
Vol.3, No.3, 259-268 (2012)                                                  Journal of Biophysical Chemistry 
http://dx.doi.org/10.4236/jbpc.2012.33031  

Copyright © 2012 SciRes.                                                                    OPEN ACCESS 

Vibrational spectra of distorted structure macro & 
nano molecules: An algebraic approach 

Srinivasa Rao Karumuri1*, J. Vijayasekhar2, Velagapudi Uma Maheswara Rao3,  
Ganganagunta Srinivas4, Aappikatla Hanumaiah5 

 

1Department of Electronics & Instrumentation, Lakireddy Bali Reddy College of Engineering, Mylavaram, India; 
*Corresponding Author: srinivasakarumuri@gmail.com 
2Department of Mathematics, GITAM University, Hyderabad, India 
3Department of Applied Mathematics, Andhra University, Vishakhapatnam, India 
4Department of Physics, KL University, Guntur, India 
5Department of Sciences & Humanities, Lara Vigyan Institute of Science & Technology, Vadlamudi, India 
 
Received 18 April 2012; revised 20 June 2012; accepted 10 July 2012 

ABSTRACT 
Using the Lie algebraic method the vibrational 
frequencies of 97 resonances Raman lines (A1g + 
B1g + A2g + B2g) and 38 infrared bands (Eu) of oc-
taethylporphyrinato-Ni (II) and its mesodeuter-
ated and 15N-substituted derivates and Fullere-
nes C60 and C70 of 7 vibrational bands are cal-
culated using U(2) algebraic Hamiltonian with 
four fitting algebraic parameters. The results ob- 
tained by the algebraic technique have been com- 
pared with experimental data; and they show 
great accuracy. 
 
Keywords: Lie Algebra; Vibrational Spectra; Ni 
(OEP); Ni (OEP)-d4 & Ni (OEP)-N4; Fullerenes 

1. INTRODUCTION 

Nanoscience is an interdisciplinary field that seeks to 
bring about nature nanotechnology. Focusing on the na- 
noscale intersection of fields such as Physics, Biology, 
Engineering, Chemistry, Computer Sciences and more, 
Nanoscience is rapidly expanding [1]. A comprehensive 
treatment and understanding of spectroscopic features 
of nano-size molecules is by far one of the most chal-
lenging aspects of current studies in molecular spec-
troscopy. On one side, experimental techniques are 
producing a rapidly increasing amount of data and clear 
evidence for intriguing mechanisms characterizing sev-
eral aspects of molecular dynamics in nano-bio mole-
cules [2]. On the other side, theoretical approaches are 
heavily pushed towards their intrinsic limits; in the at-
tempt to provide reliable answers to hitherto unresolved 
questions concerning very complex situations of nano- 
bio molecules. The appearance of new experimental 

techniques to produce higher vibrational excitations in 
nano-bio polyatomic molecule requires reliable theo-
retical methods for their interpretation. Two approa- 
ches have mostly been used so far in an analysis of 
experimental data: 1) the familiar Dunham like expan-
sion of energy levels in terms of rotations-vibrations 
quantum numbers and 2) the solution of Schrodinger 
equation with potentials obtained either by appropri-
ately modifying ab-initio calculations or by more phe- 
nomenological methods. In this article, we begin a sys- 
tematic analysis of vibrational spectra of bio-nano 
molecules in terms of novel approach; 3) Vibron model 
[3-6]. 

Recently Lie algebraic model introduction [7-18] could 
proved itself to be a successful model in the study of 
vibrational spectra of small, medium size and polya-
tomic molecules [19,20]. The algebraic model is fully 
based on the dynamical symmetry and through the lan-
guage of Lie algebra. For the triatomic, tetratomic, Tet-
rahedral and poly-atomic Bio-molecules (i.e. metal-
loporphyrins, Ni (OEP), Ni (TTP), Ni Porphyrin) we 
studied earlier [21-25] using algebraic model. Using the 
algebraic model in this study we have calculated the 
vibrational frequencies of octaethylporphyrinato-Ni(II) 
and its meso-deurated and N substituted derivatives for 
97 vibrational bands each using U(2) algebraic model 
Hamiltonian. In our study we used four fitting parame-
ters which provide better comparisons between the ex-
perimental and theoretical calculations throughout the 
study. 

In this paper, we have considered only the In-Plane 
Vibrations of Nickel Octaethylporphyrin and its meso 
substituent and 15N derivatives for 97 vibrational bands 
and fullerenes C60 and C70 for 7 vibrational bands (both 
stretching and bending) are calculated by using U(2) 
algebraic mode Hamiltonian. 
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2. ALGEBRAIC FRAMEWORK 

A complete description of the theoretical foundations 
needed to formulate the algebraic model for a vibrating 
molecule. We apply the one-dimensional algebraic model, 
consisting of a formal replacement of the interatomic, 
bond coordinates with unitary algebras. To say it in dif- 
ferent words, the second-quantization picture suited to 
describe anharmonic vibrational modes, is specialized 
through an extended use of Lie group theory and dy- 
namical symmetries. By means of this formalism, one 
can attain algebraic expressions for eigenvalues and ei- 
genvectors of even complex Hamiltonian operators, in- 
cluding intermode coupling terms as well expectation 
values of any operator of interest (such as electric dipole 
and quadrupole interactions). Algebraic model are not 
ab-initio methods, as the Hamiltonian operator depends 
on a certain number of a priori undetermined parameters. 
As a consequence, algebraic techniques can be more con- 
vincingly compared with semi-empirical approaches mak-
ing use of expansions over power and products of vi- 
brational quantum numbers, such as a Dunham-like se-
ries. However, two noticeable advantages of algebraic 
expansions over conventional ones are that 1) algebraic 
modes lead to a (local) Hamiltonian formulation of the 
physical problem at issue (thus permitting a direct calcu- 
lation of eigenvectors in this same local basis) and 2) 
algebraic expansions are intrinsically anharmonic at their 
zero-order approximation. This fact allows one to reduce 
drastically the number of arbitrary parameters in com- 
parison to harmonic series, especially when facing me- 
dium- or large-size molecules. It should be however also 
noticed that, as a possible drawback of purely local Ha- 
miltonian formulations (either algebraic or not) com- 
pared with traditional perturbative approaches, the actual 
eigenvectors of the physical system. Yet, for very local 
situations, the aforementioned disadvantage is not a se- 
rious one. A further point of import here is found in the 
ease of accounting for proper symmetry adaptation of 
vibrational wave functions. This can be of great help in 
the systematic study of highly excited overtones of 
not-so-small molecules, such as the present one. Last but 
not least, the local mode picture of a molecule is en- 
hanced from the very beginning within the algebraic 
framework. This is an aspect perfectly lined up with the 
current tendencies of privileging local over normal mode 
pictures in the description of most topical situations. 

We address here the explicit problem of the construc- 
tion of the vibrational Hamiltonian operator for the po- 
lyatomic molecule. According to the general algebraic 
description for one-dimensional degrees of freedom, a 
dynamically-symmetric Hamiltonian operator for n in- 
teracting (not necessarily equivalent) oscillators cab 
written as  

0 .i i ij ij ij ijH = E + A C + A C + M                (1) 

In this expresssion, one finds three different classes of  

effective contributions. The first one, 
1

n

i
 AiCi is devoted 

to the description of n independent, anharmonic sequences 
of vibrational levels (associted wih n independent, local 
oscillator) in terms of the operators Ci. The second 

one, 
1

n

ij ij
i

A C

  leads to cross-anharmonicities between 

pairs of distinct local oscillators in terms of the operators 

Cij. The third one, 
1

n

ij ij
i

M

 , describes anharmonic, 

non-diagonal interactions involving pairs of local oscil- 
lators in terms of the operators Mij. The Ci, Cij operators 
are invariant (Casimir) operators of certain Lie algebras, 
whilst the Mij are invariant (Majorana) operators as- 
sociated with coupling schemes involving algebras na- 
turally arising from a systematic study of the algebraic 
formulation of the one-dimensional model for n inter- 
acting oscillators. We work in the local (uuncoupled os- 
cillaators) vibrational basis written as  

1 2 3....... .n      

In which the aforementioned operators have the 
following matrix elements  
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We note, in particular, that the expressions above de-
pend on the numbers Ni (Vibron numbers). Such numbers 
have to be seen as predetermined parameters of well- 
defined physical meaning, as they relate to the intrinsic 
anharmonicity of a single, uncoupled oscillator through 
the simple relation. We report in Table the values of the 
Vibron numbers used in the present study. 

The general Hamiltonian operator 1) can be adapted to 
describe he internal, vibrational degrees of freedom of 
any polyatomic molecule in two distinct steps. First, we 
associate three mutually perpendicular one-dimensional 
anharmonic oscillators to each atom. This procedure even-
tually leads to a redundant picture of the whole molecule, 
as it will include spurious (i.e. translational/rotational) 
degrees of freedom. It is however possible to remove 
easily such spurious modes through a technique de-
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scribed elsewhere [19-21]. One is thus left with a Ham-
iltonian operator dealing only with true vibrations. Such 
modes are given in terms of coupled oscillators in the 
local basis; 2) The coupling is induced by the Majorana 
operators. A sensible use of these operators is such that 
the correct symmetries of vibrational wave functions are 
properly taken into account. As a second step, the alge-
braic parameters Ai, Aij, λij of Eq.1 need to be calibrated 
to reproduce the observed spectrum.  

The algebraic theory of polyatomic molecules consists 
in the separate quantization of rotations and vibrations in 
terms of vector coordinates r1, r2, r3,  . quantized 
through the algebra  

     1 2 32 2 2G U U U     

For the stretching vibrations of polyatomic molecules 
correspond to the quantization of anharmonic Morse os- 
cillators, with classical Hamiltonian  

    22, = 2 + 1 exps sH p s p D s          (3) 

For each oscillator i, states are characterized by repre-
sentations of 

   2 2i i

i i

U O

N m



              (4) 

with mi = Ni, Ni – 2,  , 1 or 0 (Ni—odd or even). The 
Morse Hamiltonian (3) can be written, in the algebraic 
approach, simply as 

0i i i iH = ε + AC ,              (5) 

where Ci is the invariant operator of Oi(2), with eigen 
values 

 2 2
0 – .i i i i iε = ε + A m N  

Introducing the vibrational quantum number 
 – 2i i iN m  , [20] one has 

 2
0 4i i i i i iε ε A N ν ν                (6) 

For non-interacting oscillators the total Hamiltonian is 

i
i

H H   

with eigen-values 

 2
0 4i i i i i

i i

E = E A N v v          (7) 

2.1. Hamiltonian for Stretching  
Vibrations 

The interaction potential can be written as 

     , 1 exp 1 exp ,i j ij i i j jV s s k α s α s            (8) 

which reduces to the usual harmonic force field when the 
displacements are small 

 ,i j ij i jV s s   k s s . 

Interaction of the type Eq.8 can be taken into account 
in the algebraic approach by introducing two terms. One 
of these terms is the Casimir operator, Cij, of the com-
bined    2 2i jO O  algebra. The matrix elements of this 
operator in the basis Eq.2 are given by 

    2

  ?

4  .

i i ; j j ij i i ; j j

i j i j i j

N ,ν N ,ν C N ,ν N ,ν

N N          

     (9) 

The operator Cij is diagonal and the vibrational quan- 
tum numbers νi have been used instead of mi. In practical 
calculations, it is sometime convenient to substract from 
Cij a contribution that can be absorbed in the Casimir 
operators of the individual modes i and j, thus consider- 
ing an operator '

ijC  whose matrix elements are  

    
   
   

2

2

2

   , ; , ; ,

4
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 4 .
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The second term is the Majorana operator, Mij. This 
operator has both diagonal and off-diagonal matrix ele-
ments  
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   (11) 

The Majorana operators Mij annihilâtes one quantum 
of vibration in bond i and create one in bond j, or vice 
versa.  

2.2. Symmetry-Adapted Operators 

In polyatomic molecules, the geometric point group 
symmetry of the molecule plays an important role. States 
must transform according to representations of the point 
symmetry group. In the absence of the Majorana opera-
tors Mij, states are degenerate. The introduction of the 
Majorana operators has two effects: 1) It splits the de- 
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generacies of figure and 2) in addition it generates states 
with the appropriate transformation properties under the 
point group. In order to achieve this result the λij must 
be chosen in an appropriate way that reflects the geo-
metric symmetry of the molecule. The total Majorana 
operator  

n

ij
i j

S M


                 (12) 

is divided into subsets reflecting the symmetry of the 
molecule 

= + +S  S S                (13) 

The operators = + +S  S S    are the symmetryadapt- 
ed operators. The construction of the symmetryadapted 
operators of any molecule will become clear in the fol-
lowing sections where the cases of Metalloporphyrins 
(D4h) will be discussed.  

2.3. Hamiltonian for Bending Vibrations 

We emphasize once more that the quantization scheme 
of bending vibrations in U(2) is rather different from U(4) 
and implies a complete separation between rotations and 
vibrations. If this separation applies, one can quantize 
each bending oscillator i by means of an algebra Ui(2) as 
in Eq.4. The Poschl-Teller Hamiltonian  

   2, = 2 coshsH p s   D s        (14) 

where we have absorbed the λ(λ – 1) part into D, can be 
written, in the algebraic approach, as  

0 ,i i i iH = ε + AC              (15) 

This Hamiltonian is identical to that of stretching vi- 
bration (Eq.5). The only difference is that the coeffi-
cients Ai in front of Ci are related to the parameters of the 
potential, D and α, in a way that is different for Morse 
and Poschl-Teller potentials. The energy eigen-values of 
uncoupled Poschl-Teller oscillators are, however, still 
given by 

 2
0 4 .i i i i i

i i

E = ε = E A N ν – ν       (16) 

One can then proceed to couple the oscillators as done 
previously and repeat the same treatment. 

2.4. The Metalloporphyrins Molecule 

The construction of the symmetry-adapted operators 
and of the Hamiltonian operator of polyatomic molecules 
will be illustrated using the example of Metallopor-
phyrins. In order to do the construction, draw a figure 
corresponding to the geometric structure of the molecule 
(Figure 1). Number of degree of freedom we wish to 
describe. 

Cb Cb

Ca

YY

CaCm
Cm

N

Ca Cb

CbCa

N

CmCa

CbCb

M

CaCb

Cb Ca

N

Cm

Y

Y

Y

Y

Y

Y

Ca

X X

XX

N

 

Figure 1. Structure of Metalloporphyrins. 
 

By inspection of the figure, one can see that two types 
of interactions in Metalloporphyrins: 

1) First-neighbor couplings (Adjacent interactions) 
2) Second-neighbor couplings (Opposite interactions) 
The symmetry-adapted operators of Metalloporphyrins 

with symmetry D4h are those corresponding to these two 
couplings, that is, 

, ,
n n

ij ij ij ij
i< j i< j

S = c M S = c M            (17) 
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The total Majorana operator S is the sum 
1 11S S S               (18) 

Diagonalization of S produces states that carry repre- 
sentations of S, the group of permutations of objects, 
while Diagonalization of the other operators produces 
states that transform according to the representations A1g, 
A2g, B1g, B2g and E1u of D4h. 

2.5. Local to Normal Transition: The Locality  
Parameter () 

The local-to-normal transition is governed by the dimen- 
sionless locality parameter (). The local-to-normal tran- 
sition can be studied [19,20] for polyatomic molecules, 
for which the Hamiltonian is 

local
12 12    i i ij ij ij ijH H M AC A C M         (19) 
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For these molecules, the locality parameters are 

   1
 2 tan 8 , , 1, 2,3.i ij i ijA A i j         (20) 

Corresponding to the two bonds. A global locality pa- 
rameter for XYZ molecules can be defined as the geo- 
metric mean [20] 

 1 2

1 2 .             (21) 

Locality parameters of this metalloporphyrins is given 
in the results and discussions With this definition, due to 
Child and Halonen [21], local-mode molecules are near 
to the  = 0 limit, normal mode molecules have  1. 

3. RESULTS AND DISCUSSIONS 

The number N [total number of bosons, label of the 
ire-ducible representation of U(4)] is related to the total 
number of bound states supported by the potential well. 
Equivalently it can be put in a one-to-one correspond- 
dence with the anharmonicity parameters xe by means of  

1
 .

2ex
N




                (22) 

We can rewrite the Eq.22 as 

 1 1, 2 .e
i

e e

N i
x




               (23) 

Now, for a blood cell molecule, we can have the val- 
ues of ωe and ωexe for the distinct bonds (say CH, CC, 
CD, CN etc.) from the study of K. Nakamoto [22] and 
that of K.P. Huber and G. Herzberg [23]. Using the val-
ues of ωe and ωexe for the bond CH/CC we can have the 
initial guess for the value of the vibron number N. 

Depending on the specific molecular structure Ni can 
vary between ±20% of the original value. The vibron 
number N between the diatomic molecules C-H and C-C 
are 44 and 140 respectively. Since the bonds are equiva- 
lent, the value of N is kept fixed. This is equivalent to 
change the single-bond anharmonicity according to the 
specific molecular environment, in which it can be 
slightly different. 

Again the energy expression for the single-oscillator in 
fundamental mode is  

   1 4 1E v A N               (24) 

In the present case we have three and six different en-
ergies corresponding to symmetric and antisymmetric 
combinations of the different local mode. 

 4 1A E N               (25) 

where E = Average energy, The initial guess for λ can be 
obtained by 

1 2 2E E N               (26) 

A numerical fitting procedure is adopted to adjust the 
parameters A and λ starting from the values above and A’ 
whose initial guess can be zero. 

The complete Calculation data in stretching and bend-
ing modes of different Bio & Nano molecules are pre-
sented in Tables 1-5 and the corresponding algebraic 
parameters are presented in Tables 6 and 7. 

4. CONCLUSIONS 
We have presented here a vibrational analysis of the 

stretching/bending modes of Bio molecules (i.e. Nickel 
Porphyrins) and Nano molecules (Fullerenes C60, C70) in 
terms of one-dimensional Vibron model i.e. U(2) alge-
braic model. 

From the view of group theory, the molecule of 
Ni(OEP), Ni(OEP)-d4 & Ni(OEP)-15N4 takes a square 
planar structure with the D4h symmetry point group. 
Molecular vibrations of metalloporphyrins are classi-
fied into the in-plane and out of plane modes. For Oc-
taethyl dimmers of D4h structure assuming the periph-
eral ethyl group is point mass the in-plane vibrations of 
Octaethyl dimmers are factorized into 35 gerade and 18 
ungerade. Out of planes are factorized into 8 gerade and 
18 ungerade modes. The A2u and Eu modes are IR active 
where the A1g, B1g, A2g, B2g & Eg modes are Raman 
active in an ordinary sense. The Nano-molecules C60 
and C70 are Ih and D5h point group symmetry respec-
tively. 

In this study the resonance Raman spectra of Ni(OEP), 
Ni(OEP)-d4 and Ni(OEP)15N4 for 97 vibrational bands, 
we obtain the RMS deviation i.e. ∆(r.m.s) = 40.92 cm–1, 
33.03 cm–1, 4.04 cm–1 and the locality parameters are 1 
= 0.0765, 2 = 0.0468, 3 = 0.0685 respectively. 

In this study the vibrational frequencies of Nano 
molecules C60 and C70 for 7 vibrational bands, we obtain 
the RMS deviation i.e. ∆(r.m.s) = 6.439 cm–1, 3.2029 
cm–1, and the locality parameters are 1 = 0.0384, 2 = 
0.0493, 3 = 0.0590 respectively. 

Using improved set of algebraic parameters, the RMS 
deviation we reported in this study for Bio and Nano 
molecule is lying near about the experimental accuracy. 
Using only four algebraic parameters, the RMS deviation 
we reported in this study for Bio-Nano molecule are bet-
ter fit.  

The above two points confirm that in four parameters 
fit, the set of algebraic parameters we reported in this 
study of local to normal transition provide the best fit to 
the spectra of Bio-Nano molecules. 

We hope that this work will be stimulate further re-
search in analysis of vibrational spectra of other Nano 
molecules like fullerenes and protein molecules where the 
algebraic approach has not been applied so far. 
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Table 1. Comparison between the experimental and Calculated frequencies of the resonance Raman active fundamental modes 
of Ni(OEP) (cm–1). 

Symmetry Mode Description Expa Cal (Exp-Calc) 

1  (Cm - H) - 3041.94 - 

2  (Cb - Cb) 1602 1602.04 –0.04 

3  (Ca-Cm)sym 1519 1525.06 –6.06 

4  (Pyrhalf-ring)sym 1383 1383.45 –0.45 

5  (Cb - C)sym 1025 1010.52 14.48 

6  (Pyr breathing) 806 803.76 2.24 

7 δ (Pyr def)sym 674 685.99 –11.99 

8  (Ni - N) 344 344.36 –0.36 

A1g 

9 δ (Cb - C)sym 226 225.66 0.34 

10 ’(Ca - Cm)sym 1655 1639.26 15.74 

11  (Cb - Cb) 1576 1577.96 –1.96 

12  (Pyr half-ring)sym - 1293.43 - 

13 δ (Cm - H) 1220 1219.69 0.31 

14  (Cb - C)sym - 1065.55 - 

15  (Pyr breathing) - 750.51 - 

16 δ (Pyr def)sym 751 752.43 –1.43 

17 δ (Cb - C)sym - 304.08 - 

B1g 

18  (Ni-N) - 423.15 - 

19 ’(Ca - Cm)sym 1603 1589.26 13.74 

20  (Pyr quarter-ring) 1397 1396.89 0.11 

21 δ (Cm - H) 1308 1327.40 –19.40 

22 ’(Pyr half-ring)sym 1121 1121.87 –0.87 

23 ’ (Cb - C)sym - 1104.44 - 

24 δ’(Pyr def)sym 739 732.81 6.19 

25 δ (Pyr rot) - 523.70 - 

A2g 

26 δ’(Cb - C)sym - 382.51 - 

27  (Cm - H) - 3040.95 - 

28 ’ (Ca - Cm)sym - 1507.32 - 

29  (Pyr quarter-ring) 1409 1408.53 0.47 

30 ’ (Pyr half-ring)sym 1159 1142.34 16.66 

31 ’ (Cb - C)sym - 1159.46 - 

32 δ’ (Pyr def)sym 785 773.06 11.94 

33 δ (Pyr rot) - 528.26 - 

34 δ’ (Cb - C)sym - 437.96 - 

B2g 

35 δ (Pyr transl) - 178.96 - 

36  (Cm - H) - 3040.95 - 

37 ’ (Ca - Cm)sym 1604 1642.79 –38.79 

38  (Cb - Cb) 1557 1604.28 –47.28 

39  (Ca - Cm)sym 1487 1474.88 12.12 

40  (Pyr quarter-ring) 1443 1442.36 0.64 

41 ’ (Pyr half-ring)sym 1389 1392.45 –3.45 

42 δ (Cm-H) 1268 1266.81 1.19 

43 ’ (Cb-C)sym 1148 1143.34 4.66 

44 ’ (Pyr half-ring)sym 1113 1113.39 –0.39 

45 ’ (Cb-C)sym 993 994.40 –1.60 

46 δ’ (Pyr)sym 924 925.56 –1.56 

47  (Pyr breathing) 726 727.94 –1.94 

48 δ (Pyr)sym 605 604.92 0.08 

49 δ (Pyr rot) 550 552.48 –2.48 

50  (Ni - N) - 501.94 - 

51 δ’ (Cb - C)sym - 460.94 - 

52 δ (Cb - C)sym 287 288.26 –1.26 

Eu 

53 δ (Pyr transl) - 183.77 - 
aExperimental data has taken from Reference [24]. ∆ (r.m.s) = 40.92 cm–1 
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Table 2. Comparison between the experimental and Calculated frequencies of the resonance Raman active fundamental modes 
of Ni(OEP)-d4 (cm–1). 

Symmetry Mode Description Expa Cal (Exp-Calc) 
1  (Cm - D) - 2265.10 - 
2  (Cb - Cb) 1602 1612.99 –10.99 
3  (Ca - Cm)sym 1512 1513.86 –1.86 
4  (Pyr half-ring)sym 1382 1384.58 –2.58 

5  (Cb - C)sym 1026 1026.81 –0.81 

6  (Pyr breathing) 802 802.86 –0.86 

7 δ (Pyr def)sym 667 668.34 –1.34 

8  (Ni - N) 342 340.76 1.24 

A1g 

9 δ (Cb - C)sym 226 227.40 –1.40 

10 ’ (Ca - Cm)sym 1645 1650.13 –5.13 

11  (Cb - Cb) 1576 1578.24 –2.24 

12  (Pyr half-ring)sym - 1272.24 - 

13 δ (Cm - D) 950 951.44 –1.44 

14  (Cb - C)sym 1187 1188.94 –1.94 

15  (Pyr breathing) - 762.93 - 

16 δ (Pyr def)sym 684 683.18 0.82 

17 δ (Cb - C)sym - 296.58 - 

B1g 

18  (Ni - N) - 171.41 - 

19 ’ (Ca - Cm)sym 1582 1565.75 16.25 

20  (Pyr quater-ring) 1397 1397.12 –0.12 

21 δ (Cm - D) 890 891.24 –1.24 

22 ’ (Pyr half-ring)sym 1202 1203.64 –0.64 

23 ’ (Cb - C)sym 1029 1028.43 0.57 

24 δ’ (Pyr def)sym 733 736.96 –3.96 

25 δ (Pyr rot) - 524.78 - 

A2g 

26 δ’ (Cb - C)sym - 277.35 - 

27  (Cm - D) - 2268.85 - 

28 ’ (Ca - Cm)sym - 1712.19 - 

29  (Pyr quater-ring) 1408 1408.90 –0.90 

30 ’ (Pyr half-ring)sym 1159 1159.91 –0.91 

31 ’ (Cb - C)sym - 1165.43 - 

32 δ’ (Pyr def)sym 785 805.59 –20.59 

33 δ (Pyr rot) - 493.73 - 

34 δ’ (Cb - C)sym - 252.37 - 

B2g 

35 δ (Pyr transl) - 182.17 - 

36  (Cm - D) - 3040.95 - 
37 ’ (Ca - Cm)sym 1595 1592.94 2.06 

38  (Cb - Cb) 1542 1543.50 –1.50 

39  (Ca - Cm)sym 1480 1480.76 –0.76 

40  (Pyr quarter-ring) 1440 1445.84 –5.84 

41  (Pyr half-ring)sym 1383 1384.58 –1.58 

42 δ (Cm - D) 1175 1175.14 –1.14 
43 ’ (Cb - C)sym 1114 1112.05 1.95 

44 ’ (Pyr half-ring)sym 1018 1002.44 15.56 

45 ’ (Cb - C)sym 943 944.41 –1.41 

46 δ’ (Pyr)sym 843 840.20 2.80 

47  (Pyr breathing) 722 723.01 –0.01 

48 δ (Pyr)sym 597 598.28 –1.28 

49 δ (Pyr rot) 537 536.54 –1.95 

50  (Ni - N) - 256.08 - 

51 δ’ (Cb - C)sym - 302.32 - 

52 δ (Cb - C)sym - 295.01 - 

Eu 

53 δ (Pyr transl) - 188.27 - 
aExperimental data has taken from Reference [24]. ∆ (r.m.s) = 33.03 cm–1 
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Table 3. Comparison between the experimental and Calculated frequencies of the resonance Raman active fundamental modes 
of Ni(OEP)-15N4 (cm–1). 

Symmetry Mode Description Expa Cal (Exp-Calc) 

1  (Cm - N) - 2089.8 - 

2  (Cb - Cb) 1602 1603.02 –1.02 

3  (Ca - Cm)sym 1519 1525.06 –6.06 

4  (Pyr half-ring)sym 1377 1371.10 5.90 

5  (Cb - C)sym 1022 1021.12 0.88 

6  (Pyr breathing) 801 803.76 2.76 

7 δ (Pyr def)sym 673 685.99 –12.99 

8  (Ni - N) 344 344.26 –0.26 

A1g 

9 δ (Cb - C)sym 226 226.28 –0.28 

10 ’ (Ca - Cm)sym 1655 1639.26 15.74 

11  (Cb - Cb) 1576 1575.39 0.61 

12  (Pyr half-ring)sym - 1337.81 - 

13 δ (Cm - N) 1220 1220.05 –0.05 

14  (Cb - C)sym - 1273.68 - 

15  (Pyr breathing) - 750.51 - 
16 δ (Pyr def)sym 749 752.43 –3.43 
17 δ (Cb - C)sym - 330.59 - 

B1g 

18  (Ni - N) - 369.38 - 

19 ’ (Ca - Cm)sym 1603 1589.26 13.74 

20  (Pyr quater-ring) 1396 1396.89 –0.89 

21 δ (Cm - N) 1305 1309.28 –4.28 

22 ’ (Pyr half-ring)sym 1108 1113.39 –5.39 

23 ’ (Cb-C)sym - 1065.55  

24 δ’ (Pyr def)sym 732 732.81 –0.81 

25 δ (Pyr rot) - 523.70 - 

A2g 

26 δ’ (Cb - C)sym - 304.08 - 

27  (Cm - N) - 2105.12 - 
28 ’ (Ca - Cm)sym - 1474.88 - 

29  (Pyr quater-ring) 1408 1408.53 –0.53 

30 ’ (Pyr half-ring)sym 1150 1142.34 7.66 

31 ’ (Cb - C)sym - 1010. 52 - 

32 δ’ (Pyr def)sym 785 773.06 11.94 

33 δ (Pyr rot) - 528.26 - 

34 δ’ (Cb - C)sym - 460.94 - 

B2g 

35 δ (Pyr transl) - 178.96 - 

36  (Cm - N) - 2120.38 - 

37 ’ (Ca - Cm)sym 1603 1603.02 –0.02 

38  (Cb - Cb) 1555 1562.23 –7.23 

39  (Ca - Cm)sym 1484 1483.30 0.70 

40  (Pyr quarter-ring) 1442 1442.36 0.36 

41  (Pyr half-ring)sym 1386 1383.45 2.55 

42 δ (Cm - N) 1266 1265.11 0.89 

43 ’ (Cb - C)sym 1140 1147.40 –7.40 

44 ’ (Pyr half-ring)sym 1108 1113.39 –5.39 

45 ’ (Cb - C)sym 986 994.40 –8.40 

46 δ’ (Pyr)sym 921 918.06 2.94 

47  (Pyr breathing) 719 727.94 –8.94 

48 δ (Pyr)sym 602 601.10 0.90 

49 δ (Pyr rot) 550 552.48 –2.48 
50  (Ni - N) - 394.50 - 
51 δ’ (Cb - C)sym - 374.90 - 
52 δ (Cb - C)sym - 288.26 - 

Eu 

53 δ (Pyr transl) - 183.77 - 
aExperimental data has taken from Reference [24]. ∆ (r.m.s) = 4.04 cm–1. 
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Table 4. Comparisons between the experimental and calculated frequencies of the Raman active fundamental modes of C60 
(cm–1). 

Vibrational mode Expb Cal (Exp-Calc) 

1 273 275.9303 –2.9303 

2 497 498.3048 –1.3048 

3 528 530.2039 –2.2039 

4 577 577.3049 –0.3049 

5 1183 1182.2093 0.7907 

6 1429 1431.9848 –2.9848 

7 1469 1470.5968 –1.5968 

∆ (r.m.s) = 6.439 cm–1. 

 
Table 5. Comparisons between the experimental and Calculated frequencies of the Raman active fundamental modes of C70 
(cm–1). 

Vibrational mode Expb Cal (Exp-Calc) 

1 260 259.3543 0.6457 

2 571 573.0294 –2.0294 

3 1062 1064.3029 –2.3029 

4 1185 1186.0928 –1.0928 

5 1232 1233.2930 –1.2930 

6 1513 1513.2087 –2.9848 

7 1568 1565.3392 2.6608 

bExperimental data has taken from Reference[25], ∆ (r.m.s) = 3.2029 cm–1. 

 
Table 6. Fitting algebraic parameters of octaethylporphyrinato Ni(II) and its meso-deuterated and N-substituted derivatives. 

 Cm-H Cb-Cb Cb-C Ca-Cm Ni-N Pyr.half Pyr.quater Pyr.breath Pyr.rot Pyr.def 

Ni(OEP) molecule 

A –1.8972 –1.7829 –1.8293 –1.5403 –2.2832 –1.0293 –2.3940 –1.2930 –1.2394 –1.2930

A’ –0.3094 –0.3049 –0.3833 –0.3209 –0.4954 –0.4859 –0.4930 –0.4938 –0.2918 –0.3820

λ 0.0394 0.0238 0.0495 0.0594 0.0293 0.0433 0.0867 0.0594 0.0637 0.0322 

λ’ 0.1029 0.0384 0.3902 0.0293 0.0390 0.0902 0.0293 0.0783 0.0394 0.9200 

Ni(OEP)-d4 molecule 

A –1.9567 –1.7394 –1.7574 –1.4839 –2.4758 –1.9438 –1.5783 –1.4839 –1.3489 –1.4938

A’ –0.4039 –0.5493 –0.4938 –0.2345 –0.5489 –0.2390 –0.4465 –0.3493 –0.2930 –0.4930

λ 0.0840 0.0349 0.0657 0.0405 0.0349 0.0128 0.0928 0.0647 0.0493 0.0574 

λ’ 0.2349 0.0504 0.0394 0.0192 0.0128 0.0495 0.0112 0.0349 0.0325 0.0932 

Ni(OEP)-15N4 molecule 

A –1.7849 –1.7839 –1.8495 –1.3849 –2.3948 –1.0490 –2.4930 –1.3049 –1.3829 –1.2389

A’ –0.4302 –0.3940 –0.3647 –0.2784 –0.4304 –0.3920 –0.4289 –0.3940 –0.3920 –0.4673

λ 0.0333 0.0394 0.0432 0.0394 0.0239 0.0320 0.0788 0.0403 0.0433 0.0333 

λ’ 0.0938 0.0574 0.2987 0.0293 0.0293 0.0843 0.0392 0.0563 0.0233 0.0945 

 
Table 7. Fitting algebraic parameters of fullerenes C60 and C70. 

 Vibron number Algebraic parameters 

 N A A’ λ λ’ 

C60 140 –1.4309 0.0384 0.0739 –0.4932 

C70 140 0.9837 0.0456 0.0348 0.5903 

All values in cm–1 except N, which is dimensionless. 
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