
Journal of Intelligent Learning Systems and Applications, 2012, 4, 223-229
http://dx.doi.org/10.4236/jilsa.2012.43023 Published Online August 2012 (http://www.SciRP.org/journal/jilsa)

1

Systematic vs. Non-Systematic Search for 3D Aircraft
Conflict Resolution

Younes Mechqrane, El Houssine Bouyakhf

LIMIARF/FSR, University Mohammed V Agdal, Rabat, Morocco.
Email: ymechqrane@gmail.com, bouyakhf@fsr.ac.ma

Received November 22nd, 2011; revised March 31st, 2012; accepted April 7th, 2012

ABSTRACT

A conflict is an event in which two or more aircraft experience a loss of minimum separation. In this paper, we formu-
late the problem of solving conflicts arising among several aircraft moving in a shared airspace as a Constraint Satisfac-
tion Problem (CSP). The constraint satisfaction problem being NP-complete, the algorithms developed to solve it have
been of two types: non-systematic and systematic search methods. In this paper, we have considered a breakout algo-
rithm as an example of non-systematic search methods and a backtracking procedure that maintains Arc Consistency
(MAC) as an example of systematic search methods. The performance of these algorithms was compared experimen-
tally and the Breakout algorithm is shown to be clearly superior.

Keywords: Constraint Satisfaction Problem; Systematic Search; Non-Systematic Search; Aircraft Conflict Resolution

1. Introduction

The annual cost to the airline industry due to the ATC
caused delays is estimated to be $5.5 billion [1]. It is be-
lieved that by increasing the level of automation, the
tasks of air traffic controllers can be simplified and the
efficiency of flow of aircraft can be improved [2]. Re-
cently, interest has grown toward developing advanced
conflict detection and resolution systems to warn air traf-
fic controllers and/or pilots about an imminent loss of
separation between aircraft, and to assist them in their
resolution. Conflict detection and resolution is performed
at three different levels of the ATM process. 1) Long
Range: Some form of conflict prediction and resolution
is carried out over a time horizon of several hours. It in-
volves composing flight plans and airline schedules (on a
daily basis, for example) to ensure that airport and sector
capacities are not exceeded; 2) Mid-Range: Conflict pre-
diction and resolution is carried out by Air Traffic Con-
trollers, over horizons of the order of tens of minutes. It
involves modifying the flight plan on-line to ensure ade-
quate aircraft separation; 3) Short Range: Conflict pre-
diction and resolution is also carried out on board the
aircraft, over horizons of seconds to minutes. The traffic
alert and collision avoidance system, currently operating
on all commercial aircraft carrying more than 30 passen-
gers, is such a prediction/resolution algorithm.

In this paper, we focus on the mid-term conflict reso-
lution problem which is an on-line problem. This prob-
lem can be stated as follows: Knowing the positions of

aircraft at any given time and their future positions (to a
fixed degree of accuracy) over the next ten minutes, what
manoeuvring instructions should the Air Traffic Control-
ler give to these aircraft so that the separation constraints
are satisfied? A separation constraint is a relation be-
tween each pair of aircraft in the controlled airspace.
This relation specifies that there exists a minimum dis-
tance that should be maintained at all times between the
aircraft involved in this relation. The problem of conflict
resolution is closely related to some problems in motion
planning in the presence of moving obstacles. In general,
these problems are known to be NP-hard [3]. This fact
explains the large variety of existing conflict resolution
algorithms. Already in 2000, Kuchar and Yang [4] listed
over than 60 different approaches found in the literature.
A more recent survey can be found in [5]. The studies of
conflict resolution may be categorized into three different
cases according to the methods by which a solution is
obtained.

A first class of conflict resolution problem methods
may be referred to as rule-based conflict resolution, in
which a maneuver is resolved according to pre-described
rules ([6-8] for example). Rule-based approaches might
work for the case involving two aircraft, but may require
a prohibitive number of rules to handle all situations
arising when more than two aircraft are involved.

A second class of conflict resolution techniques uses
force field methods and assumes that aircraft fly in the
force field generated by a potential function; the forces

Copyright © 2012 SciRes. JILSA

Systematic vs. Non-Systematic Search for 3D Aircraft Conflict Resolution 224

induced by the potential function form a resolution ma-
neuver (for example [9]). Although widely used for the
motion control of mobile robots, force field methods
have not yet been very popular in aircraft conflict resolu-
tion. This is due to the fact that these methods may pro-
duce maneuvers which real aircraft are incapable of per-
forming.

A third class includes optimized conflict resolution.
These methods produce a resolution maneuver which
minimizes a given cost, a function of deviation from the
original trajectory, flight time, fuel consumption, or en-
ergy. Contributions belonging to this category include,
but are not limited to [10-15]. However, these methods
usually need to make one or more unrealistic assump-
tions when extrapolating the future positions of aircraft
(for example, no uncertainty about the aircraft speed).

In this paper, we propose a Constraint Programming
based conflict resolution approach for ensuring adequate
aircraft separation in air traffic control systems. We pre-
sent a CSP model where the separation constraints are
expressed in a declarative form that allows taking into
account speed uncertainties. The constraint satisfaction
problem being NP-complete, the algorithms developed to
solve it have been of two types: non-systematic and sys-
tematic search methods. Generally, non-systematic search
methods alter incrementally inconsistent value assign-
ments to all the variables. They use a repair or hill
climbing metaphor to move towards more and more com-
plete solutions. To avoid getting stuck at local minimum
they are equipped with various devices for randomising
the search. Systematic search methods are often based on
a depth-first search algorithm with backtracking where at
each step of the search, a variable assignment is per-
formed followed by a process called constraint propaga-
tion. In this paper, the problem is tackled with two of the
best known systematic and local search algorithms. The
systematic search is a chronological backtracking equipped
with a filtering algorithm that maintains arc consistency
(MAC) and the local search is a Breakout algorithm
(BO).

The remainder of this paper is organized as follows:
Some basic definitions are recalled in Section 2; After-
wards, the problem is formulated as a constraint satisfac-
tion problem in Section 3; Then, the conflict resolution
algorithms are introduced in Section 4; Simulation results
are given in Section 5 before the conclusion of the paper
in Section 6.

2. Preliminaries

Constraint Satisfaction Problems (CSPs) occur widely in
artificial intelligence. They involve finding values for
problem variables subject to constraints which restrict
acceptable combinations.

Definition:

A Constraint Network is defined by:
1) a finite set of variables X = {x1, ···, xn}.
2) a domain for X, that is, a set D(x1) × ···× D(xn),

where D(xi) denotes the set of values allowed for xi.
3) a finite set C = {c1, ···, ce} of constraints. A con-

straint c involves the variables in the set var s(c) and
specifies the allowed tuples (i.e. combinations) of these
variables.

A solution to a constraint network is an assignment of
values to all the variables such that all the constraints are
satisfied. A constraint network is said to be satisfiable if
it admits at least a solution. The Constraint Satisfaction
Problem (CSP) is to determine whether or not a given
constraint network, also called CSP instance, is satisfi-
able.

3. Formulating the Conflict Resolution
Problem as a CSP

We consider n aircraft flying in the same region of the
airspace, each following its individual flight plan. The
flight plan is assumed to consist of a sequence of flight
levels, a sequence of way points and a sequence of
speeds for moving between them. A conflict is an event
in which two or more aircraft come closer than a safety
distance to one another. The safety distance is encoded
by means of a minimum allowed horizontal separation
(i.e. D) and a minimum vertical separation (i.e. H). One
example criterion is D = 5 nautical miles and H = 1000 ft.
These values correspond to the current en-route separa-
tion standard at lower altitudes. In this paper, to avoid a
conflict, an aircraft may perform a heading change (t,
±Δθ) or a flight level change (t, ±Δfl), where t is the time
when the aircraft starts its maneuver. In addition to
heading and flight level changes, we also define some
special maneuvers: 1) The maneuver No_change means
that the aircraft will still in its current path without per-
forming any change; 2) If an aircraft is currently flying in
a flight level different than its nominal (i.e. desired)
flight level, the maneuver Fl_Recovery brings back this
aircraft to its nominal flight level; 3) The maneuver
H_Recovery directs an aircraft at the next way point in its
flight plan. The conflict detection and resolution func-
tions are executed periodically, corresponding to the up-
date cycle (1 minute in our numerical experiments).
Hence, the maneuvers Fl_Recovery and H_Recovery will
allow aircraft that were deviated from their initial paths
during the previous cycles to return to their nominal tra-
jectories. That is, the set of potential maneuvers for each
aircraft is

 
   

_ , _ , _

(,) (,) .

S Fl Recovery H Recovery No Change

t t fl



  

Copyright © 2012 SciRes. JILSA

Systematic vs. Non-Systematic Search for 3D Aircraft Conflict Resolution 225

During each cycle, each aircraft may make a single
maneuver to return to its preferred path or to avoid a
conflict. The idea is to find a solution which removes all
possible collisions.

We assume that there is an error about the aircraft’s
future location because of ground speed prediction un-
certainties. The uncertainties on climbing and descending
rates are even more important. As the conflict free tra-
jectory must be robust regarding these and many other
uncertainties, an aircraft is represented by a point at the
initial time. But the point becomes a line segment in the
uncertainty direction (the speed direction here, see Fig-
ure 1). The first point of the line “flies” at the maximum
possible speed, and the last point at the minimum possi-
ble speed. When changing direction (t = 4), the segment
becomes a parallelogram that increases in the speed di-
rection. To check if two aircraft are in conflict, we com-
pute at each time step of the simulation the distance be-
tween the two polygons modelling the future aircraft
positions and compare it to the standard separation. In
the vertical plane, we use a cylindrical modelling (Figure
1). Each aircraft has a mean altitude, a maximal altitude
and a minimal altitude. To check if two aircraft are in
conflict, the minimal altitude of the higher aircraft is
compared to the maximal altitude of the lower aircraft.

That is, let a and b be two possible maneuvers for two
aircraft Ai and Aj. Let traj(Ai, a) be the modified trajec-
tory of the aircraft Ai if it executes the maneuver a. The
boolean function conflict((Ai, a), traj(Aj, b)) returns true
if traj(Ai, a) and traj(Aj, b) will generate a conflict. We
can now state our CSP model as follows. Let n be the
number of aircraft in the controlled air space. We associ-
ate with each aircraft Ai a variable xi which takes its val-
ues in

  
     
_ , _ , _

, ,

iD x Fl Recovery H Recovery No Change

t t fl



  



We have the following constraints:

Figure 1. Modelling of speed uncertainties.

     
    

1, , 1 , 1 , , ,

: , , ,ij i i j j

i n j i

c conflict A x A x

       n



4. The Conflict Resolution Algorithms

As already mentioned, there is two types of algorithms
developed to solve the CSPs: non-systematic and sys-
tematic search methods. In this paper, we have consid-
ered a breakout algorithm as an example of non-system-
atic search methods and a backtracking procedure that
maintains Arc Consistency as an example of systematic
search.

4.1. The Breakout Algorithm

The breakout algorithm [16,17] is given in Algorithm 1.
In this algorithm, the sate   1 1, , ,n nSol x v x v  is
a flawed solution that may contains some constraint vio-
lations, where vi or Sol(xi) denote the value assigned to xi
in Sol. The breakout algorithm contains two essential
steps: determining the local change that minimizes con-
flicts, and increasing the weights (called the breakout).
We associate with every constraint c a weight wt(c). All
weights are positive integer numbers and are set to 1 ini-
tially. Conflict minimization consists of choosing a vari-
able xi and a new value vi  D(xi) such that the conflicts
in the current state are reduced as much as possible. To
this end, we compute for every variable its conflict value,
defined as follows:

Definition
The conflict value WT(xi, vi’) of a variable xi assigned the
value vi in Sol is the sum of weights of the constraints
involving xi that would be violated in a state Sol’ that
differs from Sol only in that xi is assigned vi’.

The best improvement is to the variable/value combi-
nation xi, vi such that WT(xi, Sol(xi)) – WT(xi, vi’) is larg-
est. If there is such a combination with an improvement
greater than 0, the variable/value combination with the
best improvement is chosen as the local improvement. If
no improvement is possible by changing the value of any
variable, the current state is called a local minimum.

Algorithm 1. The breakout algorithm.

Copyright © 2012 SciRes. JILSA

Systematic vs. Non-Systematic Search for 3D Aircraft Conflict Resolution 226

When trapped in a local-minimum, the breakout algo-
rithm increases the weights of violated constraint in the
current state by 1 so that the evaluation value of the cur-
rent state becomes larger than the neighbouring states;
thus the algorithm can escape from a local-minimum.
Increasing the weights of violated constraint is what is
called a breakout step. In general, one imposes a runtime
limit on the algorithm: there is a limit on the number of
iterations denoted by L1, i.e. the number of times vari-
ables are revised, and on the number of breakout steps
denoted by L2.

4.2. The Backtracking Algorithm

The most common algorithm for performing systematic
search is backtracking. Backtracking incrementally at-
tempts to extend a partial solution that specifies consis-
tent values for some of the variables, toward a complete
solution, by repeatedly assigning a value for another
variable consistent with the values in the current partial
solution. A dead-end occurs when all the values of the
current variable (i.e. the variable being instantiated) are
rejected. In such a case, the variable that was instantiated
before the current variable becomes uninstantiated. This
process is called backtracking. The backtracking algo-
rithm terminates when all possible assignments have
been tested or a solution have been found. Usually, each
variable assignment is followed by a process that consists
in inferring some infeasible values (i.e. filtering). Arc
consistency is the oldest way of propagating constraints.
Arc consistency can be defined for binary constraints (i.e.
constraints involving two variables) as follows:

Definition
Given a network N = (X, D, C), a binary constraint c 
C such that var s(c) = {x, y}. A value a D(x) is con-
sistent with c if there exists a value b D(y) such that
(a, b) satisfies c. The value b is called a support for x on
c. A variable x is arc consistent on the constraint c if all
values in D(x) are consistent with c. The constraint c is
arc consistent if x and y are arc consistent on c.




The most well-known algorithm for arc consistency is
AC3 [18]. It was proposed for binary networks and actu-
ally achieves arc consistency.

Function mac(X, D, C) of Algorithm 2 is a backtrack-
ing algorithm that follows an AC3 like schema of propa-
gation. This function maintains a list Q of all the pairs (x,
c) for which we are not guaranteed that D(x) is arc con-
sistent on c. In line 1, Q is initialized with all possible
pairs (x, c) such that c C and x var s(c). After-
wards, the function propagare() is called (line 2). The
main loop (line 24) of the function propagare() picks the
pairs (x, c) in Q one by one and calls revise(x, c) (line 26)
to ensure that every remaining value in D(x) has a support

 

Algorithm 2. The maintaining arc consistency algrithm.

on c. During the execution of the function propagare(),
each time a domain D(x) is modified (line 26), it can be
the case that a value for another variable x’ has lost its
support on a constraint c’ involving both x and x’. Hence,
all pairs (x, c’) such that x, x’ var s(c’) must be put
again in Q (line 30).



When Q is empty, the function propagare() returns
true (line 31) as we are guaranteed that all remaining
values of all variables are consistent with all constraints.
When a domain D(x) is wiped out (line 27), the function
propagare() returns false (line 28).

If the initial call of the function propagare() was suc-
cessful (line 2), the function mac() selects a variable x0
and the first value a0 in D(x0) and calls the recursive

Copyright © 2012 SciRes. JILSA

Systematic vs. Non-Systematic Search for 3D Aircraft Conflict Resolution 227

function solve(x0, a0, D). If no solution can be found with
x0 = a0 this value is definitely removed from D(x0) (line 7)
and the next value for is attempted. The problem has no
solution if all the values in D(x0) are impossible. The
recursive function solve(x, a, D) takes as arguments a
variable x, a value a D(x) and D, i.e. the current do-
mains of the variables D = D(x1) × ··· ×D(xn), where D(xi)
denotes the current domain of xi. First, the function
solve(x0, a0, D) assigns the value a to the variable x (i.e.
D(x) is reduced to a single value {a} by adding the con-
straint x = a). Afterwards, if all the variables are instanti-
ated then a solution is found, otherwise, since the domain
of x was modified, the function propagare() is called in
order to maintain the arc consistency. If the call of the
propagation mechanism was successful (line 14), a new
variable y and a new value b in D(y) are selected and a
recursive call to the function solve(y, b, D) is made. If a
backtracking occurs (line 19), the variable y is uninstan-
tiated by removing the constraint y =b, and the value b is
removed from the current domain of y. This removal is
once again propagated (line 20).



The order in which variables are assigned by a back-
tracking search algorithm has been recognized as a key
issue for a long time. In this paper we used the domain
size over the weighted degree heuristic (i.e. dom/wdeg)
introduced in [19]. This heuristic guides the search to-
ward hard parts of a CSP by first instantiating variables
involved in the constraints that have frequently partici-
pated in dead-end situations.

5. Experimental Results

In our experiments, all aircraft fly at the same velocity,
500 miles per hour. Aircraft must maintain a minimum
horizontal separation distance D = 5 nautical miles, and a
minimum vertical separation distance H = 1000 ft. The
prediction is done for a lookahead window of length T =
10 min. Time is discretized and the timestep is 15 s. The
set of possible heading changes is Δθ = ±30, ±20, ±10.
Aircraft are flying on three distinct flight levels (i.e., 350,
360, 370) but can change levels to avoid conflicts.

Our conflict resolution algorithms were coded using
java. The computational times were computed on an Intel
P4 machine with 1 G RAM under Linux (Ubnutu 6.06).

5.1. 2D-Scenarios

At first, to compare the performance of algorithms in
terms of computational time, changes in altitude are not
allowed; this enriches the problem by requiring fewer
aircraft to create a dense airspace. In the first group of
simulations, we consider that a predetermined number of
aircraft are randomly distributed inside a circle with a
radius of 70 miles and each aircraft is assigned a random
heading. Aircraft are generated so that they are not in-

volved in a conflict immediately (all conflicts occur after
one minute). We vary the number n of generated aircraft
from 5 to 30 aircraft by steps of 5. For each value of n we
generated 25 different instances. In Table 1 we show the
averaged computational times (in seconds) for each algo-
rithm.

In the second group of simulations, we generated sym-
metric scenarios where a predetermined number of air-
craft are evenly distributed on a circle with a radius of 70
miles (Figure 2). These scenarios are similar to those
considered by many other researchers ([13] for example).

The destination for these aircraft is the exact opposite
side of the circle from their originating position. This
means that in the absence of maneuvers all aircraft would
conflict at the origin of the circle. We vary the number n
of generated aircraft from 5 to 40 aircraft by steps of 5.
In Table 2 we indicate the computational times (in sec-
onds) needed by each algorithm to find the solution.

Those results show that BO is not only faster than
MAC, but also that BO is able to solve problems much
larger than MAC. The poor performance of the system-
atic search method is likely the result of its inability to
quickly revise a bad decision. Indeed, in systematic me-
thods, the partial solution constructed during the search
process will not be revised unless it is proven that there
exists no complete solution subsuming the partial solu-
tion. If the algorithm makes a bad selection of a variable
value, the algorithm must perform an exhaustive search
for the partial solution in order to revise the bad decision.
When the problem becomes very large, doing such an
exhaustive search is very expensive.

Table 1. Computational times for random scenarios.

n MAC BO

5 1.208 s 0.313 s

10 12.249 s 1.078 s

15 31.187 s 5.656 s

20 48.034 s 10.516 s

25 130.813 s 103.297 s

30 170.092 s 46.922 s

Table 2. Computational times for symetric scenarios.

n MAC BO

5 5.156 s 0.078 s

10 27.531 s 0.688 s

15 79.781 s 2.047 s

20 154.750 s 5.766 s

25 - 12.484 s

30 - 16.516 s

35 - 34.859 s

40 - 51.141 s

Copyright © 2012 SciRes. JILSA

Systematic vs. Non-Systematic Search for 3D Aircraft Conflict Resolution

Copyright © 2012 SciRes. JILSA

228

Figure 2. A symmetric scenario of 25 aircraft. The trajectories that must follow the aircraft to avoid conflicts are plotted.

5.2. 3D-Scenarios

The systematic and non-systematic search methods have
different strategies for choosing values and variables. In
the following, we seek to examine the consequences of
these differences on the behaviour of algorithms. To this
end, a 3-dimensional airspace, with 3 flight levels was
simulated. The airspace is a 200 nautical miles sided
square. 60 aircraft are flying on three distinct flight levels
and can change levels to avoid conflicts. Aircraft are
flying Westbound on the first and the third flight levels
and Eastbound on the second flight level.

Aircraft that leave the controlled airspace are replaced.
We considered a scenario lasting Tsim = 50 min instead of
snap shot scenarios considered in the first group of the
simulations. Over the course of the full simulation time, a
look-ahead window of length T = 10 min is advanced in
1-minutes steps, corresponding to the conflict resolution
update cycle. Hence, conflict resolution is performed over
a series of 10-minute time windows, corresponding to the
intervals [0, 10], [1, 11], ···, [ti, ti + 10], ···, [Tsim – 10,
Tsim] over the duration of the simulation. Initially, aircraft
are generated so that they are not immediately involved
in a conflict (i.e. there is no conflict between aircraft
during the interval [0, 1]). At each time ti, we perform
conflict resolution for the interval [(ti + 1), (ti + 1) + 10].

We then modify the routes accordingly, advance the 10-
minute window by 1 minute and continue. New aircraft
are generated so that they are not immediately involved in
a conflict with the aircraft that are still in the sector (i.e. all
conflicts with the aircraft that are still in the sector occur
after 1 min). In Table 3, we indicate by #conflicts the
number of total conflicts solved over the duration of the
simulation and by #hor. (respectively #ver.), the number of
horizontal (respectively vertical) maneuvers executed over
the duration of the simulation.

We notice that MAC tends to resolve conflicts in the
horizontal plan (the number of horizontal maneuvers is
higher for MAC) while BO makes a frequent use of ver-
tical maneuvers (the number of vertical maneuvers is
higher for BO). The conflict resolution in the horizontal
plan would be more likely to create new conflicts with
neighboring aircraft during subsequent conflict resolu-
tions. This may explain why the total number of resolved
conflicts is higher for MAC.

Table 3. 3D scenarios.

 #hor. #ver. #conflicts.

MAC 140 5 421

BO 86 17 382

Systematic vs. Non-Systematic Search for 3D Aircraft Conflict Resolution 229

6. Conclusion

In this paper, the aircraft conflict resolution problem was
formulated as a constraint satisfaction problem. After-
wards, a systematic search method and a non-systematic
search method were put in competition. The performance
of these methods was compared using a variety of sce-
narios and the non-systematic search method was shown
to be more effective in resolving conflicts.

REFERENCES
[1] T. S. Perry, “In Search of the Future of Air Traffic Con-

trol,” IEEE Spectrum, Vol. 34, No. 8, 1997, pp. 18-35.
doi:10.1109/6.609472

[2] Joint Planning and Development Office, “Next Genera-
tion Air Transportation System Integrated Plan,” Wash-
ington DC, 2004.

[3] J. H. Reif and M. Sharir, “Motion Planning in the Pres-
ence of Moving Obstacles,” 25th IEEE Symposium on
Foundations of Computer Science, Portland, 21-23 Octo-
ber 1985, pp. 144-154,

[4] J. Kuchar and L. C. Yang, “A Review of Conflict Detec-
tion and Resolution Modeling Methods,” IEEE Transac-
tions on Intelligent Transportation Systems, Vol. 1, No. 4,
2000, pp. 179-189.

[5] G. Chaloulos, J. Lygeros, I. Roussos, K. Kyriakopoulos,
E. Siva, A. Lecchini-Visintini and P. Casek, “Compara-
tive Study of Conflict Resolution Methods,”, iFly Project,
2009.

[6] K. Bilimoria, B. Sridhar and G. Chatterji, “Effects of
Conflict Resolution Maneuvers and Traffic Density of
Free Flight,” AIAA Guidance, Navigation, and Control
Conference, San Diego, 29-31 July 1996.

[7] B. Carpenter and J. Kuchar, “Probability-Based Collision
Alerting Logic for Closely-Spaced Parallel Approach,”
Proceedings of the AIAA 35th Aerospace Sciences Meet-
ing and Exhibit, Reno NV, 6-9 January 1997.

[8] V. Duong, E. Hoffman, L. Floc’hic and J. P. Nicolaon,
“Extended Flight Rules to Apply to the Resolution of
Encounters in Autonomous Airborne Separation,” Tech-
nical Report, EUROCONTROL Experimental Center
1996.

[9] K. Zeghal, “A Review of Different Approaches Based on

Force Fields for Airborne Conflict Resolution,” AIAA
Guidance, Navigation, and Control Conference, Boston,
10-12 August 1998, pp. 818-827.

[10] E. Frazzoli, Z. H. Mao, J. H. Oh and E. Feron, “Aircraft
Conflict Resolution via Semi-definite Programming,”
AIAA Journal of Guidance, Control, and Dynamics, Vol.
24, No. 1, 2001, pp. 79-86. doi:10.2514/2.4678

[11] J. Hu, M. Prandini and S. Sastry, “Optimal Coordinated
Maneuvers for Three Dimensional Aircraft Conflict Re-
solution,” AIAA Journal of Guidance, Control and Dy-
namics, Vol. 25, No. 5, 2002, pp. 888-900.
doi:10.2514/2.4982

[12] A. U. Raghunathan, V. Gopal, D. Subramanian, L. T.
Biegler and T. Samad, “Dynamic Optimization Strategies
for Three-Dimensional Conflict Resolution of Multiple
Aircraft,” Journal of Guidance, Control, and Dynamics,
Vol. 27, No. 4, 2004, pp. 586-594. doi:10.2514/1.11168

[13] L. Pallottino, E. Feron and A. Bicchi, “Conflict Resolu-
tion Problems for Air Traffic Management Systems
Solved with Mixed Integer Programming,” IEEE Trans-
actions on Intelligent Transportation Systems, Vol. 3, No.
1, 2002, pp. 3-11. doi:10.1109/6979.994791

[14] G. Gariel and E. Feron, “3D Conflict Avoidance under
Uncertainties,” 28th Digital Avionics Systems Conference,
Orlando, 23-29 October 2009, pp. 4.E.3-1-4.E.3-8.

[15] E. M. Kan1, M. H. Lim, S. P. Yeo, J. S. Ho and Z. Shao,
“Contour Based Path Planning with B-Spline Trajectory
Generation for Unmanned Aerial Vehicles (UAVs) over
Hostile Terrain,” Journal of Intelligent Learning Systems
and Applications, Vol. 3, No. 3, 2011, pp. 122-130.

[16] S. Minton, M. Johnston, A. Philips and P. Laird, “Mini-
mizing Conflicts, A Heuristic Repair Method for Con-
straint Satisfaction and Scheduling Problems,” Artificial
Intelligence, Vol. 58, No. 1-3, 1992, pp. 161-205.
doi:10.1016/0004-3702(92)90007-K

[17] P. Morris, “The Breakout Method for Escaping from Lo-
cal Minima,” 11th National Conference on Artificial In-
telligence, Washington DC, 11-15 July 1993, p. 4045.

[18] A. K. Mackworth, “Consistency in Networks of Rela-
tions,” Artificial Intelligence, Vol. 8, No. 1, 1977, pp. 99-
118. doi:10.1016/0004-3702(77)90007-8

[19] F. Boussemart, F. Hemery, C. Lecoutre and L. Sais, “Boost-
ing Systematic Search by Weighting Constraints,” Pro-
ceedings of ECAI’04, Valencia, 22-27 August 2004, pp.
146-150.

Copyright © 2012 SciRes. JILSA

http://dx.doi.org/10.1109/6.609472
http://dx.doi.org/10.2514/2.4678
http://dx.doi.org/10.2514/2.4982
http://dx.doi.org/10.2514/1.11168
http://dx.doi.org/10.1109/6979.994791
http://dx.doi.org/10.1016/0004-3702(92)90007-K
http://dx.doi.org/10.1016/0004-3702(77)90007-8

