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ABSTRACT 

The effects of the incubation period q on the 
dynamics of non-lethal infectious diseases in a 
fixed-size population are studied by means of a 
delay differential equation model. It is noted that 
the ratio between the quantity q and the time τ 
for recovering from the illness plays an impor-
tant role in the onset of the epidemic break-
through. An approximate analytic expression for 
the solution of the delay differential equation 
governing the dynamics of the system is pro-
posed and a comparison is made with the clas-
sical SEIR model. 
 
Keywords: Delay Differential Equations; Infectious 
Diseases 

1. INTRODUCTION 

The dynamics of infectious diseases in a closed popu-
lation is a well known topic in the literature [1-5]. These 
models are commonly classified using the prefixes SIR 
and SEIR. In the first type of models susceptible (S), 
infectious (I) and recovered (R) individuals are consid-
ered; in the second, the exposed (E) class of individuals 
is also taken in account. By denoting as ,  S t  I t  
and  R t  the number of individuals belonging to the 
class S, I, and R, respectively, at time t, the basic SIR 
model can be resumed in the following three differential 
equations [6]: 
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where the dot represents derivative with respect to time 
and  is the total number of indi-
viduals in a fixed-sized community and where the pa-
rameters are β and γ are the effective infection rate and 
the recovery rate, respectively. The above set of differen-
tial equations can be reduced to two by means of the 

definition of N given above. Here an exponential distri-
bution of the recovery time is assumed, so that the quan-
tity 1/γ corresponds to the average period which a single 
individual spends to recover from the illness. Adopting 
the above description of the time evolution of the number 
of individuals belonging to the three classes, one can see 
that an equilibrium point appears in the system if  

     N S t I t R t  

0 1R N    . In the classical SIR model 0  is the 
basic reproduction number, which accounts for the aver-
age number of successful contacts an infectious individ-
ual has with a susceptible one at the first appearance of 
the illness in the community.  

R

On the other hand, a SEIR model can be represented 
by the following set of equations [6]: 
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where the exposed (E) class of individuals, whose num-
ber at time t is  tE , is added. In this way, assuming an 
exponential distribution of the quiescent period the in-
verse of the additional parameter ε represents the average 
quiescence time of the illness. Notice, finally, that the 
total number of individuals is now given by  

       N S t E t R t  t I . 
We may notice the nonlinear prey-predator interaction 

in the first two terms of the above set of equations. The 
same mass action term is taken to represent the process 
of infection of the susceptible (S) and the infectious (I) 
class of individuals in the semi-continuous time delay 
model by Noviello-Romeo-De Luca (NRD) [7]. In the 
latter model only one non-linear delay differential equa-
tion (DDE) is needed, namely: 

     m t p m t m t N m t            ,     (3) 

where  m t  is the count of all illness histories up to 
time t, starting from t = 0, p is the effective statistical 
exchange parameter between classes S and I,  

     N t R tS t I  , and τ is the average recovery 
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time. The number of individuals belonging to the S, I and 
R classes can be found by the following elementary rela-
tions: 

   S t N m t  ,              (4a) 

     I t m t m t    ,            (4b) 

   R t m t   .              (4c) 

In the present work we extend the NRD model to the 
case in which a constant quiescence time q is introduced. 
The effects on the dynamics of the two time-delays τ and 
q are studied and an approximate solution for the ex-
tended NRD model is proposed. A comparison between 
the classical SEIR model and the extended NRD model 
is also made. 

2. THE EXTENDED NRD MODEL 

A detailed treatment of the NRD model can be found 
in ref. [7]. Starting from a semi-continuous approach, it 
has been shown that a single globally continuous func-
tion  can be adopted to describe the dynamics of 
all classes of individuals, namely S, I, and R. This model 
gives good qualitative agreement with existing data on 
influenza. The recovery time τ in the NRD model is seen 
to represent a natural time scale and appears as a con-
stant delay time in the nonlinear differential Eq.3. Start-
ing now from Eqs.4a-c, in the presence of the additional 
E-class, we can write: 

 m t

   S t N m t  ,              (5a) 

     E t m t m t q   ,           (5b) 

     I t m t q m t     ,          (5c) 

   R t m t   ,              (5d) 

This type of generalization is done by noticing that 
individuals who have been exposed at time  t q  get 
ill at time t, while those being infected at time  t  , 
recover at time t. The dynamical equation can thus be 
written as follows: 

       m t p m t q m t N m t          .    (6) 

Therefore, in this extended model a second delay 
time naturally arises and the effective interaction be-
tween individuals belonging to the S and I class is 
modified because of a different expression for  I t  in 
Eq.5c. Consider q < τ for simplicity, and assume that, at 
time –q, exactly 0  individuals are exposed to infec-
tive agents. Therefore, for t < 0, we have 
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0

for 

for 0

N t
S t

N m q t

 
    

q



t

t

,       (7a) 

 
0

0 for 

for 0

t q
E t

m q

 
    

.       (7b) 

In this way, we have 

 
0

0 for 

for 0

t q
m t

m q

 
    

.        (8) 

The above relation is needed in specifying the past his-
tory of the system, whose dynamics is described by the 
DDE in Eq.6.  

We may notice that the extended NRD model can 
find application for all those maladies whose character-
istics call for well-defined incubation and recovery pe-
riods for all individuals in the community. We shall 
therefore see in details, in the following sections, all 
peculiar features of the model. We finally notice that 
the NRD model can be simply obtained from the ex-
tended NRD model in the limit q = 0. 

3. CHARACTERISTIC FEATURES OF  
THE MODEL 

We have seen, in the preceding section, that the NRD 
model and its extended version rely upon a single time- 
delay differential equation, namely, Eq.6. When ex-
pressing this equation in terms of the rescaled time 
variable t t    and of fractional quantities  
   x t m t N  , by defining r q  , we may write: 

       d
1 1

d
x t pN x t r x t x t

t
             

.  (9) 

By defining p̂ pN , we notice that the above dif-
ferential equation can be described in terms of the nor-
malized variable  x t  of the count of individuals who 
got ill from the beginning of the epidemic onset, by con-
sidering the delay ratio r, the initial value of infectious 
individuals m0 and  as the constant parameters of the 
scalar model in Eq.9. Notice that the quantity , by 
definition, plays the same role as the  basic reproduc-
tion number R0 in the classical SIR and SEIR models.  

p̂
p̂

In the present work we would like to study the effect 
of the introduction of the delay ratio r in the DDE (9). At 
first let us then consider the time dependence of the per-
centage of infectious individuals obtained by fixing the 
values of m0 and . In Figures 1(a), (b), therefore, we 
show the numerical solution to Eq.9 for  

p̂

0 0 0.001x m N   and  and for various values 
of r. In these curves we notice that, by increasing r from 
the very low value of 0.01 to 0.5, the total number of 
individuals 

ˆ 2.5p 

m  infected during the epidemic outbreak 
decreases. 

This property is represented in Figure 2, where the 
fraction x m N   is reported as a function of r, the 
line joining the numerically etermined points being a  d  
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Figure 1. Time dependence of the function 
, normalized to N, for x0 = 0.001 and  

= 2.5, and for: (a) r = 0.001 (full line), r = 0.1 
(dotted line), r = 0.2 (dashed line); (b) r = 0.3 
(full line), r = 0.4 (dotted line), r = 0.5 (dashed 
line). 
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Figure 2. Dependence of the normalized satura-
tion number of individuals getting ill during an 
epidemic outbreak as a function of the delay ratio 
r for  and  = 2.5. The full line is 

just a guide to the eye. 
001.00 x p̂

 
guide to the eye. Therefore, one might argue that in-
creasing incubation periods give a minor spread of the 
disease among the global population. In Figures 3(a), (b) 
we report the time dependence of the fraction  
   i t I t N   of infected individuals for the same 

values of parameters as in Figures 1(a), (b). The charac-
teristic hump of these curves gets lower and shifts to the 
right for increasing values of r. In Figures 4(a), (b) the 
onset of the epidemic outbreak can be detected in the 
curves of the fraction  as a function of . 

  One notices that, below a certain value of , which 
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Figure 3. Time dependence of the function 

 i t , number of infectious individuals normal-

ized to N, for  and  = 2.5, and for: 

a) r = 0.01 (full line), r = 0.1 (dotted line), r = 
0.2 (dashed line); b) r = 0.3 (full line), r = 0.4 
(dotted line), r = 0.5 (dashed line). 

001.00 x p̂

 
we denote by c , the disease is not able to spread sig-
nificantly among the susceptible individuals, as it hap-
pens in the classical SIR and SEIR models. As it appears 
from Figures 4(a), (b), the value of c  is expected to 
be higher for increasing values of r. Indeed, by collecting 
points of various critical effective interaction parameter 

c  for various values of the delay ratio r, we may rep-
resent the  vs. r curve for 0  of Figure 5. 
In this plot all points are obtained by defining the onset 
of the disease in the  vs.  curves as the value of 

 for which 0

p̂

p̂

0.001
p̂

p̂

ˆcp x 

p̂x
10x x  . The continuous line is the 

result of interpolation of the points in the plot, numeri-
cally obtained from the  vs.  curves, with a trial  x p̂

function ˆ
1c

a
p

r



, with . This simple ma-  0.9048 a

thematical relation can be understood in the following 
way. Assuming an increasing behavior for  x t , let us 
write, for reasons which will be apparent in the following 
section,   tx t x be  

    in the limiting region  
t   , with b arbitrary constant and 1  . 

Assuming an increasing behavior for  x t , let us 
write, for reasons which will be apparent in the following 
section,   tx t x be  

    in the limiting region  
t   , with b arbitrary constant and 1  . By taking 
the derivative with respect to t  and substituting this 
expression in Eq.10, one finds, to first order in 


  and 
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Figure 4. Dependence of the normalized satura-
tion number of individuals getting ill during an 
epidemic outbreak as a function of the effective 
parameter  for  and for delays 

ratios r = 0.2 (a), and r = 0.3 (b). 
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Figure 5. Critical effective interaction parame-
ter  as a function of the delay ratio r for 

. In this plot all points are obtained 

by defining the onset of the malady in the 
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 with a = 0.9048. 

 
leading order in  a simple expression, expressed term 
by term as follows 

t

   2
ˆ2 1 2 1tbe p x r be 


    

In this way, after obvious simplifications, we have: 

ˆ
1

ˆ
cp

x
p   ,                (11) 

where  

 
1

ˆ 1
1cp

r
 


.             (12) 

We thus obtain, by this approximate relation, further 
evidence that the threshold of the infectiveness parameter 

 increases as r increases as described by the numerical 
results shown in Figure 5. 
p̂

We can now make a comparison between the dynam-
ics obtained in the extended NRD model and the classi-
cal SEIR model. We have already specified that the 
quantity  plays the same role as the basic reproduc-
tion number R0 in the SIR and SEIR models, Eq.12 giv-
ing an approximate evaluation of the threshold infec-
tiveness parameter value for the extended NRD model. 
In the classical SEIR model, on the other hand, the in-
verse rates 

p̂

1   and 1   corresponds to the average 
times which a single individual spends in the E or I class, 
the statistical spread being exponential. The classical 
SEIR model and the extended NRD model are thus ex-
pected to be of different analytical nature, the latter call-
ing for well defined recovery time τ and incubation pe-
riod q. As an example one can detect this difference in 
the time dependence of  i t  curves for both models by 
setting 1q   and 1  , so that r   , adopting 
the same values of the parameters  and 0 0.001x 
ˆ 2.5p   and making the correspondence p̂    for 

the two models. 
This comparison is very instructive, since it gives a 

hint on the type of approximation one can make to de-
scribe the behaviour of the solution in the asymptotic 
region, as it has already been done in writing Eq.10. 
Therefore, in Figures 6(a) and (b) we show  i t  
curves for the classical SEIR model and the extended 
NRD model, respectively, for the following values of the 
delay ratio r: 0.01; 0.1; 0.2; 0.3; 0.4. First of all, we may 
notice the different pattern in the rise and fall in time of 
the groups of curves in Figure 6(a) and in Figure 6(b). 
This difference and the approximately symmetric pattern 
about the peak values of the curves in Figure 6(b) allow 
a Gaussian-type approximation of the  i t  curves ob-
tained for the extended NRD model, as we shall see in 
the following section. Furthermore, one may also notice 
a more pronounced decrease of the peak values of the 
 i t  curves on increasing the delay ratio r in the ex-

tended NRD model, as compared to a correspondingly 
equal increase of the ratio    in the classical SEIR 
model. 

2t  .    (10) 
Finally, when comparing the classical models with the 

extended NRD model, it can be useful to notice that the 
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Figure 6. Graphical representation of the solu-
tion of the fraction of infectious individuals in 
the SEIR model (a) and in the extended NRD 
model (b), for , 0 , and for the 
following values of r: 0.01 (top dotted line); 0.1 
(top dashed line); 0.2 (full line); 0.3 (bottom 
dotted line); 0.4 (bottom dashed line). 

ˆ 2.5p  0.001x 

 
latter generates the delay SEIR model with two constant 
delays. In fact, by taking the time derivative of Eqs.5a-  

5d and considering      m t S t I t
N


 , one can write: 

     S t S t I t
N


 ,             (13a) 

        E t S t I t S t q I t q
N N

 
    ,    (13b) 

        I t S t q I t q S t I t
N N

         , (13c) 

    R t S t I t
N

     .          (13d) 

4. APPROXIMATE EXPRESSION FOR  
THE SOLUTION 

By considering the numerical solutions, shown in Fig-
ures 3(a), (b), to Eq.10 for    i t t N  , we may 
consider the following approximate expression for the 

 curves   i t

   2

2

0                     for   0

         for 0
t

t
i t

Ae t






 
  
  

.       (14) 

where the quantities A, μ, and σ are parameters to be de-
termined. We therefore turn our attention to the dynami-
cal Eq.10, which we may approximately write as fol-
lows: 

 
 

 
2

2d
ˆ 1

d

t

x t pAe x t
t







  
 .     (15) 

The above ordinary differential equation can be solved 
by separation of variable for  x t  to give: 

   
π

ˆ
2 2 2

01 1
t

pA Erf Erf

x t x e
 


    

     
       


 .   (16) 

where 0 0x m N  and   2

0

2
d

π

x
tErf x e t  . From the  

above relation, we find: 
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2 2

0lim 1 1
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In this way, Eq.16 can be written as 

   
π

ˆ 1
2 21 1

t
pA Erf

x t x e
 


  
   

 
     .     (18) 

A relation between the three fitting parameters can be 
obtained by considering the definition of  in Eq.5c, 
by setting 

 i t

 

 
π 1 ππ ˆ ˆˆ
2 22 221

r
pAErf pAErfpA

i A

x e e e
 

 


   
   
   





 
   
  

. (19) 

The above implicit relation is rather difficult to disen-
tangle analytically to obtain a two-parameter curve for 
 x t . Therefore, it appears more convenient to keep 

three fitting parameters in the model. In this way, we find 
approximate solutions by means of a best fit procedure 
on the numerically obtained curves shown in Figures 
3(a), (b), using A, μ, and σ as fitting parameters. In order 
to fix the ideas, let us start by setting 0  and 0.001x 
ˆ 2.5p  . By taking r = 0.1, we find the following values 

for the fitting parameters: , 0.3094A  4.3361  ,  
0.9307  . Next, by setting r = 0.3, we find:  
0.1148A  , 6.9802  , 2.8416  . The results of 

numerical integration (dots) along with the approximate 
solutions (full lines) are shown in Figure 7(a) for these 
two cases, namely, r = 0.1 and r = 0.3. The curves corre-
sponding to the approximate solution (full lines) of Eq. 
10, along with the numerical integration results (dots), 
are represented in Figure 7(b). From the curves shown in 
Figures 7(a) and (b), we may notice the good agreement 
of the approximate solution in the asymptotic region. 
However, as already noticed in the previous section, Eq. 
12 gives a satisfactory description of the asymptotic 
quantity x m N   for which we may write:  
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Figure 7. (a) Numerical integration (dots) of the 

 i t  curves for the extended NRD model along 

with the approximate solution (full lines) for the 
following choice of parameters: , x0 = 
0.001, and r = 0.1 (tall curve) and r = 0.3 (shal-
low curve); (b) Numerical integration (dots) of 
the 

ˆ 2.5p 

 x t  curves for the extended NRD model 

along with the approximate solution (full lines) 
for choice of parameters as in (a), except for the 
delay ratio, which is taken to be r = 0.1 and r = 
0.2 for the upper and lower curve, respectively. 
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ˆ0                       for   

1

1 1
ˆ1        for  

ˆ 1 1

p
r

x

p
p r r



   
  
  

.    (18) 

The above relation gives similar results to Figure 2 
and 4 with the advantage of providing a very simple ex-
pression for the total number of individuals getting ill 
during an epidemic outbreak. 

5. CONCLUSIONS 

The NRD model [7], describing the time evolution of 
non-lethal infectious diseases in a fixed-size population 
of N individuals, has been generalized. In the extended 
version of the NRD model a quiescent time q, in addition 
to the recovery time τ, is taken as a delay quantity in the 
dynamics of the infection. The NRD model is recovered 
from the extended version by setting q to zero. 

The influence of the delay ratio r q   on the 

model dynamics is studied. It is seen that the model pre-
dicts that a longer incubation period mitigates the effects 
of an aggressive infective agent (  large). Indeed, as it 
can be argued from the monotonically decreasing behav-
iour of the fraction   of people infected during an 
epidemic outbreak in the   vs. r curves obtained for a 
fixed value of , the number of total infections de-
creases as r increases. Furthermore, the critical value c  
of the statistical parameter , giving the effectiveness 
of the interaction between susceptible and infectious in-
dividuals, is seen to increase for increasing values of r, 
according to the empirical formula 

p̂

x
x

p̂

p̂
p̂

 ˆ 1p a r c , where 
the quantity a is close to unity and may only depend 
upon the remaining model parameter 0 , which repre-
sents the number of infectious individuals at time t = 0. 
From a comparison between the classical SEIR model 
and the extended NRD model, one can detect a rather 
evident symmetry of the latter about a vertical axis pass-
ing through the peak values of the  curves. Owing 
to these rather simple features, an analytic approximation 
of the solution of the dynamical equation for normalized 
variable 

m

 i t

x m N  is proposed. The analytic approxi-
mation of the solutions to the dynamical equation is 
shown to be rather accurate in the asymptotic region. 
Further analytic work is required to investigate the pos-
sibility of reducing, in opportune limits, the number of 
free parameters adopted in deriving the approximated 
 i t  curves. 
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