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ABSTRACT 

A mathematical model of an amperometric biosensor with the substrate inhibition for steady-state condition is discussed. 
The model is based on the system of non-stationary diffusion equation containing a non-linear term related to non-Micha- 
elis-Menten kinetics of the enzymatic reaction. This paper presents the analytical expression of concentrations and current 

for all values of parameters 2 2, , and s pϕ ϕ α β . Here the Adomian decomposition method (ADM) is used to find the ana- 

lytical expressions for substrate, product concentration and current. A comparison of the analytical approximation and nu- 
merical simulation is also presented. A good agreement between theoretical predictions and numerical results is observed. 
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1. Introduction 

Biosensors are analytical devices which tightly combine 
biorecognition elements and physical transducer for de- 
tection of the target compounds. An amperometric bio- 
sensor is a device used for measuring concentration of 
some specific chemical or biochemical substance in a so- 
lution [1,2]. Biosensors use specific biochemical reac- 
tions catalyzed by enzymes immobilized on electrodes. 
Many enzymes are inhibited by their own substrates, 
leading to velocity curves that rise to a maximum and 
then descend as the substrate concentration increases. 

In the literature, mathematical models have been widely 
used as an important tool to study and optimize the ana-
lytical characteristics of actual biosensors [3]. Practical 
biosensors contain a multilayer enzyme membrane [4], 
the model biosensors containing the exploratory mono- 
layer membrane are widely used to study the biochemical 
behavior of biosensors [3,5]. Substrate inhibition is often 
regarded as a biochemical oddity and experimental an-
noyance. 

This model is based on the system of non-stationary 
diffusion equations containing a non-linear term related 
to non-Michaelis-Menten kinetics of the enzyme reaction 

[2]. The dimensionless model of the biosensor with sub- 
strate and product inhibition has been constructed in or- 
der to decrease the number of biosensor properties. Sub- 
strate inhibition and interactions during biodegradation 
of pollutant mixtures is discussed by Okpokwasili et al. 
[6]. Multi-enzyme inhibitor system is investigated by 
Rangelova et al. [7]. Substrate inhibition kinetics of phe- 
nol degradation is described in Agarry et al. [8].  

To the best of our knowledge, until now no rigorous 
analytical solution [9,10] has been reported for a steady- 
state substrate [11] and product concentration at the bio-
sensor at mixed enzyme kinetics in the case of substrate 
inhibition [12-14]. As a result, in this paper we have ar-
rived at an analytical expression corresponding to the 
concentration of substrate and product using ADM method 
for all values of reaction/diffusion parameters 2 2, ,s pϕ ϕ  

and α β . 

2. Mathematical Formulation and Analysis 
of the Problems 

2.1. Mathematical Formulation 

During an enzyme-catalyzed reaction 

E S ES E P+ ↔ → +               (1) 
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the substrate (S) binds to the enzyme (E) to form enzyme- 
substrate complex ES. While it is a part of this complex, 
the substrate is converted to product (P). The rate of the 
appearance of the product depends on the concentration of 
the substrate. The basic model used in this work and a 
definition of the coordinate system are shown in Figure 1. 
The simplest scheme of non-Michaelis-Menten kinetics, 
for example may be obtained by addition into Michaelis- 
Menten scheme (Equation (1)), a stadium of the interac- 
tion of the enzyme substrate complex (ES) with another 
substrate molecule (S) (Equation (2)) following the gene- 
ration of the non-active complex (ESS) [2]:  

ES S ESS+ ↔                 (2) 

The steady state non-linear differential equations for 
the substrate inhibition are [14] 

2
max

2

d

ds

m

2

s

v ss
D

x s
k s

k

=
+ +

          (3) 

2
max

2

d

dp

m

2

s

v sp
D

x s
k s

k

= −
+ +

         (4) 

where sD  and pD

k

 are the diffusion coefficient of the 
substrate and product within the enzyme layer. s and p 
are the concentration of substrate and product at any po-
sition in the enzyme layer. max  is the maximal enzy-
matic rate attainable when the enzyme is fully saturated 
with substrate, i  denotes the Michaelis-Menten con-
stant and d is the thickness of the enzyme layer. The 
equation is solved for the following boundary conditions. 

v

0; 0;d d 0x p s x= = =         (5) 

; 0;x d p s s∗= = =            (6) 

The current density i(t) of the biosensor at time t is 
expressed as usual, 

( )
0

d

d x

p
i t

x =

=             (7) 

We introduce the following set of dimensionless vari- 
ables 
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where S and P represent the dimensionless concentration 
of substrate and product respectively. 2 2ands pϕ

 

Figure 1. Schematic representation of biosensor. 
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ϕ
χ α β

= −
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       (10) 

An appropriate set of boundary conditions is given by: 

0; d d 0; 0S Pχ χ= = =        (11) 

1; 1; 0S Pχ = = =            (12) 

Adding Equations (9) and (10) we obtain, 

2

2 2 2

d
0

d s p

S P

χ ϕ ϕ
 

+ =  
 

           (13) 

Integrating Equation (13) twice we get: 

2 2
s p

S P
A Bχ

ϕ ϕ
 

+ = +  
 

        (14) 

From the above equation, we get the dimensionless 
concentration of product in terms of concentration of 
substrate as follows: 

2
2

( )
( ) p

s

S
P A B

χχ ϕ χ
ϕ

 
= + −

 
           (15) 

The constants A and B can be obtained using the boun- 
dary conditions given by the Equations (11) and (12). 
The substrate and product concentrations are all related 
processes. The dimensionless current is given by 

ϕ  and 
denote the corresponding reaction diffusion parameters. 
χ  represents the dimensionless distance. β  represents 
the saturation parameters. The governing non-linear re-
action/diffusion Equations (3) and (4) are expressed in 
the following non-dimensionless format [14]: 0

d

d

P
I

χχ =

=               (16) 
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3. Concentrations of Substrate and Product 
under Steady-State Condition  

3.1. Analytical Solution Using ADM 

In this paper, the Adomian decomposition method (see 
Appendix A) is used to solve non-linear differential equ- 
ations. The ADM [15-19] yields, without linearization, 
perturbation or transformation, an analytical solution in 
terms of a rapidly convergent infinite power series with 
easily computable terms. The analytical expression of 
concentration (see Appendix B) of the substrate is as 
follows: 

( ) ( )

( ) ( )( )
( )

2

2 4 2

2
2

1
2 1

1 6 5
1

12 1

s

s

u
ϕχ
α β

ϕ β χ χ
χ

α β

= −
+ +

 



− − +
 − +
 + +

   (17) 

From this result and the boundary conditions (11) and 
(12) we can obtain the value of the constant A and B as 
follows:  
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Now the product’s concentration ( )v χ  can be ob-
tained from the Equation (15). 
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 (18) 

We get the dimensionless current, 

( )
( )

( )

2 2

2

5 1
1

2 1 12 1

p sI
ϕ ϕ β
α β α β

 −
= +

+ + + +  
         (19)                          

3.2. Numerical Simulation 

The non-linear reaction/diffusion equations (Equations (9) 
and (10)) for the boundary conditions (Equations (11) 
and (12)) are also solved numerically. We have used the 
function pdex4 in Scilab/Matlab numerical software, to 
solve the initial-boundary value problems for parabolic- 
elliptic partial differential equations numerically. Its nu- 
merical solution is compared with the analytical results 
obtained using ADM method. 

4. Results and Discussion 

Equations (17) and (18) represent the closest and sim-

plest form of approximate analytical expressions for the 
normalized concentration of substrate and product for all 
values of parameters 2 2, , and s pϕ ϕ α β . Equation (19) 
represents the new approximate analytical expression of 
current. The numerical solution is compared with the 
analytical results in Figures 2-5. Figures 2-4 present the 
analytical and numerical concentration profiles of sub-
strate for all values of parameters 2 2

s p, , and ϕ ϕ α β . The 
concentration of substrate and product depend upon 
Thiele module and saturation parameters. The Thiele mo- 
dule ( )mk2 2v d Dϕ = maxi i , essentially compares the rate 
of enzyme reaction ( max mv k ) and diffusion in the en- 
zyme layer ( 2

id D ). 
We observe the rise and downfall of concentration 

profiles in two cases. 1) If Thiele modulus is small 
( ), then enzyme kinetics predominate in the bio- 
sensor response. The overall kinetics is governed by the 
total amount of active enzyme; 2) The response is under 
diffusion control, if the Thiele module is large ( ), 
which is observed at high catalytic activity and active 
membrane thickness or at low reaction rate constant 

 or diffusion coefficient values . 

2 1iϕ <

( )mk

2 1iϕ >

( )iD
Figure 2 illustrates the concentration profiles of sub- 

strate S for various values of reaction diffusion parameter 
of substrate 2

sϕ . The concentration of the substrate de- 
creases with the increasing values of 2

sϕ . 
From Figures 3 and 4 we infer that the concentration 

profiles of substrate S increases with the increasing val-
ues of saturation parameters and α β . 

The concentration profiles of the product P are com- 
pared with the numerical results in Figure 5, illustrating 
the concentration profiles of the product P for various 
 

 

Figure 2. Dimensionless concentration of substrate S (Equ- 
ation (17)) versus normalized distance χ for α = 10, β = 0.5 
and for various values of sφ

2

sφ
2 =

. (i) ; (ii) ; (iii) 

; (iv) ; (v) . Solid lines represent the 

analytical solution whereas the dotted lines for the numeri- 
cal solution. 

sφ
2 0.1= sφ

2 1=

sφ
2 5= sφ

2 10= 15
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Figure 3. Dimensionless concentration of substrate S (Equ- 
ation (17)) versus normalized distance χ for β = 0.5,  

and for various values of α. (i) α = 0.1; (ii) α = 1; (iii) α = 5; 
(iv) α = 10; (v) α = 50; (vi) α = 100. Solid lines represent the 
analytical solution whereas the dotted lines for the numeri- 
cal solution. 

sφ
2 5=

 

 

Figure 4. Dimensionless concentration of substrate S (Equ- 
ation (17)) versus normalized distance χ for α = 10,  

and for various values of β. (i) β = 0.1; (ii) β = 1; (iii) β = 10; 
(iv) β = 100. Solid lines represent the analytical solution 
whereas the dotted lines for the numerical solution. 

sφ
2 5=

 
values of 2

pϕ . In all the cases the concentration of the 
product P increases with the increasing value of parame-
ter 2

pϕ . Figure 6 shows the dimensionless concentration 
of substrate S (Equation (17)) and product P (Equation 
(18)) versus normalized distance χ  for some fixed 
values of parameters ( 10,   5α 0.β= = ,  and 

). From Figure 6, it is inferred that the concen-
tration of the substrate S increases and attains its maxi-
mum value 1 at 

2
s 20ϕ =

2
pϕ 50=

1χ = . The concentration of the product 
P increases within the enzyme matrix from both the in-
terfaces ( 0χ =  and 1χ = ) and reaching a maximum 
value at the middle of the membrane which is determined  

 

Figure 5. Dimensionless concentration of product P (Equa- 
tion (18)) versus normalized distance χ for α = 10, β = 0.5, 

 and for various values of sφ
2 10= pφ

2 . (i) ; (ii) pφ
2 0.1= pφ

2

0= 3

 

; (iii) ; (iv) ; (v) ; (vi) ; 

(vii) ; (viii) . Solid lines represent the ana- 

lytical solution whereas the dotted lines for the numerical 
solution. 
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0= 4
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2 0= 2 pφ
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Figure 6. Dimensionless concentration of substrate S (Equ- 
ation (17)) and product P (Equation (18)) versus normalized 
distance χ for α = 10, β = 0.5,  and . sφ

2 20= pφ
2 0= 5

 
by the kinetics of the enzyme reaction and diffusion 
properties of the reactants. 

Determination of Current 

The parameter of greatest interest in an amperometric 
biosensor is the current, which is related to the flux of 
electroactive material to the electrode surface. The varia- 
tion in current versus saturation parameters and α β  are 
shown in Figures 7 and 8 respectively. It is evident from 
the figures that the current I (Equation (19)) increases 
when 2

sϕ  or 2
pϕ  increases or thickness of the mem-  
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Figure 7. Variation of normalized current I (Equation (19)) 
against α for the fixed values of , β = 5 and various 

values of 

pφ
2 5=

sφ
2 . (i) sφ

2 = 1; (ii) sφ
2  = 10; (iii) sφ

2  = 50; (iv) 

sφ
2  = 100. 

 

 

Figure 8. Variation of normalized current I (Equation (19)) 
against β for the fixed values of , α = 10 and various 

values of 

pφ
2 5=

pφ
2 . (i) pφ

2  = 1; (ii) ; (iii) ; (iv) pφ
2 10= pφ

2 0= 5

pφ
2  = 100. 

 
brane d increases. Furthermore, when  is greater than 
10, all the curves reach the steady state value for all va- 
lues of 

α

2
sϕ . When β  is greater than 50, all the curves 

reach the steady state value for various values of 2
pϕ . 

5. Conclusion 

The modeling of the amperometric biosensor with the 

substrate inhibition is discussed. The system of non-lin-
ear differential equation has been solved using ADM 
method. The primary result of this work is the first accu-
rate calculation of substrate and product concentration 
for all values of considered parameters, this being in 
good agreement with simulation results. The influence of 
Thiele module and active membrane thickness is also 
investigated. The obtained analytical results will be use- 
ful in sensor design, optimization and prediction of the 
electrode response. Using these results, the action of 
biosensor is analyzed at critical concentration of sub- 
strate and enzyme activity. Theoretical results obtained 
in this paper can also be used to analyze the effect of 
different parameters such as active membrane thickness 
and saturation parameters. 
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Appendix A 

Basic Concept of the Adomian Decomposition 
Method (ADM) 

Adomian decomposition method [18-21] depends on de- 
composing the non-linear differential equation  

( )( ),  0F yχ χ =              (A.1) 

in two components 

( )( ) ( )( ) 0L y N yχ χ+ =

)

          (A.2) 

where L and N are the linear and the non-linear parts of F 
respectively. The operator L is assumed to be an invert-
ible operator. Solving for ( )(L y χ  leads to 

( )( ) ( (L y N y )χ χ= −            (A.3) 

Applying the inverse operator L on both sides of Equa-
tion (A.3) yields 

( ) ( ) ( )(1  y L N yχ φ χ χ− = −  )     (A.4) 

where ( )φ χ  is a function that satisfies the condition  

( )) 0=(L φ χ . Now assuming that the solution y can be  

represented as infinite series of the form,  
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where  
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  (A.6) 

Then equating the like terms in the linear system of 
Equation (A.5) gives the recurrent relation  

( ) ( )1
0 1, n ny y L A nφ χ −

+= = −       (A.7) 

However, in practice all the terms of series in Equation 
(A.5) cannot be determined, and the solution is approxi- 

mated by the truncated series ( )
0

N

n
n

y χ
=
 . 

Appendix B 

Analytical Expression of Concentrations of 
Substrate Using the Adomian Decomposition 
Method 

To solve the non linear Equation (9) using the Adomian 
decomposition method [18-23], we write the Equation (9) 
in the operator form, 

( ) ( )2
sL S N Sχ ϕ χ  = −             (B.1) 

where  

( )

2

2

2

d
 

d

and 
1

L

S
N S

S S

χ

χ
α β

=

  =  + +

    (B.2) 

Applying the inverse operator  on both sides of 
Equation (B.1) yields 

1L−

( ) ( )2 1
sS A B L N Sχ χ ϕ χ− = + −       (B.3) 

According to the ADM, the solution ( )S χ  can be 
elegantly computed by using the recurrence relation 
(A.7). Using this relation we obtain, 

( )0S Aχ χ= + B               (B.4) 

where A and B are constants of integration. Using the 
boundary condition Equation (9) we get,  

0 1S =                 (B.5) 

( ) ( )
( )

2 1
1

2 1 , 0

n s

s n

S L N S

L A n

χ ϕ χ

ϕ χ

−
+

−

 =  
= ≥

    (B.6) 

nA  are the Adomian polynomials of 1 2 . We 
can find the first few Adomian polynomial coefficients 

, , nS S S

nA  using Equation (A.6) as follows: 

( ) ( ) 0
0 0 2

01

1

1

S
A N S

S S
χ

α β

α β

= =
+ +

=
+ +

0     (B.7) 

( ) ( )( )
( )

( )
( )

1 0 1 0

2
2

3

d

d

1
1

2 1

s

A N S S
λ

χ λ
λ
ϕ β

χ
α β

=
= +

−
= −

+ +

      (B.8) 

The remaining polynomials ( )iA χ  can be generated 
easily, using Equation (A.6). Applying the following 
boundary conditions  

( ) ( )
( ) ( )

0 00 0,  1 1

and 0 0,  1 0, 1i i

u u

u u i

′ = =

′ = = ≥
     (B.9) 

Using Equation (B.6) we can obtain the following re-
sults: 

( ) ( )

( ) ( )

2 1 2 1
1 0

2 2

1

1

1 2 1

s s

s

S L A Lχ ϕ χ ϕ
α β

ϕ χ α β

− −  
 = =    + +

= − + +
   (B.10) 
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( ) ( )
( )

( )
(

( )( )
( )

)

2 1
2 S 1

2
2 1 2
S 3

4 4 2

3

 

1
 

2 1

1 6 5

24 1

s

s

S L A

L

χ ϕ χ

ϕ β
ϕ χ

α β

ϕ β χ χ

α β

−

−

 =  
 −
= −
 + +

− − +
=

+ +

figure 

1




       (B.11) 

plot(x,u2(end,:)) 
title('Solution at t = 2') 
xlabel('Distance x') 
ylabel('u2(x,2)') 
% -------------------------------------------------------------- 
function [c,f,s] = pdex4pde(x,t,u,DuDx) 
s0=1; 

Adding Equations (B.5), (B.10) and (B.11), we get the 
concentration of substrate (Equation (17)) as in the text. 

Ds=10^(-10); 
v=10^(-2); 
d=10^(-4); 

Appendix C ks=0.001; 
km=0.01; Scilab/Matlab Program for the Numerical 

Solution of Non-Linear Equations (9) and (10) c = [1;1]; 
f = [1; 1] .* DuDx;   

function pdex4 F1 =v*u(1)/(km+u(1)*(1*u(1)/ks)); 
m = 0; s =[-F1; F1]; 
x = [0 0.00002 0.00004 0.00006 0.00008 0.00010]; % -------------------------------------------------------------- 
t = [0 2 4 6 8 10];  function u0 = pdex4ic(x); 
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); u0 = [1; 0]; 
u1 = sol(:,:,1); % -------------------------------------------------------------- 
u2 = sol(:,:,2);  function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t) 
u3 = sol(:,:,3); pl = [0; ul(1)]; 
figure ql = [1; 0]; 
plot(x,u1(end,:)) pr = [ur(1)-1; ur(2)]; 
title('Solution at t = 2') qr = [0; 0]; 
xlabel('Distance x') 
ylabel('u1(x,2)') 
 


