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ABSTRACT 

Purpose: To develop a fast landmark-based deformable registration method to capture the soft tissue transformation 
between the planning 3D CT images and treatment 3D cone-beam CT (CBCT) images for the adaptive external beam 
radiotherapy (EBRT). Method and Materials: The developed method was based on a global-to-local landmark-based 
deformable registration algorithm. The landmarks were first acquired by applying a fast segmentation method using the 
active shape model. The global registration method was applied to establish a registration framework. The Laplacian 
surface deformation (LSD) and Laplacian surface optimization (LSO) method were then employed for local deforma- 
tion and remeshing respectively to reach an optimal registration solution. In LSD, the deformed mesh is generated by 
minimizing the quadratic energy to keep the shape and to move control points to the target position. In LSO, a mesh is 
reconstructed by minimizing the quadratic energy to smooth the object by minimizing the difference while keeping the 
landmarks unchanged. The method was applied on 8 EBRT prostate datasets. The distance and volume based estimators 
were used to evaluate the results. The target volumes delineated by physicians were used as gold standards in the 
evaluation. Results: The entire segmentation and registration processing time was within 1 minute for all the datasets. 
The mean distance estimators ranged from 0.43 mm to 2.23 mm for the corresponding model points between the treat-
ment CBCT images and the registered planning images. The mean overlap ratio ranged from 85.5% to 93.2% of the 
prostate volumes after registration. These results demonstrated reasonably good agreement between the developed 
method and the gold standards. Conclusions: A novel and fast landmark-based deformable registration method is de- 
veloped to capture the soft tissue transformation between the planning and treatment images for prostate target volumes. 
The results show that with the method the image registration and transformation can be completed within one minute 
and has the potential to be applied to real-time adaptive radiotherapy. 
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1. Introduction 

This Prostate cancer is the most commonly diagnosed 
cancer in men in the United States and is the second 
leading cause of cancer related deaths in males [1]. The 
external beam radiotherapy (EBRT) is one of the primary 
treatment modalities for prostate cancer and can be used 
to deliver conformal and precise radiation doses to the 
target volume of prostate while sparing adjacent critical 
normal organs. Intensity modulated radiation therapy 
(IMRT), one of the clinical radiation delivery technolo- 
gies, is being increasingly used in the definitive treatment 
of prostate cancer compared to the three dimensional 
conformal radiotherapy (3DCRT). The beam intensity is 

modulated and optimized with sophisticated algorithms 
not only to produce more conformal dose coverage to the 
target volume but also to further reduce radiation doses 
to the surrounding critical structures. However, the organ 
motions and patient positioning deviations during treat- 
ment impose challenges in the EBRT and may compro- 
mise the efficacy of these advanced radiation delivery 
technologies [2-5].  

Image guided radiotherapy (IGRT) has been devel- 
oped to improve the detection of target deviations relative 
to the target position in an approved radiotherapy treat- 
ment plan [6]. When using IGRT, verification images 
may be acquired at the treatment and compared to the 
planning images, and the deviations can be detected and  
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corrected. The combination of advanced imaging tools 
with the state of the art radiation delivery technologies 
may potentially improve both cancer control and quality 
of life for cancer patients. The success of this combina- 
tion hinges on the following prerequisite: precise and fast 
delineation and registration of the target volume between 
the planning and the verification images. This is because 
not only planned dose needs to be delivered to the correct 
target volume but also the process of target localization 
at treatment cannot be prolonged to an unacceptable level 
to compromise patient comfort and treatment time.  

Various imaging based rigid registration methods have 
been developed to automate the process of determining 
patient positioning [7-12]. These methods have been 
aimed at registering 3D CT data to 2D portal images. The 
significant downfall of these methods is that only rigid 
pelvic bony landmarks are used while the location of 
prostate itself is not considered. In one study [13], de- 
formable soft tissues were evaluated using an automated 
CT-CT image registration method; however, that work 
only considered translations alone. Rigid registration can 
be an acceptable approach to a number of medical appli-
cations. However, the detection of target deviations in 
radiation treatment of prostate cancers is an area where 
the rigid registration alone is most likely not to be suc- 
cessful because the dense registration and correspondence 
problems are involved and need to be solved.  

Various full 3D deformable registration methods have 
been developed to register images in the prostate region, 
such as biomechanical models, conformal mapping, thin 
plate spline, diffusion based models, and free form de- 
formation [14-26]. 

Biomechanical models can be time consuming since 
the mechanical information of the tissue is required to 
perform the deformation [14-16]. Conformal mapping 
method is applied to map bladder deformations and dif- 
ficulties can be encountered to model the interfaces be- 
tween structures [17]. Thin plate spline (TPS) approach 
formulates landmark based image registration as a nonrigid 
point matching system [18-20]. The main concern related 
to this approach is the automatic finding of landmark 
correspondences. In diffusion based “demons” deforma- 
tion method, images are processed to be a set of isointen- 
sity contours and the source image diffuses into the target 
image [21,22]. The free form deformation registration 
method is to deform the shape of an object by manipu- 
lating a regular control lattice overlaid on its volumetric 
embedding space [23-26].  

In one of our previous studies [26], a global-to-local 
shape registration model was developed to formulate 
shape based non-rigid registration in a hierarchical man- 
ner: first, the mutual information criterion supporting the 
transformation models was optimized to perform global 
registration; then the information of the segmented volume 

was implicitly used by fitting deformable superquadric 
mesh models and the Euclidian distances of the corre- 
sponding nodal points from the global registration proc- 
ess were minimized in the local registration process. 
However, in the first step of global deformation, maxi- 
mizing mutual information can be time consuming and 
make the approach impractical in a clinical treatment 
environment. In the second step of this previous ap- 
proach, the use of deformable superquadric mesh models 
of local deformation can be limited and become ineffec- 
tive in cases where deformation becomes excessive or 
the target shapes are irregular beyond certain limits. 

To overcome the limitations of the previous method, 
we developed a new global-to-local deformable registra- 
tion method which incorporated both computationally 
efficient landmark points based global registration method 
and a new computationally efficient local deformable 
mesh model based local registration algorithm. 

2. Materials and Methods 

In the global registration, the corresponding landmark 
points were first acquired by applying the anatomy-con- 
strained robust active shape models (ACRASM) seg- 
mentation method [26]. Then, the corresponding land- 
mark points based global registration method was applied. 
The speed of this global registration method was 50 - 70 
times faster than that of volume based mutual informa- 
tion method.  

In the local registration, the Laplacian surface defor- 
mation (LSD) [27] method was employed for local de- 
formation and Laplacian surface optimization (LSO) [28] 
method was employed for refining mesh model to reach 
an optimal registration solution.  

The flow chart of the segmentation and registration 
process is shown in Figure 1. 

2.1. Patient Data 

Eight different patients undergoing external beam prostate 
 

 

Figure 1. The flow chart of the segmentation and registra- 
tion method of the prostate. 
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resampling process, the pCT and CBCT will have same 
voxel dimensions and similar field-of-view size.  

radiotherapy were randomly selected for the study and 
evaluations. Each of the patients had one set of plan- 
ning CT images and one set of CBCT images. The plan- 
ning CT (pCT) images were acquired with an AcQSim 
CT scanner (Philips Medical Systems, Andover, MA). 
The number of slices was different for different patients, 
ranging from 85 slices to 121 slices. Image slice was 512 
× 512 pixels with a voxel dimension of 0.94 × 0.94 × 3 
mm3. The treatment CBCT images were acquired by an 
On-Board Imager (OBI, Varian Medical Systems). The 
number of slices was also different for different patients, 
ranging from 55 slices to 61 slices. Each slice had 512 × 
512 pixels with a voxel dimension of 0.3 × 0.3 × 2.5 
mm3. 

The image intensity was first normalized to [0,1] and 
the histogram equalization method was applied to en-
hance the contrast of images in the pCT and CBCT before 
the image segmentation and deformable registration 
computation. This image contrast enhancement process 
helped to improve the accuracies of both the segmenta- 
tion and the deformable registration.  

2.2.2. Rigid Alignment 
As a second preprocessing step of the segmentation and 
deformable registration algorithm, were all automatically 
aligned in a common reference frame, using a rigid 
transformation based on the pelvic bony structures. These 
bony structures normally show less variability compared 
to soft tissues, and can be automatically identified.  

The target volumes in pCT images were contoured for 
treatment planning purposes on an Eclipse treatment 
planning system (Varian Medical Systems, CA) by an 
experienced radiation oncologist specializing in prostate 
cancer management. The target volumes were also 
manually delineated by the same radiation oncologist on 
the CBCT images. These manually delineated target 
volumes from the CBCT images were used as the 
benchmarks for comparison and evaluation. All the con- 
tours were rviewed and confirmed by another radiation 
oncologist. 

All uniformly resampled image datasets will be first 
cropped into the volume of interest shown in Figure 2 
after rigidly aligned in a common reference frame. The 
anatomy-constrained robust active shape models (AC- 
RASM) based image segmentation method will be ap- 
plied on the first cropped volume [26]. The first cropped 
volumes will be second cropped into the approximate 
same dimensional volume to largely facilitate the image 
registration process. The second cropped volumes were 
generated around the region of interest (include the pros- 
tate, seminal vesicles, posterior part of the bladder and 
anterior part of the rectum). The location and size of the 
target volume (prostate) and normal organs (bladder and 
rectum) were used to crop the image volume. For most 
patients, the cropped volumes will be the same dimen- 
sional volume approximately of 150 × 150 × 100 pixels 
to largely facilitate the image registration process. 

2.2. Image Preprocessing 

2.2.1. Mage Resampling and Image Contrast 
Enhancement 

Since the pCT and CBCT image slice had different voxel 
dimensions and different field-of-view size, all the image 
datasets were resampled in both pCT and CBCT to a 
uniform voxel dimension 0.3 × 0.3 × 0.3 mm3. After the  
 

               
(a)                                                          (b) 

Figure 2. (a) The robust active shape model includes prostate (S1), posterior half internal anal sphincter (S2), posterior half 
external anal sphincter (S3), the outline borders between the prostate and rectum (S4), in which the anterior border is de-
fined as the anterior part of prostate, the posterior border is defined as the posterior part of iliococoygeus muscle, and the 
lateral border is defined as the iliococoygeus portion of the levator ani muscle. The four red points on the model S1 is the 
landmark points. (b) Enhanced planning CT images unfolded from a single 3D planning CT prostate volume and the image 
segmentation based the anatomy-constrained robust active shape models (ACRASM). 
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2.3. 3D Automatic Segmentation of Treatment 

Planning Images and CBCT Images  

The detailed description of the method of segmentation 
was presented in a previous study [26]. A brief descrip- 
tion is presented as follows. 

Enhanced planning CT images unfolded from a single 
3D planning CT prostate volume were segmented using 
the anatomy-constrained robust active shape models 
(ACRASM) [26]. The ACRASM shows in Figure 2(a) 
includes prostate (model S1), posterior half internal anal 
sphincter (model S2), posterior half external anal sphincter 
(model S3), and the outline borders between the prostate 
and rectum (model S4). The upper, bottom, left and right 
four points are landmark points of model S1 and the rest 
points of model S1 are regular points in each image of 
the 3D planning CT prostate volume. The points in 
model S2, S3 and S4 are not used in this paper. The 
landmark points of model S1 in the 3D planning prostate 
volume will be used in global registration as well as the 
local registration. Figure 2(b) illustrates the image seg- 
mentation of the prostate based the anatomy-constrained 
robust active shape models and shows model S1 to S4 as 
well as the four landmark points of model S1. 

Enhanced CBCT images unfolded from a single 3D 
CBCT prostate volume were also segmented using AC- 
RASM method, the same segmentation method by which 
the enhanced planning CT images were segmented.  

The upper, bottom, left and right four points were also 
selected as landmark points of model S1 and the rest 
points of model S1 were regular points in each image of 
the 3D CBCT prostate volume. The landmark points of 
model S1 in the 3D CBCT prostate volume would be 
used in global registration as well as the local registration. 

2.4. Nonrigid Registration 

A global-to-local landmark points based deformable reg-
istration framework was utilized. We denote the 3D mesh 
in the planning CT images as the source shape and the 
3D mesh in the CBCT treatment images as the target 
shape.  

2.4.1. Global Registration 
Global registration was developed by applying Procrustes 
analysis to approximately find similarity transformation, 
such as the translation, scaling and rotation matrix, based 
on the corresponding landmark points from the planning 
CT images and CBCT images. Let P = {p1, p2, , pn} 
and Q = {q1, q2, , qn} be two sets of corresponding 
landmark points from the planning CT images and CBCT 
images respectively. The goal is to find an optimal 
similarity transformation based on the two sets of 
corresponding landmark points by minimizing the 
following the least square function: 




2

, , 1

arg min
n

i i
T S R i

LS TRSp q


 



       (1) 

where, T, S, R are translation matrix, scaling matrix and 
rotation matrix respectively. 

After solving this nine dimensional similarity search 
problem, the entire model can be transformed using these 
transformation matrices and roughly registered with the 
other one. After the global deformation and registration, 
non-rigid local deformable registration using Laplacian 
surface deformation optimization was employed to 
achieve optimal accuracy. 

2.4.2. Local Deformable Mesh Model Based 
Registration 

2.4.2.1. Local deformation using Laplacian Surface 
Deformation (LSD) 

Laplacian surface is defined on differential coordinates. 
It represents each vertex point of a mesh as the difference 
between the point and its neighborhoods. The inputs of 
LSD are two sets of the control points in the planning CT 
and CBCT images and the initial mesh of the source 
shape. The mesh vertices are the vertex points which are 
divided into two parts. One part is control points or 
landmark points and the other part is regular points. In 
the Laplacian surface deformation process, the control 
points in the source images are moved to target images 
directly and the deformation of the regular points are 
calculated by LSD. Note that after global deformation, 
the displacements of control points are restricted in a 
local range. The output of LSD is the deformed mesh of 
the source shape. 

Let the initial source mesh MS be described by a pair 
(VS, ES), where VS ={v1, v2, , vn} describes the 
geometric positions of the vertex points in R3 and ES 
describes the connectivity. The neighborhood ring of a 
vertex point i is the set of adjacent vertex points 

   , | ,S i Sj i j E  

 i

and the degree di of this vertex 

point is the number of elements in NS,i. Instead of using 
absolute coordinates VS, the mesh geometry is described 
as a set of differentials Δ =  , i  is the coordinate i, 

which will be represented by the difference between vi 
and the average of its neighbors: 

1
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The deformed mesh can be generated by minimizing 
the quadratic energy function:  
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where,  ' is Laplacian coordinate after deformation and 
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vi' is Cartesian coordinate after deformation, C is the set 
of control points, Ti is transformation matrix for each 
vertex point i. The first half is to keep the similarity of 
the current shape and the shape generated in the previous 
time step and the second half try to move control points 
to target position. We chosed n equals 420 to present the 
prostate mesh model and 84 points were selected as the 
control points which was explained in Section 2.3. 

Ti needs to be well constrained to avoid a membrane 
solution, which shows losing all geometric details. 
Because of this Ti should include rotation, isotropic 
scales and translations, we find anisotropic scales should 
not be allowed, as they will allow removing the normal 
component from Laplacian coordinates. Specifically, Ti 
is defined as:  
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This matrix is a good linear approximation for 
rotations with small angles. Furthermore, it only allows 
isotropic scales by enforcing the same values for 
diagonal elements. 

The quadratic energy function can be minimized 
iteratively by finding s, h and t for Ti and applying the 
transformation on each vertex coordinates. We use the 
changing of residuals as the convergence criterion. When 
its value is smaller than a threshold (e.g., 1E - 6), we 
assume that the system converges and this minimization 
problem is solved. Note that the transformation Ti is an 
approximation of the isotropic scaling and rotations when 
the rotation angle is small. In this paper, the major 
rotation has been handled in the global deformation so 
that the local rotation fits the small angle assumption 
well.  

2.4.2.2. Local Deformation Using Laplacian Surface 
Optimization (LSO) 

LSO is used to improve triangle quality of a surface 
mesh. The inputs are landmark points and the initial 
surface mesh and the output is an optimized surface mesh. 
We will use the same notation as in Section 2.5.2.1. 

Assume V is the matrix representation of VS. The 
transformation between vertex coordinates V and 
Laplacian coordinates Δ can be described in matrix 
algebra. Let N be the mesh adjacency matrix and D = 
diag(d1, ···, dn) be the degree matrix. Then,  

1L I D N 
, 

where for the uniform weights.  
Using a subset A Vs
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of m landmark points, a mesh 
can be reconstructed from connectivity information alone. 
Here the selection of A is the same as the control points 
selected in II.E.2.1. Positions of the reconstructed object 

can be solved separately 

by minimizing the quadratic energy: 
2 2' '
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where Vp' is the vertex coordinates of the reconstructed 
object, vap are landmark points. The first half is Laplacian 
constrains to smooth the object by minimizing the dif- 
ference, and the second half is positional constrains to 
keep landmark points unchanged. In practice, with m 
landmark points, the  n m n 

'
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is solved in the least squares method using the method of 

normal equations . The first n rows of 

AV b  are the Laplacian constrains, corresponding to 
2'

pLVthe first part , while the next m rows are the posi-

tional constrains, corresponding to the second part 
2'

ap ap
a A

v v


 . 

Iap is the index matrix of vap, which maps each v'ap to vap. 
The reconstructed shape is generally smooth, with the 
possible exception of small areas around landmark points. 
The minimization procedure moves each vertex point to 
the centroid of its ring, since the uniform Laplacian L is 
used, resulting in good inner fairness. The main compu-
tation cost of this algorithm is big matrix multiplication 
and inverse. Since A is sparse matrix, ATA is sparse 
symmetric definite matrix. The conjugate gradient algo-
rithm can be employed to solve the system.  

3. Validation Studies 

The quantitative validation of the proposed deformable 
registration algorithm for prostate cancer image volumes 
was designed to include three components: distance- 
based estimators, volume-based estimators and registra- 
tion efficiency. For all three evaluations, the proposed 
method was compared against the corresponding bench- 
marks as well as the registration results obtained using 
our previous deformable mesh model based image Regis- 
tration method. 

The Distance-Based Estimators and the 
Volume-Based Estimators 

The distance-based estimators include the mean distance 
and the root mean square error (RMSE). The mean 
distance, the root-mean-square error (RMSE) and the 
max distance are calculated the corresponding prostate 
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points between the treatment CBCT images and the 
registered planning images. The corresponding prostate 
points include two parts of points, corresponding land- 
mark points and corresponding non-landmark points. The 
corresponding landmark points was acquired for the 
global registration step in the Sections 2.3. and 2.4. The 
corresponding non-landmark points which are defined as 
the closest point to the original mesh point.  

The volume-based estimators include the volumetric 
true positive (TP), volumetric false negative (FN), 
volumetric the false positive (FP) and Dice similarity 
coefficient 

 2 2FP TP  DS TP FN   

between the results of proposed deformable registration 
method and benchmarks. We used this similarity measure 
since it accurately reflected the overall volumetric 
overlapping between binary objects and also included the 
information about the major causes of the differences, 
such as overestimate or underestimate.  

4. Results 

4.1. Qualitative Results and Quantitative Results 
of Proposed Registration Method 

Figure 3 displays the qualitative results of the proposed 
method applied to three of the datasets. The prostate 
benchmarks from the planning CT and the treatment 
CBCT are shown in Figures 3 (a) and (b), respectively. 
The prostates in column (a) were correspondingly 
registered to column (b) using the proposed method. 
Figure 3 (c) shows the registered prostates (in blue) 
superimposed on the corresponding prostate benchmarks 
from the treatment CBCT images. Figure 4 shows the 
axial view of the enlarged image results of Figure 3. 
Figure 5 shows the spatial error (red lines) between 
themesh point of the registered model (blue) from pCT 
images and the closest point of the segmented prostate 
model from CBCT images.  

The quantitative results are summarized in Table 1 
and Table 2. Table 1 shows the values of the mean 
distance (ranged from 0.43 mm to 2.23 mm), the root- 
mean-square error (RMSE) (ranged from 0.51 mm to 2.46 
mm) and the max distance (ranged from 2.48 mm to 5.32 
mm) of the corresponding prostate points between the 
treatment CBCT images and the registered planning 
images using the proposed deformable registration 
method. Table 1 also shows the values of the mean 
distance (ranged from 0.38 mm to 2.20 mm), the 
root-mean-square error (RMSE) (ranged from 0.45 mm 
to 2.36 mm) and the max distance (ranged from 1.59 mm 
to 5.98 mm) of the corresponding prostate points 
between the treatment CBCT images and the registered 
planning images using the previous deformable mesh 
model based image registration method [26]. These 

results demonstrate that the developed method produced 
reasonably good agreement between the registered 
prostates and the corresponding benchmarks using the 
distance-based estimators. 
 

 
(a)               (b)             (c) 

Figure 3. Deformable registration results of Laplacian sur-
face deformation and optimization: (a) segmented prostate 
model (green) from planning CT images; (b) segmented 
prostate model (red) from CBCT images; and (c) registered 
model (blue) superimposed on (b). 

 

Figure 4. The enlarged image results of the axial view of of 
Figure 3. The registered model (blue) from pCT images 
superimposed on the segmented prostate model (red) from 
CBCT images using Laplacian surface deformation and 
optimization deformable registration. 

 

Figure 5. The spatial error (red lines) between the mesh 
point of the registered model (blue) in the pCT images and 
the corresponding closest mesh point of the segmented 
prostate model of CBCT images. 

Copyright © 2012 SciRes.                                                                           IJMPCERO 



J. H. ZHOU  ET  AL. 

Copyright © 2012 SciRes.                                                                           IJMPCERO 

46 

Table 2 shows the values of the volumetric false 
positive volumetric true positive (TP ranged from 84.5% 
to 93.7%) and Dice similarity coefficient (ranged from 
85.5% to 93.2%) between the results of proposed 
deformable registration method and benchmarks. Table 2 
also shows the values of the volumetric false positive 
(volumetric FP ranged from 7.53% to 14.56%), volumetric 
false negative (FN ranged from 5.03% to 14.8%), 

volumetric true positive (TP ranged from 85.2% to 
94.97%) and Dice similarity coefficient (ranged from 
86.0% to 93.8%) between the results of the previous 
deformable mesh model based registration method and 
benchmarks. These results further confirm that the 
developed method produced reasonably good agreement 
between the registered prostates and the corresponding 
benchmarks. 

 
Table 1. Quantitative comparison results of the proposed deformable registration method based on the Laplacian surface 
deformation and Laplacian surface optimization on 8 clinical datasets to those of the benchmarks on the CBCT images. 
Quantitative comparison results of previous deformable mesh model based image registration method on 8 clinical datasets 
to those of the benchmarks on the CBCT images. The distance based estimators include mean distance, root-mean-square 
error (RMSE) and maximum distance. 

Proposed Registration Method  Deformable Mesh model Registration Method 

Mean Distance RMSE Max Distance  Mean Distance RMSE Max Distance Dataset 

(mm) (mm) (mm)  (mm) (mm) (mm) 

1 0.43 0.51 2.48  0.38 0.45 1.59 

2 2.10 2.35 3.63  2.20 2.36 4.34 

3 1.45 1.59 3.25  1.53 1.72 5.57 

4 1.76 1.87 4.12  1.83 1.92 3.83 

5 0.79 0.91 2.90  0.92 0.98 3.94 

6 2.23 2.46 3.30  1.73 1.77 5.98 

7 1.37 1.61 4.31  1.45 1.56 3.08 

8 2.09 2.33 5.32  1.98 2.14 3.50 

 
Table 2. Quantitative comparison results of the proposed deformable registration method based on the Laplacian surface 
deformation and Laplacian surface optimization on 8 clinical datasets to those of the benchmarks on the CBCT images. 
Quantitative comparison results of previous deformable mesh model based image registration method on 8 clinical datasets 
to those of the benchmarks on the CBCT images. The volume based estimators include the volumetric true positive (TP), 
volumetric false negative (FN), volumetric the false positive (FP) and Dice similarity coefficient between the results of 
proposed deformable registration method and benchmarks.  

Proposed Registration Method  Deformable Mesh model Registration Method 

Volume FP 
Volume 

FN 
Volume TP

Dice Simi-
larity 

 Volume FP
Volume 

FN 
Volume TP 

Dice Simi-
larity 

Dataset 

(%) (%) (%) (%)  (%) (%) (%) (%) 

1 7.43 6.34 93.66 93.15  7.53 5.03 94.97 93.80 

2 13.10 15.5 84.50 85.53  12.93 14.80 85.20 86.00 

3 9.45 7.44 92.56 91.64  14.56 11.47 88.53 87.18 

4 8.76 6.80 93.20 92.30  8.40 6.1 93.90 92.83 

5 8.79 10.53 89.47 90.26  10.17 12.45 87.55 88.56 

6 9.23 7.17 92.83 91.88  11.62 9.09 90.91 89.77 

7 7.92 9.25 90.75 91.36  10.82 11.54 88.46 88.78 

8 10.46 12.61 87.39 88.34  13.29 14.23 85.77 86.18 
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4.2. Registration Processing Efficiency 

All the implementation of the algorithm was written in 
C/C++ and MATLAB. The software package was 
installed on a Dell Pentium PC station running Windows 
XP. The CPU was Intel(R) at 2.66 GHz and the RAM 
size was 4GB.  

The time expenses of the global-to-local registration 
for all 8 data sets (cropped around the volume of interest 
and the dimension of the largest volume of interest is 150 
× 150 × 100 pixels) were summarized in Table 3.The 
preprocessing time (image resampling, image contrast 
enhancement, rigid alignment, cropping the volume of 
interest) was about 60 seconds if used by a person who 
was familiar with the Varian Medical Systems, our 
in-house software package and Matlab. The entire 
registration processing time was within half minute for 
all the 8 datasets. The average duration time of the global 
transformation in the proposed registration method was 
from 3.2 seconds to 4.9 seconds, the average duration 
time of the LSE of the local transformation was from 2.0 
seconds to 3.2 seconds and the average duration time of 
the LSO of the local transformation was from 10.3 
seconds to 15.4 seconds.  

Table 3 also presents the average duration time of the 
global transformation using the deformable mesh model 
based registration method. The time ranged from 137 
seconds to 246 seconds, with the average duration time 
of the local transformation ranging from 20 seconds to 34 
seconds. 

It is apparent that the speed of the entire process was 
significantly improved with the proposed registration 
method.  

5. Discussion and Conclusions 

The motivation of this paper is to develop a deformable 
registration method fast enough for routine clinical use, 
such as pretreatment positioning correction and adaptive  

plan modification. In one of our previous studies [26], a 
global-to-local deformable registration was developed. In 
that method, the global registration was achieved by 
maximizing the mutual information between the source 
volume and target volume. The local registration process 
implicitly used the information of the segmented volume 
by fitting deformable superellipsoid mesh models and 
minimizing the Euclidian distance of the corresponding 
nodal points from the global. However, the performance 
of the previous method could not meet the restricted 
treatment time requirement. To overcome the shortcom- 
ing of the previous method, we developed this new 
global-to-local deformable registration method which 
incorporated both computationally efficient landmark 
points based global registration method and a new com- 
putationally efficient Laplacian surface deformation 
(LSD) and Laplacian surface optimization (LSO) based 
local registration algorithm.  

The registration method developed in this paper dis- 
tinguishes itself from the previous one in both the global 
registration process and the local registration process. In 
the global registration the current method was to find an 
optimal similarity transformation based on the two sets 
of corresponding landmark points by minimizing the 
least square function. The speed of current method global 
registration process is significantly faster than that of 
volume based mutual information method. In the local 
registration process, the current method used Laplacian 
surface deformation and Laplacian surface optimization. 
Laplacian surface deformation has many advantages 
compared to deformable superquadric mesh models. It 
overcomes the over-deformation problem, works for 
large scale deformations and handles the irregular de-
formable mesh models. Laplacian surface optimization 
improves triangle quality of a surface mesh and also pre-
serves the details when improving the mesh quality by 
selecting different weights (uniform, cotangent, voronoi 
area).  

 
Table 3. Comparison registration time of the proposed global-to-local registration method and the previous deformable mesh 
model registration method for all 8 data sets (cropped around the volume of interest). 

Proposed registration method  Deformable mesh model registration method 

Global Time LSE Time LSO Time  Global Time Local Time Dataset 

(sec) (sec) (sec)  (sec) (sec) 

1 3.4 2.8 14.9  137 31 

2 4.9 3.2 15.1  212 27 

3 3.7 2.2 12.8  237 34 

4 3.6 2.0 10.3  193 20 

5 4.5 3.1 15.4  225 26 

6 3.2 2.1 13.4  246 31 

7 3.3 2.3 11.2  236 33 

8 3.5 3.1 13.3  198 29 
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Compared to some of the current image registration 

methods for deformable prostate, the method developed 
in this study is advantageous in that it is automatic in 
registration without compromising the efficiency and 
accuracy. In a study by Alterovitz et al. [15], magnetic 
resonance images were registered with biomechanical 
modeling and nonlinear parameter estimation. In that 
method, only 2D image registration was involved. The 
manual selection of the corresponding image slices at the 
same level and the manual segmentation of the selected 
images can lead to computational inefficiency. Venugopal 
et al. [19] proposed a method combining magnetic reso-
nance spectroscopic images of the prostate with ana-
tomical MRI images based on thin-plate splines with a 
manual selection of control points. The main concern 
related to this method is the reliability of the manual se-
lection of control points which can be time consuming 
and erroneous. Godley et al. [21] combined a demons 
algorithm and the use of masks to register large deforma-
tions in the prostate region. Due to large organ deforma-
tion in the pelvis region, that demons algorithm heavily 
relied on the manually segmented masks to recover the 
deformation. 

Our results show that the proposed method is robust, 
reasonably fast, and accurate for the registration of the 
deformable soft tissue of prostate. It is believed that ad-
ditional speed improvement can be achieved by imple-
menting more advanced hardware and optimizing soft-
ware performance. Furthermore, the advancement of 
imaging technology and improvement of CBCT image 
quality may well help to expedite the process. The de-
veloped method has the potential to be clinically useful 
to achieve real time pretreatment adaptive plan modifica-
tion and more accurate patient positioning corrections. It 
may also be very useful in post-treatment dose accumu-
lation calculation to provide efficient and more accurate 
dose coverage assessment. 
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