following mixed

initial-boundary value problem: Vii=1,2,---,n we
have

(65)

2
%+S(r)y,. (vat) 6, (x.0) 3, (xa ) =

(x,1)eQx(0,T)

" (66)

v, ()=, (x,1") (x,1')eQx(-h,0) (67)

1 (60)= (), xe0 ()
y,.'(x,O) =V (x), xeQ (69)
ST;—ci(x,t)yi(x,t h)+v, 70)
(x,)eTx(0,T)

yi(x,t)=V¥, (xt') (x,¢')elx(-h0) (71)
where
y=y(xsv)=(n(xn6v).n, (x6v). ., (nsv))
«(w(0))
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b.,c, are given real C” functions defined on Q,%,
respectively, / is a time lags,

€ (W’“‘”’2 (Q))n ®,,,¥,, are initial functions defined on 0%,
respectively.
- _ 2 (s The operator S(7) isan nxn matrix takes the form
v=v(nt) = (3 (60 (60, (x0) € (£(2)) [22-25] (El-Saify & Bahaa 2000; 2001; 2002; 2003).
S (<1)“ 4, D% +1 -1 1 -1
|a|=0
1 S (1) a, 0% +1 -1
S(t)= o
1 1 S (1) a, 0% +1
la=0 nxn
That )
oe ,7 ag)’—(v)(x,t) 0, (xi)eTx(T=hT)  (78)
Z(_l)au aaD2y1 (x)+ZBijyj (x)’VZ:1$2s"'$n (72) VS*
e ! Theorem 4.5. The optimal control
where R (x t)
LU itz =v{x n
ool-1 it i<y :(vl* (x,1),v5 (x,0),++, v, (x,t))e(L2 (2))

Lemma 4.2. Let the hypothesis of Theorem 4.4 be
satisfied. Then for given

z :(zld,zzw..-,znd)e(L2 (Q))n and any

v(x,t) = (v1 (Jc,t),v2 (x,t),-u,vn (x,t)) € (L2 (Z))n , there

exists a unique solution

p(v)=p(xtv) :(Pl (x.1v), py (x.55v),-, p, (x,t;v))

c(w=2(9))
for the adjoint problem: Vi,i=1,2,---,n, we have
2
%@+S*(t)pl.(v)+bi(x,t+h)pi(x,t+h;v) .
:ﬂq(yi(v)—zid),(x,t)eQx(O,T—h)
azpi(v) *
o +S (t)pi(v):/ﬁ(y[(v)—z[d), (74)
(x,1) e Qx(T—h,T)
pi(x,T,v)=O, xeQ (75)
pl(x,T,v)=0, xeQ (76)
ap; (v)
—=(xt)=c (x,t+h)p,(x,t+hv),
e el p )|

(x,1)eTx(0,T—h),

Copyright © 2012 SciRes.

is characterized by the following maximum condition

E;LTL([I%(V*)+2”%Vf}(n~—Vf))dth2(L

Vv:(vl,vz,m,vn) e(Uad )n R

(79)

where
o) = ol
~(p (5t )y ("), () € (772 (0)

is the adjoint state.

The foregoing result is now summarized.

Theorem 4.6. For the problem (66)-(71) with the
performance function (65) with

zd=(zld,ZZd,---,znd)E(LZ(Q))" and A, >0, and with

constraint. U,, is closed, convex subset of (L2 (2))n,
and with adjoint Equations (73)-(78), then there exists a
unique optimal control

Vi =V (x,t)= (vl* (x,2),v5 (%), v (x,t)) € (L2 (E))n

which satisfies the maximum condition (79).

In the case of performance functionals (15, 33, 42, 51
and 65) with 4, >0 and A, =0, the optimal control
problem reduces to minimization of the functional on a
closed and convex subset in a Hilbert space. Then, the
optimization problem is equivalent to a quadratic pro-

n
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gramming one, which can be solved by the use of the
well-known Gilbert algorithm.

6. Conclusions

The optimization problem presented in the paper consti-
tutes a generalization of the optimal boundary control
problem of a second order hyperbolic systems involving
constant time lags appearing in the boundary condition

have been considered in [4-16,22].

In this paper, we have considered the boundary control
problem for infinite order hyperbolic system and also for
(nxn) infinite order hyperbolic systems involving con-
stat time lags appearing both in the state equations and in
the Neumann boundary conditions. We can also consider
the boundary optimal control problem for (n><n) infi-
nite order parabolic or hyperbolic systems with time-
varying delays appearing in the state equations and in the
Neumann or Dirichlet boundary conditions. We can also
consider the boundary optimal control problem for
(nxn) infinite order hyperbolic systems with time-
varying delays appearing in the integral form with
he (a,b) or he (O,b) both in the state equations and
in the Neumann or Dirichlet boundary conditions.

Also it is evident that by modifying:

e The boundary conditions, (Dirichlet, Neumann, mixed,
etc.);

The nature of the control (distributed, boundary, etc.);
The nature of the observation (distributed, boundary,
etc.);

The initial differential system;

The time delays (constant time delays, time-varying
delays, multiple time-varying delays, time delays given
in the integral form, etc.);

e The number of variables (finite number of variables,
infinite number of variables systems, etc.);

e The type of equation (elliptic, parabolic, hyperbolic,
etc.);

e The order of equation (second order, Schrodinger, in-
finite order, etc.);

e The type of control (optimal control problem, time-
optimal control problem, etc.), an infinity of variations
on the above problem are possible to study with the
help of [21] and Dubovitskii-Milyutin formalisms
[23-32]. Those problems need further investigations
and form tasks for future research. These ideas men-
tioned above will be developed in forthcoming papers.
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