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ABSTRACT 

We have defined the environmental interface 
through the exchange processes between media 
forming this interface. Considering the envi- 
ronmental interface as a complex system we 
elaborated the advanced mathematical tools for 
its modelling. We have suggested two coupled 
maps serving the exchange processes on the 
environmental interfaces spatially ranged from 
cellular to planetary level, i.e. 1) the map with 
diffusive coupling for energy exchange simula- 
tion and 2) the map with affinity, which is suit- 
able for matter exchange processes at the cel- 
lular level. We have performed the dynamical 
analysis of the coupled maps using the Lya- 
punov exponent, cross sample as well as the 
permutation entropy in dependence on different 
map parameters. Finally, we discussed the map 
with affinity, which shows some features making 
it a promising toll in simulation of exchange 
processes on the environmental interface at the 
cellular level. 
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1. INTRODUCTION 

Complex systems science has contributed to our un- 
derstanding of environmental issues in many areas from 
small to large temporal and spatial scales (from the cell 
behavior to global climate and its change). Environ- 

mental systems by themselves are both complicated and 
complex. Complicated, in that many agents act upon 
them; complex, in that there are feedback loops connect- 
ing the state of the system back to the agents, and con- 
necting the actions of the agents to one another. Complex 
systems have complex dynamics usually characterized 
by so-called tipping points, abrupt changes in the state of 
the system caused by seemingly gradual change in its 
drivers [1]. For example, a climate tipping point is a 
somewhat ill-defined concept of a point when global 
climate changes from one stable state to another stable 
state. After the tipping point has been passed, a transition 
to a new state occurs. Many scientists now use the power 
of computer models to advance their subjects. But there 
is a choice: to simplify complex systems or to include 
more detail [2]. Further advances in these areas will be 
necessary before complex systems science can be widely 
applied to understand the dynamics of environmental 
systems. In this paper and forthcoming ones we will con- 
sider environmental interfaces as complex systems 
through their main features. 

There are many existing researchers that deal with 
specific aspects of the environmental interface (for ex- 
ample, see references listed above). However, in this 
paper we rather made an introductory step in establishing 
the strategy for: 1) modeling of the processes in whole 
and 2) understanding the functional time of the exchange 
processes on the environmental interfaces, using new 
mathematical tools. 

1.1. Definition of Environmental Interface 

Technically speaking the interface is a point at which 
independent systems or components meet and act or 
communicate with each other. Interfaces can exist be- 
tween system elements and they can also exist between a 
system element and the system environment when we  
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speak about environmental interface. It can be specifi- 
cally defined depending on the science where it is used 
(ecology [3], ecological economy [4], social sciences [5], 
programming languages and simulation support systems 
[6], etc.). We define the environmental interface as an 
interface between two abiotic or biotic environments that 
are in relative motion and exchange energy, matter and 
information through physical, biological and chemical 
processes, fluctuating temporally and spatially regard- 
less of the space and time scale. It is slightly different 
from its formulation in [7,8]. This definition broadly 
covers the unavoidable multidisciplinary approach in 
environmental sciences and also includes the traditional 
approaches in environmental modeling. For example, 
such interfaces can be 1) placed in between different 
environments and 2) extended from micro to planetary 
scales. Through these interfaces environments exchange 
energy, matter and information (Figure 1). For example, 
those processes are: a) ions exchange in metals in unre- 
laxed configuration of ions and metal cores [9]; b) inter- 
cellular exchange of biochemical substances [10]; c) 
exchange of air volumes in a macroscale of urban con- 
ditions [11]; d) periodic migrations between populations 
[12]; e) heat exchange in Earth’s interior consisting of 
central core, a mantle surrounding the core and litho- 
sphere; f) energy exchange between solid matter and gas 
in natural conditions [13] and g) information exchange in 
a specific environment model combined with the envi- 
ronment interface describing their interactions [14]. The 
interactions between parts of the complex environ- 
mental interface systems are nonlinear, while their in- 
teractions with the surrounding environments are noisy 
that is mathematically well elaborated in [8,15-19], 
among others. 

1.2. Intention of the Paper and Further Plans 

The intention of this paper is to be an introductory step 
in creation of the strategy in modeling the processes on 
environmental interfaces. It is done trough the following 
steps: 1) Definition of environmental interface (Subsec- 
tion 1.1); 2) A concise elaboration of the fundamental 
tools in environmental interface systems modeling (Sec- 
tion 2) through description of the modeling architecture, 
use of Category Theory, Mathematical Theory of General 
Systems and Formal Concept Analysis in Subsections 2.1, 
2.2 and 2.3 respectively and 3) description of the two 
coupled maps, which serve exchange processes on the 
environmental interface (Subsection 3.1) and numerical 
simulations with maps of exchange processes on the 
environmental interface (Subsection 3.2). In papers that 
would follow we will continue with elaboration of the 1) 
model of evolvable environmental interfaces and 2) 
model of forming the functional time of the exchange  

 

Figure 1. Examples of environmental interfaces: (a) Ions ex- 
change in metals [9]; (b) Intercellular exchange of biochemical 
substances [10]; (c) Exchange of air volumes in urban condi- 
tions [11]; (d) Migration of insects [12]; (e) Heat exchange in 
Earth’s interior consisting of central core, a mantle surround- 
ing the core and lithosphere; (f) Energy exchange between solid 
matter and gas in natural conditions [13] and (g) Information 
exchange in a specific environment model combined with the 
environment interface describing their interactions [14]. 
 
processes on the environmental interfaces. 

2. FUNDAMENTAL TOOLS IN  
ENVIRONMENTAL INTERFACE  
SYSTEMS MODELLING 

The environmental interfaces are formed in a space 
that is rich with complex systems. Each system, as an 
open one, interacts in a coherent way, producing new 
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structures and building cohesion and new structural 
boundaries. It undergoes emergence and self-organiza- 
tion. In modeling the complex environmental interface 
systems, except the traditional mathematical, are often 
used the new mathematical tools like Category Theory 
(originally proposed by Rosen [20]), Mathematical Theory 
of General Systems [21] and Formal Concept Analysis 
(FCA) [22,23]. 

2.1. Modeling Architecture 

Modelers of environmental interface systems in nume- 
rically oriented studies base their calculations on mathe- 
matical models for the simulation and prediction of dif- 
ferent processes, which are exclusively nonlinear in des- 
cribing relevant environmental quantities [20]. A theore- 
tical description of any environmental interface system 
includes at least two important aspects. First, one should 
construct a concrete mathematical model of both the 
admissible states of the system and the transitions bet- 
ween these states. Second, one should establish the rules 
of selecting among the many theoretically admissible 
states of the system only those states that are realized in 
nature under the given external conditions [24]. 
In modeling community dealing with complex systems, 

Rosen’s diagram ([20] see Figure 2.3.1 p. 74, which 
represents the modeling relation) is a recognizable guide. 
Figure 2 is slightly modified Rosen’s diagram and 
schematically depicts a modelling relation when a natural 
system (N) and a formal system (F) are given. As above, 
two arrows represent the respective entailment structures; 
inference in formalism (F) and causality in a natural sys- 
tem (N). Now, the two established dictionaries provide 
encoding the phenomena of N into the propositions of F  
 

 

Figure 2. Schematic diagram representing both 1) the com- 
parison of two formalisms F1 and F2 and 2) modeling relation 
when we have given a natural system N and a formal system 
F [7]. Here, 1 represents causal entailment within the natural 
system (N); 2 represents encoding, where the observer’s 
propositions about N are used as hypotheses in constructing 
formal system (F); 3 is the generation of theorems in F, which 
function as a model of N; and 4 is decoding, where the 
theorems of F are applied back to N in the form of 
predictions. 

and another for decoding the propositions of F back to 
the phenomena in N. As mentioned above, there are two 
paths in diagram (1) and (2) + (3) + (4). According to [20] 
the first of them (the path (1)) represents the causal en-
tailment within N (what an observer will see by simply 
sitting and watching what is happening). The arrow (2) 
encodes the phenomena in N into the propositions in F. 
In this route we must use these propositions as hypo- 
theses based on which the inferential machinery of the 
formal system F may operate (denoted by the arrow (3)); 
it generates theorems in F, entailed precisely by the en- 
coded hypotheses. Finally, we have to decode these 
theorems back into the phenomena of N, via the arrow 
(4). At this point, the theorems become predictions about 
N. Then the formal system F is called a model of the 
natural system N if we always get the same answer re- 
gardless of the fact whether we follow path (1) or path (2) 
+ (3) + (4). The process of modelling complex systems is 
a very comprehensive one. A system is to be treated as a 
complex structure, as for instance in Peter Checkland’s 
definition: A system is a model of a whole entity; when 
applied to human, the model is characterised fundamen- 
tally in terms of hierarchical structure, emergent proper- 
ties, communication and control ([25], p. 318). The ma- 
jor components of complexity are openness and freeness, 
but the distinctive characteristic is “natural activity” like 
self-organisation, and still of great importance as intra- 
activity but now joined by the phenomena of antici- 
pation [26] and interactivity between systems to be found 
in global interoperability. The transition from connec- 
tivity to activity involves a type change and therefore 
requires formal system with an inbuilt facility to cross 
between the levels. Thus, intraconnectivity between the 
components cannot give rise to interactivity between 
those components without some non-local integrity com- 
ing into play [27]. The non-locality is a principle that is, 
among some others, specific for a certain object area 
such as the inorganic, living or human realm. This prin- 
ciple means certain interaction between the elements of 
the system that is treated as the transmission of informa- 
tion at infinite speed (see, for instance, [28]). 

2.2. Use of Category Theory 

Category Theory recommended by Rosen [20] as a 
modern tool for complex (and living) systems is found to 
have a formal expressive power for exploring the fun- 
damental non-local concept of adjointness needed to un- 
derstand complex systems. The arrow of Category The- 
ory does not only have a formal meaning. According to 
[27] it formalizes the principle of constancy (originally 
introduced by Heraclites and Parmenides) that is pro- 
vided by a common source and target. Such an arrow 
refers to the situation in which a source and target are  
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with their surrounding environment, such a system can 
be defined as a set of interacting objects  

1 2 3 n . If we denote the population of 
agents under consideration as  
and a set of external influences as  
(these influences can be either other agents or extra-sys- 
temic influences), then the state of such formed systems 
at any particular moment in time can be defined as the 
Cartesian product . Because our system is a 
dynamical network of interactions where at each moment 
the hierarchical status of network elements can vary sig- 
nificantly, we have to define state of the population P as 
a mapping 

S O O O O    

S P 

: e p

 1 2 3, , , , nP p p p p 
 1 2 3, , , , nE e e e e 

E

  , ,e E p P  . Both e and p are 
defined as temporal sequences of events such that 

 :E e T I   and  R:P e T , where T is a set 
of time points t, I is a set of external stimuli on a particu- 
lar agent such that at each time system receive stimulus 
 i t  and R is a set of responses, . Furthermore, 

both P and E are formal systems. Therefore, the occur- 
rence of p and occurrence of e at some particular time 
point t are governed not only by mapping 

 r t

  but also 
by the internal rules of these systems, which are partially 
independent. 

indistinguishable. In a defined system, the collection of 
entities can be identified as objects, while operations 
between them are defined by arrows. Figure 3 shows 
that there may be many possible arrows between objects. 
However, Category Theory holds that a unique limiting 
arrow may exist for all of these possible arrows that rep- 
resent the resulting intraconnectivity of a local system. 
There is an order between the two entities established by 
the directions of arrows [29]. This means that the arrow 
limit between two entities is also a limit of all possible 
paths. Because of the existence of limits and all possible 
connectivity, this is classified by axiomatic categories as 
a Cartesian closed category. Moving up one level, there 
is a grand limiting arrow for all of the aforementioned 
limits, existing as an identity functor characterizing the 
type and therefore the system as a category (Figure 4). A 
system as a category may then be drawn as a circular 
arrow, which is the identity functor that identifies the 
type of a system [27,29]. Therefore, the system can be 
represented as an arrow, i.e., a process in which the in- 
ternal arrows are simply the components of one arrow. 
This then leads to interconnectivity between the systems. 
Also, the functor between two categories is conceptually 
the same as internal arrows between the arrows above. 
Within the framework of this theory, it is possible to re- 
peat the abstraction to one level higher, to so called 
natural transformations. This level is the level of interac- 
tivity. It is important to note that the self-organization of 
a Category Theory-system (intra-activity) arises when 
the category-system pair is indistinguishable. Finally, 
Category Theory is a very useful tool when we meet dif- 
ficult problems in some areas of mathematics, ecology, 
physics, computer sciences, biological nano-engineering 
and the self-organization of cell function in living sys- 
tems [30], among many others. They can be translated 
into (easier) problems in other areas (e.g., by using func- 
tors, which map one category to another). 

Thus, it is obvious that changes in an environment 
induce appropriate responses in agents through the model 
of coupled input/output pairs. In real systems, the reverse 
situation is also possible such that some external changes 
can be influenced by the activity of organisms, but for 
the sake of simplicity and because it is not directly 
related to the main topic of this presentation, we will not 
consider that problem. It is clear that a critical factor in 
building an evolvable model as described above is 
choosing the appropriate structure for the mapping 
I R . When dealing with models usually developed as 
prediction tools, it is sufficient to assume the attitude of 
analyzing a “black box”. Therefore, we can propose a 
function that should summarize all available experi- 
mental data and obtain a set of more or less accurate 
predictions for various initial conditions. However, in 
such a case we will neglect the real meaning of the 
nature of mappings within E and P. Taking a slightly 
closer look at these relations we can see that a somewhat 
hidden problem is that of how I is generated from the  

2.3. Use of Mathematical Theory of General  
Systems 

Following Mesarovic’s Mathematical Theory of Gen- 
eral Systems [21], if we observe interactions of agents  
 

 

Figure 3. Schematic diagram representing the Category Theory essentials: (a) Morphism (arrows), objects, domain and co-domain; 
b) Identity morphism; (c) Composite morphism and (d) Identity composition and associativity. (     
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C category  D category 

F functor  

Figure 4. Schematic diagram represent- 
ing the functor “action” (dashed line). 

 
wholeness of external changes and what is the con- 
nection between generating I with a constitution of 
corresponding R. Although this connection can be effici- 
ently represented using the FCA [23], its evolvability 
demands a more advanced formal treatment to be fully 
comprehended. 

3. COUPLED MAPS IN PROCESSES OF  
EXCHANGE ON THE  
ENVIRONMENTAL INTERFACE  
SYSTEMS 

Many physical, biological as well as the environ- 
mental interface issues, can be described by the dynam- 
ics of coupled maps. In environmental models various 
non-linear dynamics methods are used (for example, 
[8,12,31-33]). However, in modeling of exchange energy 
and matter in environmental interface it is useful to use 1) 
the diffusive coupling, which describes the energy ex- 
change [8,13] and 2) the mapping with internal affinity, 
that describes the matter exchange [10]. The map with 
diffusive coupling (in further text, diffusive map) has the 
form 

    1 1 1 1n n n n nx c rx x cry y           (1a) 

    1 1 1 1n n n n ny c ry y crx x      ,     (1b) 

where parameter  is the so-called logistic 
parameter, while  is the coupling parameter. Since the 
first map is described in [13] and partly in [8] here the 
second map will be described in more details. 

r
c

0 r  4

3.1. The Map with Internal Affinity 

The map with internal affinity (in further text-map 
with affinity) can be used for describing the matter 
exchange in various biological as well as biophysical 
environmental interfaces. However, here we will con- 
sider it through intercellular exchange with the cell 
membrane as an environmental interface. As it is obvious 
from the empirical description, we can infer the success- 
fulness of the communication process by monitoring: 1) 
the number of signaling molecules, both inside and 
outside of the cell and 2) their mutual influence. The 
concentration of signaling molecules in an intercellular 

environment is subject to various environmental in- 
fluences, and taken alone often can indicate more about 
state of the environment than about the communication 
itself. Therefore, we choose to follow the concentration 
of signaling molecules inside of the cell as the main 
indicator of the process. In this case, the parameters of 
the system are 1) the affinity  by which cells perform 
uptake of signaling molecules (a2), which depends on the 
number and the state of the appropriate receptors, 2) the 
concentration c of the signaling molecules in the inter- 
cellular environment within the radius of interaction, 3) 
the intensity of the cellular response (a1) n

p

x  and n  
and 4) the influence of other environmental factors, 
which can interfere with the process of communication. 
In this case we estimate parameter  which can be 
taken collectively for intra- and intercellular environ- 
ments inside of the one variable, indicating the overall 
disposition of the environment to the communication 
process. 

y

,r

The time development ( n  is the number of time steps) 
of the concentration in cells  ,n n x y  can be expressed 
as 

     1 1n n 1 nx c x h y     ,        (2a) 

     1 1n n 2 ny c y h x     .        (2b) 

The map,  represents the flow of materials from cell 
to cell, and 

h
 y1h  and  are defined by a map 

that can be approximated by a power map, 
 2h x

  ~ ph y cy  
and  2 ~h x qxc . If   ~1

ph y cy  and 2h x , the 
interaction is expressed as a nonlinear coupling between 
two cells. The dynamics of intracellular behavior is ex- 
pressed as a logistic map (e.g. [34,35]), 

  ~ qcx

  1u ru u    .             (3) 

Because the concentration of the signaling molecules 
can be regarded as their population for a fixed volume, 
and because we are focused on the mutual influence of 
these populations, it is clear that we should use the cou- 
pled logistic equations. Instead of considering cell-to-cell 
coupling of two explicit n-gene oscillators [36], we con- 
sider the generalized case of intercellular communication. 
In this case, the investigation of conditions for which two 
equations are synchronized and how this synchronization 
behaves under changes of intra- and intercellular envi- 
ronments can give some answers to the question of how 
functionality in the system is maintained. Therefore, 
having in mind 1) that cellular events are discrete [37] 
and 2) using the aforementioned reasoning, we consider 
systems of difference equations of the form 

    1X F X L X P Xn n n    n ,        (4) 

with notation 
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          
   

L X 1 1 , 1 1 ,

P X ,

n n n n

p q
n n n

c rx x c ry y

cy cx

    



n



  (5) 

where X ,n n nx y

 P Xn

0X

 is a vector representing the con- 
centration of the signaling molecules inside of the cell, 
while  denotes the stimulative coupling influ- 
ence of members of the system, which is here restricted 
only to positive numbers in the interval (0, 1). The start- 
ing point  is determined such that    0 0, 0,x y  1

p

. 
Parameter  in logistic difference equations determines 
an overall disposition of the environment to the given 
population of signaling molecules and exchange proc- 
esses. The affinity to uptake signaling molecules is indi- 
cated by . Let us note that we require that the sum of 
all affinities of cells  exchanging substances has to  

r

p

ip
satisfy the condition  or in the case of two cells,  1i

i

p 
1p q 

 L Xn

, i.e., . Because  is a fixed 
point (4), in order to ensure that zero is not simultane- 
ously the point of attraction, we define  as an 
exponent. Finally,  represents coupling of two factors: 
the concentration of the signaling molecules in the intra- 
cellular environment and the intensity of response they 
can provoke. This form is taken because the effect of the 
same intracellular concentration of signaling molecules 
can vary greatly with variation of affinity of genetic 
regulators for that signal, which is further reflected in the 
ability to synchronize with other cells. Therefore, c  
influences both the rate of intracellular synthesis of sig- 
naling molecules and the synchronization of the signal- 
ing processes between two cells, so the parameter c  
(the coupling parameter) is taken to be a part of both 

 and . However, the relative ratio of 
these two influences depends on the current model set- 
ting. For example, if for both cells,  is strongly in- 
fluenced by the intracellular concentration of signals that 
can provoke relatively smaller responses, then the form 
of equation will be 

1q  

c

 P Xn

X 0

p

Xn

 0,1

   1 1 1 p
n n n nx c rx x cy     ,       (6a) 

    1
1 1 1 p

n n ny c ry y c 
     nx

1 1

.      (6b) 

We now analyze our coupled system, given by (6a) 
and (6b). For  and , we have  

. So, for small , the dynamic of our in- 
vestigated system is similar to the dynamic of the fol- 
lowing systems obtained by minorization, as follows 

0 ,x y 
1

0 p 
c0 px x  

   
   

1

1

1 1

1 1

n n

n n

,

,

n

n

x c rx x

y c ry y





  

  
            (7) 

and  0 1px x  

   
   

1

1

1 1

1 1

n n n

n n n

If we apply a majorization, the considered system be-
comes 

   
   

1

1

1 1

1 1

n n n

n n n

,

.

x c rx x c

y c ry y c





   

   
        (9) 

For all of these systems, it is obvious that they do not 
depend on the parameter . Because p    , ,f x y g y x

F


, 
where  are the components of  in (8), their dy- 
namics are symmetric to the diagonal ,  

,f g

  , :x y y x   . This symmetry also exists for sys- 
tem (6a)-(6b), if 0.5p  . 

Recalling the aforementioned conditions for , p x  
and px , we consider only systems (7) and (9) because 
the behavior of the system (6a)-(6b) comes from the 
properties of the mentioned ones. It is seen that the sys- 
tems (7) and (9) consist of uncoupled logistic maps on 
the interval  0, 1  (in (7)) or on the interval  , 1   
(in (9)), where 0   is the smaller solution of the 
equation    1 1 ,x c rx x c     i.e.  

       2
1 1 1 1 4 1 2 1c r c cr c r c

 

                
.

(10) 

Finally, let us note that the map, which describes ex- 
change processes, can be generalized in the form 

    1 1 1 n
p

n n n nx c rx x cy A By          (11a) 

    1 1 1 n
q

n n ny c ry y cx A B      nx .   (11b) 

This system we will call map of exchange processes. 
Specially, for 1p q   and A B r  

1p q 
 we get the 

diffusive map, while for  and 1A  , 0B   
we get the map with affinity. 

3.2. Numerical Simulations with Maps of  
Exchange Processes on the  
Environmental Interface 

In the analysis of these coupled maps we will consider 
three parameters included in the archive of dynamical 
analysis of coupled maps: 1) the largest Lyapunov expo- 
nent, 2) the cross sample entropy (Cross-SampEn) and 3) 
the permutation entropy (PermEn). We calculate the 
largest Lyapunov exponent λ  to see the behaviour of 
the coupled maps given by Eqs.1a-1b and 6a-6b, as par- 
ticular cases of Eqs.11a-11b, depending on different val- 
ues of the coupling parameter . Extending the ap- 
proach in [38,39], we study, for two coupled maps rep- 
resenting biochemical substance exchange between cells, 
the stability of the fixed point by linearizing Eqs.11a- 
11b. 

c

,

.

n

n

x c rx x cy

y c ry y cx





   

   
        (8) 

1n n Z γ Zn              (12) 
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where 

     
     

1

1

1 1 2 1

1 1 2 1

p
n n n

n q
n n n

c r x cy Ap B p y

c r y cx Aq B q x





    
    

γ
 
 

  

(13) 

is the Jacobian of the system (11) evaluated in  0 0,x y  
and  ,n n n x yZ . By iterating Eq.12 one obtains  

1
0

n

n s
s

0Z Z


   
 
 γ            (14) 

and thus we get Lyapunov exponent [40], i.e.  

0

lim ln .
n

s
n

s

λ n
 

 
  

 
 γ          (15) 

Figure 5 depicts Lyapunov exponent for the both cou- 
pled maps as a function of 1) coupling parameter  
ranging from 0 to 1, with the increment of 0.001, and 2) 
four different values of the logistic parameter  within 
the chaotic region or close to it. Each point was obtained 
by iterating 1000 times from the initial condition to 
eliminate transient behavior and then averaging over 
another 600 iterations starting from initial condition 

0  and 0 . From Figure 5(a) it is seen 
that for period 16 ( ), the Lyapunov expo- 
nent of the diffusive map has either negative values or 
ones, which are very equal or close to zero on the whole 
interval of the coupling parameter . The Lyapunov 
exponent for this map has 1) values, when the coupling 
parameter  is in the interval   and 2) the 
negative values in intervals 

c

r



0.30x  0.50y 
3.568r  759

c

,0c 0.2 .8
 .20.1,0  and  0.8,0.9  

and the logistic parameter  takes values that lie in the 
chaotic region, i.e. a) low chaos ( ), b) high chaos 
( ) and c) intermittency ( ), as seen in 
Figures 5(b)-5(d). Similarly, to the behavior of 

r
r

r
3.7

3.82


823.9r 
 , for 

period 16, of the map with affinity takes either negative 
or values close to zero (Figure 5(a)). From Figures 
5(b)-5(d) that intervals with positive   values become 
broader with sporadic windows with negative values, 
when values of  takes greater values in the chaotic 
region, i.e. for a)  ( 0

r
3.7r  0.25c  ), b) 3.8r 282  

( 0 ) and c) for  ( 0 ). Here, 
we will note a feature of the map with affinity that is re- 
lated to events on the environmental interface on the 
cellular level. Namely, the self-organization of proteins is 
of crucial importance for the functioning of cellular 
processes. However, this organization often takes place 
in the presence of strong random fluctuations [41] due to 
the small number of molecules involved. In particular it 
remains largely unexplored how fluctuations at cellular 
scales originate from the interplay of molecular and ex- 
ternal noise [42]. This map shows that for small values of 
coupling parameter  (concentration) and higher values 
of the logistic parameter  chaotic fluctuations prevails 

while synchronization appear (

0.30c  3.9r  0.30c 

c
r

0  ) with increase of 
 (red line in Figures 5(b)-5(d)). c
Cross-SampEn measure of asynchrony is a recently 

introduced technique for comparing two different time 
series to assess their degree of asynchrony or dissimila- 
rity [43,44]. Let     1 ,u u u u N 2 , ,    and  

     , v N1 , 2 ,v v v     fix input parameters m  and  

sr . Vector sequences:  
       1m, 1 , ,u i u i u i x i     and  
      , 1 , ,j v j v j v j  1y m     and  is the 

number of data points of time series, . 
For each 



i N m

N
N , 1i j m 

   set   m
i sB r v

j N m
u  = (number of 

     such that   /r m, j  m md x i y
j N m

N ), 
where ranges from 1 to , and then  

       
1

N m
m m

s i
i

r v u B r v u N m


 B  which is the  

average value of  m
iB v u . Similarly we define mA   

and m
iA  as   m

iA r v u  = (number of j N m    

such that      ,m m sd x i y j r N m    ) and  

       
1

N m
m m

s i s
i

r v u A r v u N m




 A  which is the  

average value of  m
iA v u . Finally, we have 

      Cross-SampEn ln m m
sA r v u B r v u  . (16) 

We applied Cross-SampEn with  and 5m  0.05sr   
for nx  and n  time series, and the same range of para- 
meters  and  for which the Lyapunov exponent is 
calculated (Figures 5(a), (b)). Figure 6 depicts the Cross- 
SampEn for the diffusive map and map with affinity 
given by the coupled systems (1) and (6), respectively. 
From a simple inspection of Figure 6(a) it is seen, that 
for period 16, the Cross-SampEn of the diffusive map has 
values close to zero since 

y
rc

  is near to zero on the 
whole interval of the coupling parameter . The Cross- 
SampEn for this map has 1) the values greater than zero, 
when the coupling parameter  is in the interval (0.2, 
0.8) and 2) the negative values in intervals (0.1, 0.2) and 
(0.8, 0.9) when the logistic parameter  takes values 
from the chaotic region, i.e. a) low chaos, b) high chaos 
and c) intermittency, as it is seen in Figures 6(b)-(d). 
The Cross-SampEn, for period 16, the map with affinity 
dominantly takes values equal to zero (Figure 6(a)), ex- 
cept in the interval 

c

c

0

r

0 c .2  . Let us note that Cross- 
SampEn is equal to zero for, 0   and positive for 

0  . This is clearly seen from Figures 6(b)-(d) where 
values of Cross-SampEn follows the Lyapunov expo- 
nents in Figures 5(b)-(d) for all values of the logistic 
parameter . r

Permutation Entropy (PermEn) of order  is de- 
fined as PermEn 

2n 
  π ln πp p   where the sum runs 

over all  permutations  of order n . This is the in- 
formation contained in comparing  consecutive values  

!n π
n
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Figure 5. Lyapunov exponent for the diffusive map and map with affinity given by the coupled systems (1) and (6), respectively. 
Calculations are performed for 1) the four different values of the logistic parameter within the chaotic region or close to it and 2) 
all values of the coupling parameter c on the interval [0, 1]. 

r

 
of the time series. Consider a time series 

1, ,t T . We 
consider all  permutations  of order  which are 
considered here as possible order types of  different 
numbers. For each  we determine the relative fre- 
quency 

 tx


n
n

!n

 

π

π
 , x# 0 ,p t t n x 1t t n   has type π


,T  

 π 1


, ,

T n  . This estimates the frequency of  as 
good as possible for a finite series of values. To deter- 
mine  exactly, we have to assume an infinite time 
series 1 2  and take the limit for  in the 
above formula. This limit exists with probability 1 when 
the underlying stochastic process fulfills a very weak 
stationarity condition: for 

π

T 
πp

x x 

k n , the probability for 

t t kx x   should not depend on t . Permutation en- 
tropy as a natural complexity measure for time series 
behaves similar as Lyapunov exponents, and is particu- 
larly useful in the presence of dynamical or observational 
noise [45]. With increased model complexity we are less 
able to manage and understand model behaviour. As a 
result, the ability of a model to simulate complex dy- 
namics is no more an absolute value in itself, rather a 
relative one: we need enough complexity to realistically 
model a process, but not so much that we ourselves can 
not handle [46]. For example, if we want to model bio- 
physical processes on environmental interfaces we meet  
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Figure 6. Cross sample entropy for the diffusive map and map with affinity given by the coupled systems (1) and (6), respectively. 
Calculations are performed for 1) the four different values of the logistic parameter within the chaotic region or close to it and 2) 
all values of the coupling parameter on the interval [0, 1]. 

r
c

 
a lot of uncertainties in time series of calculated physical 
quantities. Various measures of complexity were deve- 
loped to compare time series and distinguish regular (e.g., 
periodic), chaotic, and random behaviour. The main 
types of complexity parameters are entropies and the 
Lyapunov exponent, among others. They are all defined 
for typical orbits of presumably ergodic dynamical sys- 
tems, and there are profound relations between these 
quantities [47]. Figures 7(a)-(d) depict the calculated 
values of the PermEn versus the coupling parameter , 
which is periodic for some regions and chaotic for others. 
It can be also clearly seen some regions of stability for 

both maps. Let us note that PermEn, as a natural com- 
plexity measure for time series, behaves similarly to 
Lyapunov exponents (Figures 7(a)-(d) vs. 5(a)-(d)). 

c

4. CONCLUSIONS 

Our main results in this paper can be summarized as 
follows. 1) We have defined the environmental interface 
through exchange energy, matter and information be- 
tween media forming this interface. 2) Considering en- 
vironmental interface as a complex system we shortly 
described the advanced mathematical tools that can be  
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Figure 7. Permutation entropy for the diffusive map and map with affinity given by the coupled systems (1) and (6), respectively. 
Calculations are performed for 1) the four different values of the logistic parameter within the chaotic region or close to it and 2) 
all values of the coupling parameter  on the interval [0, 1]. 

r
c

 
used in its modelling (Category Theory, Mathematical 
Theory of General Systems and Formal Concept Analy- 
sis). 3) We suggested the two coupled maps serving the 
exchange processes on the environmental interfaces spa- 
tially ranged from cellular to planetary level, i.e. a) the 
map with affinity, which is suitable for matter exchange 
processes at cellular level and b) the map with diffusive 
coupling for energy exchange simulation. 4) For maps 
(1a)-(1b), representing diffusive coupling and (6a)-(6b), 
that describes coupling with internal affinity, with con- 
trolling parameters ( ) and ( ), respectively we 
calculated the largest Lyapunov exponent, sample as well 

as the permutation entropy. 5) The Lyapunov exponent 

,r c , ,r c p

  for the diffusive map has 1) positive values, when the 
coupling parameter  is in the interval  and 
2) negative values in intervals  and 

c  0.2,0.8
0.1,0.2  0.90.8, , 

while logistic parameter  takes values that lie in the 
chaotic region, i.e. low chaos ( ), high chaos 
(

r
3.7r 

3.9r  ) and intermittency ( ). For period 16 
its values are either negative or very close to zero. 6) 
Similarly to diffusive map, in the map with affinity, for 
period 16, 

3.8282r

  takes either negative or values close to 
zero. However, the intervals with positive   values 
become broader with sporadic windows with negative 
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values, when  takes greater values in the chaotic re-
gion, i.e.  ( 0 0 ),   
( 0 ) and  ( 0 ). 7) Calculat- 
ed values of the Cross-SampEn are mostly equal or very 
close to zero, corresponding to the region where 

r
3.7

30
r 

0.
.2c 

3.9r 
5 3.8282r 

0.30c c 

  is 
negative, indicating a high level on synchronization be- 
tween quantities nx  and n . Also, the calculated val- 
ues of the PermEn, as a natural complexity measure for 
time series behave similarly as Lyapunov exponents. 8) 
The map with affinity shows some features, which make 
it a promising toll in simulation of exchange processes 
on the environmental interface at cellular level. 

y

5. ACKNOWLEDGEMENTS 

This paper was realized as a part of the project “Studying climate 

change and its influence on the environment: impacts, adaptation and 

mitigation” (43007) financed by the Ministry of Education and Science 

of the Republic of Serbia within the framework of integrated and inter- 

disciplinary research for the period 2011-2014. We are appreciated to 

Miss Ana Firanj for designing the figures. 

 

REFERENCES 

[1] Gladwell, M. (2000) The tipping point: How little things 
can make a big difference, first edition. Little Brown, 
London. 

[2] Paola, C. and Leeder, M. (2011) Environmental dynamics: 
Simplicity versus complexity. Nature, 469, 38-39.  
doi:10.1038/469038a  

[3] Sizykh, A.P. (2007) Plant communities of environmental 
interfaces as a problem of ecology and biogeography. 
Biollogy Bulletin, 34, 292-296.  
doi:10.1134/S1062359007030120  

[4] Lehtonen, M. (2004) The environmental-social interface 
of sustainable development: Capabilities, social capital, 
institution. Ecological Economics, 49, 199-214.  
doi:10.1016/j.ecolecon.2004.03.019  

[5] Rasmussen, K. and Arler, F. (2010) Interdisciplinarity at 
the human-environment interface. Danish Journal of 
Geography, 110, 37-45. 

[6] Banks, J., Carson, J.S., Nelson, B.L. and Nicol, D.M. 
(2009) Discrete-event system simulation. Prentice Hall, 
Upper Saddle River. 

[7] Mihailovic, D.T. and Balaž, I. (2007) An essay about 
modeling problems of complex systems in environmental 
fluid mechanics. Idojaras, 111, 209-220. 

[8] Mihailović, D.T., Budinčević, M., Perišić, D. and Balaž, I. 
(2012) Maps serving the combined coupling for use in 
environmental models and their behaviour in the presence 
of dynamical noise. Chaos, Solitons & Fractals, 45, 156- 
165. doi:10.1016/j.chaos.2011.11.005  

[9] Duffy, D.M., Harding, J.H. and Stoneham, A.M. (1992) 
Atomistic modeling of the metal/oxide interface with 
image interactions. Acta Metallurgica et Materialia, 40, 
11-16. doi:10.1016/0956-7151(92)90258-G  

[10] Mihailović, D.T., Budincevic, M., Balaž, I. and Mihai- 
lović, A. (2011) Stability of intercellular exchange of 
biochemical substances affected by variability of envi-
ronmental parameters. Modern Physics Letters B, 25, 
2407-2417. doi:10.1142/S0217984911027431  

[11] Neofytou, P., Venetsanos, A.G., Vlachogiannis, D., 
Bartzis, J.G. and Scaperdas, A. (2006) CFD simulations 
of the wind environment around an airport terminal 
building. Environmental Modelling & Software, 21, 520- 
524. doi:10.1016/j.envsoft.2004.08.011  

[12] Lloyd, A.L. (1995) The coupled logistic map: A simple 
model for effects of spatial heterogeneity on population 
dynamics. Journal of Theoretical Biology, 173, 217-230.  
doi:10.1006/jtbi.1995.0058  

[13] Mihailović, D.T., Budinčević, M., Kapor, D., Balaž, I. 
and Perišić, D. (2011) A numerical study of coupled maps 
representing energy exchange processes between two en-
vironmental interfaces regarded as biophysical complex 
systems. Natural Science, 1, 75-84.  

[14] Behrens, T.M., Dix, J. and Hindriks, K.V. (2009) Towards 
an environment interface standard for agent-oriented pro- 
gramming. Technical Report IfI-09-09, Clausthal Univer-
sity of Technology. 

[15] Serletis, A., Shahmoradi, A. and Serletis, D. (2007) Effect 
of noise on the bifurcation behavior of nonlinear dy-
namical systems. Chaos, Solitons & Fractals, 33, 914- 
921. doi:10.1016/j.chaos.2006.01.046  

[16] Serletis, A., Shahmoradi, A. and Serletis, D. (2007) Effect 
of noise on estimation Lyapunov exponents from a time 
series. Chaos, Solitons & Fractals, 32, 883-887.  
doi:10.1016/j.chaos.2005.11.048  

[17] Serletis, A. and Shahmoradi, A. (2006) Comment on 
‘‘Singularity Bifurcations’’ by Yijun He and William A. 
Barnett. Journal of Macroeconomics, 28, 23-26.  
doi:10.1016/j.jmacro.2005.10.002  

[18] Savi, M.A. (2007) Effects of randomness on chaos and 
order of coupled maps. Physical Letters A, 364, 389-395.  
doi:10.1016/j.physleta.2006.11.095  

[19] Liu, Z. and Ma, W. (2005) Noise induced destruction of 
zero Lyapunov exponent in coupled chaotic systems. 
Physical Letters A, 343, 300-305.  
doi:10.1016/j.physleta.2005.06.044  

[20] Rosen R. (1991) Life itself, a comprehensive inquiry into 
the nature, origin, and fabrication of life. Columbia Uni-
versity Press. 

[21] Mesarovic, M. and Takahara, Y. (1972) General systems 
theory: Mathematical foundations. Academic Press, Inc., 
London. 

[22] Wille, R. (1982) Restructuring lattice theory: An ap-
proach based on hierarchies of concepts. In: Rival, I., Ed., 
Ordered Sets: Proceedings. NATO Advanced Studies In-
stitute, 83, Reidel, Dordrecht, 445-470. 

[23] Ganter, B. and Wille, R. (1997) Formal concept analysis: 
Mathematical foundations. Springer-Verlag, Berlin. 

[24] Levich, A.P. and Solov’yov, A.V. (1999) Category-functor 
modeling of natural systems. Cybernetics and Systems, 30, 
571-585. doi:10.1080/019697299125118  

[25] Checkland, P.B. (1981) Systems thinking, systems prac- 

Copyright © 2012 SciRes.                                                                    OPEN ACCESS 

http://dx.doi.org/10.1038/469038a
http://dx.doi.org/10.1134/S1062359007030120
http://dx.doi.org/10.1016/j.ecolecon.2004.03.019
http://dx.doi.org/10.1016/j.chaos.2011.11.005
http://dx.doi.org/10.1016/0956-7151(92)90258-G
http://dx.doi.org/10.1142/S0217984911027431
http://dx.doi.org/10.1016/j.envsoft.2004.08.011
http://dx.doi.org/10.1006/jtbi.1995.0058
http://dx.doi.org/10.1016/j.chaos.2006.01.046
http://dx.doi.org/10.1016/j.chaos.2005.11.048
http://dx.doi.org/10.1016/j.jmacro.2005.10.002
http://dx.doi.org/10.1016/j.physleta.2006.11.095
http://dx.doi.org/10.1016/j.physleta.2005.06.044
http://dx.doi.org/10.1080/019697299125118


D. T. Mihailović et al. / Natural Science 4 (2012) 569-580 

Copyright © 2012 SciRes.                                                                    OPEN ACCESS 

580 

tice. Wiley, New York.  

[26] Klir, G.J. (2002) The role of anticipation in intelligent 
systems. In: Dubois, D.M., Ed., Computing Anticipatory 
Systems (CASYS’01), 627, 37-46. 

[27] Rossiter, N. and Heather, M. (2005) Conditions for inter-
operability. 7th International Conference of Enterprise 
Information Systems (ICEIS), Florida, 92. 

[28] Bell, J.S. (1964) On the Einstein Podolsky Rosen paradox. 
Physics, 1, 195-200.  

[29] Manes, E.G. and Arbib, M.A. (1975) Arrows, structures 
and functors, the categorical imperative. Academic Press. 

[30] Wolkenhauer, O. and Hofmeyr, J.-H. (2007) An abstract 
cell model that describes the self-organization of cell 
function in living systems. Journal of Theoretical Biology, 
246, 461-476. doi:10.1016/j.jtbi.2007.01.005  

[31] Vandermeer, J., Stone, L. and Blasius, B. (2001) Catego-
ries of chaos and fractal basin boundaries in forced 
predator-prey models. Chaos, Solitons & Fractals, 12, 
265-276. doi:10.1016/S0960-0779(00)00111-9  

[32] Engel, A., Szidarovszky, F. and Chiarella, C.A. (2003) 
Game theoretical partially cooperative model of inter- 
national fishing with time delay. Chaos, Solitons & 
Fractals, 18, 549-560.  
doi:10.1016/S0960-0779(02)00676-8  

[33] Chiarella, C.F. and Szidarovszky, F. (2003) Bounded 
continuously distributed delays in dynamic oligopolies. 
Chaos, Solitons & Fractals, 18, 977-993.  
doi:10.1016/S0960-0779(03)00067-5  

[34] Devaney, R.L. (2003) An introduction to chaotic dy-
namical systems. Westview Press, Colorado.  

[35] Gunji, Y.-P. and Kamiura, M. (2004) Observational het-
erarchy enhancing active coupling. Physica D, 198, 74- 
105. doi:10.1016/j.physd.2004.08.021  

[36] Ullner, E., Koseska, A., Kurths, J., Volkov, E., Kantz, H. 
and Ojalvo, J.G. (2008) Multistability of synthetic genetic 
networks with repressive cell-to-cell communication. 
Physical Review E, 78, 031904.  
doi:10.1103/PhysRevE.78.031904  

[37] Barkai, N. and Shilo, B.Z. (2007) Variability and robust-
ness in biomolecular systems. Molecular Cell, 28, 755- 

760. doi:10.1016/j.molcel.2007.11.013  

[38] Heagy, J.F., Platt, N. and Hammel, S.M. (1994) Charac-
terization of on-off intermittency. Physical Review E, 49, 
1140. doi:10.1103/PhysRevE.49.1140  

[39] Metta, S., Provenzale, A. and Spiegel, E.A. (2010) On-off 
intermittency and coherent bursting in stochastically- 
driven coupled maps. Chaos, Solitons & Fractals, 43, 8- 
14. doi:10.1016/j.chaos.2010.06.001   

[40] Furstenberg, H. and Kesten, H. (1960) Products of ran-
dom matrices. The Annals of Mathematical Statistics, 40, 
457-469. doi:10.1214/aoms/1177705909  

[41] Fischer-Friedricha, E., Meacci, G., Lutkenhausc, J., 
Chatéd, H. and Krusee, K. (2010) Intra- and intercellular 
fluctuations in Min-proteindynamics decrease with cell 
length. Proceedings of the National Academy of Sciences, 
USA, 107, 6134-6139. doi:10.1073/pnas.0911708107  

[42] Howard, M. and Rutenberg, A.D. (2003) Pattern forma-
tion inside bacteria: Fluctuations due to the low copy 
number of proteins. Physical Review Letters, 90, 128102.  
doi:10.1103/PhysRevLett.90.128102  

[43] Pincus, S. and Singer, B.H. (1995) Randomness and de-
grees of irregularity. Proceedings of the National Acad-
emy of Sciences, USA, 93, 2083-2088.  
doi:10.1073/pnas.93.5.2083  

[44] Pincus, S.M., Mulligan, T., Iranmanesh, A., Gheorghiu, S., 
Godschalk, M. and Veldhuis, J.D. (1996) Older males se-
crete luteinizing hormone and testosterone more irregu-
larly, and jointly more asynchronously, than younger 
males. Proceedings of the National Academy of Sciences, 
USA, 93, 14100-14105. doi:10.1073/pnas.93.24.14100  

[45] Bandt, C. and Pompe, B. (2002) Permutation entropy: A 
natural complexity measure for time series. Physical Re-
view Letters, 88, 174102.  
doi:10.1103/PhysRevLett.88.174102  

[46] Boschetti, F. (2007) Mapping the complexity of ecologi-
cal models. Ecological Complexity, 5, 37.  
doi:10.1016/j.ecocom.2007.09.002  

[47] Arshinov, V. and Fuchs, C. (2003) Preface. In: Arshinov, 
V. and Fuchs, C., Eds., Causality, Emergence, Self-Or- 
ganisation, NIA-Priroda, Moscow, 1-18.  

 
 

http://dx.doi.org/10.1016/j.jtbi.2007.01.005
http://dx.doi.org/10.1016/S0960-0779(00)00111-9
http://dx.doi.org/10.1016/S0960-0779(02)00676-8
http://dx.doi.org/10.1016/S0960-0779(03)00067-5
http://dx.doi.org/10.1016/j.physd.2004.08.021
http://dx.doi.org/10.1103/PhysRevE.78.031904
http://dx.doi.org/10.1016/j.molcel.2007.11.013
http://dx.doi.org/10.1103/PhysRevE.49.1140
http://dx.doi.org/10.1016/j.chaos.2010.06.001
http://dx.doi.org/10.1214/aoms/1177705909
http://dx.doi.org/10.1073/pnas.0911708107
http://dx.doi.org/10.1103/PhysRevLett.90.128102
http://dx.doi.org/10.1073/pnas.93.5.2083
http://dx.doi.org/10.1073/pnas.93.24.14100
http://dx.doi.org/10.1103/PhysRevLett.88.174102
http://dx.doi.org/10.1016/j.ecocom.2007.09.002

