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ABSTRACT 

We review the physics of chiral anomaly and show that the anomaly equation of 
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  is not 

connected to any physical observables. This is based on the fact that the reaction process of 

5


 has no diver- 

gence at all, and the triangle diagrams with the vertex of    describing the 0 2Z   decay do not have any di- 

vergences either. The recent calculated branching ratio of the 0 2Z   deca ound to be y rate is f 0
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he anomaly equation in the Schwinger model which is known as Further, we discuss t 5 =
2π

e
J F  , and prove 

equation disagrees with the exact value of the chiral charge 5 = 1Q

 

that this anomaly   in the Schwinger . 

Therefore, the chiral anomaly is a spurious effect induced by the regularization. In connection with the anomaly prob- 

vacuum
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1. Introduction 

hiral anomaly in quantum field the-

lem, we clarify the physical meaning why the self-energy of photon should not be included in the renormalization 
scheme. Also, we present the renormalization scheme in weak interactions without Higgs particles, and this is achieved 
with a new propagator of massive vector bosons, which does not give rise to any logarithmic divergences in the vertex 
corrections. Therefore, there is no necessity of the renormalization procedure of the vertex corrections arising from the 
weak vector boson propagation. 
 
K

The physics of the c
ory has been discussed quite extensively, and it is con-
sidered to be established by now [1,2]. The anomaly 
equation can be written as 

2

=
e

5 216π
J F F  

            (1.1) 

here the axial v  current 5



w ector J   is defined as 

5 5=J     . The anomaly uation is obtai
gularization of the triangle diagrams which 

involve the vertex of 5


eq ned by 
making the re

   [3]. This is basically because 
the triangle diagrams wi e vertex of 5

th th    give rise 
to the apparent linear divergence and, after the regu - 
zation, one sees that the axial vector current 5

lari
J   is not 

conserved any more. Namely, the equation becomes just 
 same as (1.1). Therefore, it is stated that the axial 

vector current is conserved at the classical field theory, 
but after the regularization it is not conserved any more. 

However, this is somewhat a strange statement be- 
cause t

the

he triangle anomaly itself is obtained after the 
fie

conservation law like the axial vector current derived as 

oncept. This is in contrast to 
th

lds are quantized, and thus the violation of the basic 

the Noether current must have been due to an extremely 
special mechanism involving some physics beyond the 
field quantization. Therefore, we should reexamine the  
physical meaning of the regularization in this context. Up 
to now, we cannot find any convincing physics argu- 
ments of the regularization, and it should be very impor- 
tant to understand why the regularization scheme is con- 
sidered to be “quantum”. Namely, people believe that the 
anomaly equation due to the regularization is a quantum 
effect, and therefore the axial vector current conservation 
law can be violated. Thus, the procedure of the regulari-
zation is considered to be somewhat beyond the field 
quantization. This is indeed a mystery why people be-
lieved this unphysical arguments as if they were trapped 
in the mass hypnosis state. 

Here, we should repeatedly stress that the regularize- 
tion is only a mathematical tool which cannot be related 
to a meaningful physical c

e field quantization which is directly connected to the 
creation and annihilation of particles. Therefore, it is 
clear that the regularization cannot be more fundamental 
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than the field quantization. 
There is no doubt that any physically meaningful 

processes are calculated without the help of the regulari- 
zation as far as we make use of the renormalization 
sc

he anom- 
al

heme in a proper manner. A typical example can be 
indeed seen in the calculation of the anomalous magnetic 
moment of electron in terms of vertex corrections. In this 
case, the divergent terms appearing in the corresponding 
Feynman diagrams can be renormalized into the fermion 
wave function without any further procedures. 

In addition to the chiral anomaly in four dimensional 
QED, there is an anomaly equation in the Schwinger model 
which is a massless QED in two dimensions. T

y equation for the Schwinger model can be written as 

5 =
2π

e
J F 

            (1.2) 

which is obtained by regularizing the vacuum charge in 
s of the term  -function regularization

rge gauge transformation invariance taken into account 

u

 method with the 
la
[4]. This means that Equation (1.2) represents the prop- 
erty of the vac um state of the Schwinger model [5], and 
therefore it is not an operator equation [6]. Besides, the 
chiral charge 0

5 5= dQ J x  can be calculated exactly with- 
out the regularization, and one sees that 5Q  becomes 

5 = 1Q                  (1.3) 

where the vacuum has two fold degenera , which is nocy t 
resolved in the Schwinger mode
chiral charge predicted from Eq

l. On the other hand, the 
uation (1.2) depends on 

the vector field 1A , and therefore the regularization in- 
duces the chiral charge which does not agree with the 
exact value of the chiral charge in the Schwinger model. 
This clearly show that Equation (1.2) is a spurious equa- 
tion which has nothing to do with real physics, even 
though the mathematical procedure may be correct. Here, 
the physics is simple, that is, the chiral charge 5Q  of the 
Schwinger vacuum has no divergence and therefore the 
regularization should not be done for 5Q . 

In this paper, we show that the anomaly Equation (1.1) 
cannot be connected to any physical processes, contrary 
to a naive belief. The basic reason  th

s 

 is at the corre- 
sponding Feynman diagram of the 0π 2  decay has 
no divergence as is well known [7], and the derivative 
coupling of the pion-nucleon interaction can be reduced 
to the pseudoscalar interaction as lo ne properly 
makes use of the axial vector current conservation law of 

ng as o

5 5= 2J iM
   . Therefore, the axial vector current 

interaction in connection with 0π 2  decay process 
does not produce any divergences. In addition, we show 

iagrams with the axial vector current 
coupling which correspond to cription of the 

0 2Z

that the triangle 
the des

d

  decay process have no divergences either, and 
the recent calculated branching ratio of the 0 2Z   

decay rate gives the predicted value of 

0
8

2
2.4 10

Z 



   . 

Therefore there is no chiral anomaly in the axial vector 
current conservation law. Thus, contr  to a common 
belief, it is very difficult to accept that the anomaly equa- 
tio

l observables. In quantum field theory, we 
ha

ary

n can be connected to any physical observables in four 
dimensions. 

In the last two sections, we discuss the renormalization 
scheme and clarify some important points in connection 
with physica

ve to rely on the perturbation theory, and therefore we 
should have correct information on the wave functions 
(or polarization vectors) of bosons. Normally we use the 
polarization vector   to describe the wave function or 
spinor. However, we have never solved the equation of 
motion for the  , and thus the determination of polari- 
zation vector from e equations of motion has been 
missing for free massive vector bosons as well as for free 
gauge fields. A ne knows, the free Dirac equation is 
always solved by asking that the determinant of the ma- 
trix for the Dirac spinor equation should vanish 
(

th

s o

 det = 0α k m E   ), and then one can obtain the 
dispersion relation ( 2 2= kE m  ), which can finally 
determine the wave function of the free Dirac fields. It is 

rprising that the same
 Now if we car

condition. This clearly shows 
that the Lorentz gauge fixing in Q
since the condition of equation is alrea

su  procedure has never been made 
for the vector bosons. ry out the same pro- 
cedure for gauge fields as well as massive vector bosons, 
then we can obtain the correct dispersion relations, which 
can then determine the constraint equation for the po- 
larization vector. We find 

= 0k 
                (1.4) 

which is just the Lorentz 
ED is not a proper one 

dy obtained from 
the equation of motion which is, of course, more funda- 
mental than the gauge fixing. For the massive vector 
boson case, the situation is crucial, and it leads to a new 
propagator 

 
2

k k
g

kD k

 



2 2

= .
k M i


         (1.5) 

 

Here, one can easily see that the replacement of the 
2k  term by 2M  in the numerator is no

this shape of Equation (1.5) is uniquely determined. In 
ad
pro not

t allowed, and 

dition, the vertex corrections of fermions due to this 
pagator do  have any logarithmic divergences, and 

this is very important and reasonable since the vertex 
corrections are directly related to physical observables. 
Therefore, we do not have to worry about the renormali- 
zation procedure in the evaluations of physical observ- 
ables by the massive vector boson propagations. 
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2. Anomaly Equation 

Here, we first discuss the anomaly problem and clarify 
what is the basic point of this equation in connection 

efore going to the discussion 
 reconfirm that the 0π 2

with physical observables. B
of the anomaly equation, we   
process has no divergence, and therefore there should not 
be any anomalous behaviors in the theoretical evaluation 
of this reaction process. 

2.1. No Anomaly in 0π 2  Process 

Now, we consider the reaction process of 0π 2 . In 
this case, the interaction L nsity between agrangian de
fermion and pion IL  c en as an be writt

π 5=IL ig             .1) 

where the isospin indices are suppressed. In this case, the 
corresponding Feynman diagrams for th 0

      (2

e π 2  reac- 
tion can be written as 

 
   
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4
2
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p
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
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e g
k k

M
   
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


 

  

 











      



(2.2) 

where k  ( k ) and 1



1 2
  ( 2

 ) denote the four momen- 
m e rization vector of photon 1 (photon 2), 

1k  and 2k  satisfy the follo
relatio , 2 = 0k  and 22 =k k

tu and th
respectively. Also, 

ns of 

pola

2
1k

wing 
= 0 2 1 2  . Here, M 

and   deno he nucleon and pion masses, respec- 
tively. Now, one can easily evaluate this integral and see 
that there is no diver ence in is T-matrix calculation 
since the app vergence ca completely 
canceled out due to the Trace evaluation. In this respect, 
the corresponding T-matrix is finite and thus there is no 
chiral anomaly in this Feynman diagrams. This is, of 
course, well known to those physicists who make calcu- 
lations by their own hand [7]. 

2.2. Axial Vector Coupling with Derivatives 

Where can we then find the anomalous behavior in the 
triangle diagrams? There, we ha

te t  

g  th
arent linear di n be 

ve to consider the axial 
 be- vector coupling in which the Lagrangian density

comes 

5 = .IIL g 
                  (2.3) 

In this case, if one carries out the T-matrix calculation 
naively, then it looks that one can find the linear diver- 

gence. Therefore, people claim that
ize the T-matrix evaluation in order to obtain the finite 
re

 they have to regular- 

sult. In this case, they find that the axial vector current 
is not conserved any more, and they find the result of 
Equation (1.1). However, this procedure of the calcula- 
tion is too naive. One has to consider the conservation of 
the axial vector current 5J   which can be written as  

5 5= 2 .J iM
                (2.4) 

In this case, the axial vector coupling interaction can 
be rewritten as 

   5 5=IIL g g
 

5     = 2Mig

     

ade use of the fact that the total diver- 
gence does not contribute to any physical proc
therefore it is safely neglected. This means th
rivative coupling of the pion with the fermions can be 

ribed in field theory 
e 

   

 
    (25) 

where we have m
esses, and 
at the de- 

reduced to the normal pseudoscalar interaction if one can 
properly make use of the axial vector current conserva- 
tion law, and therefore there is no chiral anomaly even 
for the axial vector coupling.  

2.3. Standard Procedure of Anomaly Equation 

Now, we briefly review the procedure to obtain the 
anomaly equation which is desc
textbooks [1,2,8], and clarify the physics behind th
equation. The starting point of the anomaly equation is 
the Feynman diagram which involves the triangle dia- 
grams with three vertex interactions of ie  , ie   and 

5zig   . Here, we can write the Lagrangian density of 
the weak 0Z  boson field Z   and the fermion field   
as [9]  

5=III zL g Z 
             (2.6) 

which is d  to the standard lectroweak interactions. In 
this case

ue  e
, the corresponding T-matrix for the 0Z  boson 

decaying into two photons can be written as [2,8] 

 
   

   

2

5
1

1
                           1 2v

M i

p k M i

0 2

4
2

1 24

    

d 1 1
T

2π

Z

z

T

p
e g r

p M i p k



 
 

 







   





  

   
(2.7) 

where v
  denotes the polarization vector of the 0Z  

boson. In this case, there seems to be an apparent linear 
divergence in Equation (2.7), and therefore one may
to worry about the renormalization procedure. Bel

d t ve

 have 
ow is 

the fiel heory textbook description in order to deri  
the anomaly equation in four dimensions [1,2]. First, one 
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defines the amplitude M   in Equation (2.7) as 

0 1 22
= .vZ

T M  


  


         (2.8) 

In this case, one says that the amplitude M   has an 
ambiguity which can pressed in terms of anbe ex  arbi- 
trary mo m a. Using a mathematic
can find lowing equation [1,2,8] 

mentu
 the fol

al identity, one 

     1 22
= 0

8π
M a M k k  



     (2.9) 

where a is chosen as  1=a k k    . The second 
term in the right hand side correspond

2

s to the surface 
term w as shown e. Hhich becomes finite  abov ere,   
can be ined so that the gauge condition can be 

sponds to the anom

 
th

determ
satisfied. This just corre aly equation. 

Now, the important point is that the divergent terms 
are still there, according to the proof of the chiral anom- 
aly. Namely, the shift of the integration variable induces 
the additional term which is finite, but one cannot erase

e divergence of the amplitude 0 2Z
T


 (there are still 

linear and logarithmic divergences). What does this 
physically mean? This clearly indicates that the anomaly 
equation has nothing to do with physical observables, 
and therefore there is no violatio he conservation 
law.  

In reality, as we discuss below, the triangle diagrams 
with the axial vector current coupling do not have any 
divergences. It is quite unfortunate that people do not 
care for

n of t

 T the infinity of the amplitude 0 2Z 
ove the anomaly equations, and this is somewhat a 

mystery why people have been accepting the mathematical 
game in the triangle diagrams even though the ampli- 
tudes have no infinity. Obviously, the di pearance of 
the apparent linear divergence is quite well known from 
the calculation of the fermion self-energy diagrams 
which have just the same type of the linear divergence, 
and this is, of course, due to the fact that the linear di- 
vergence term should vanish due to the parity considera- 
tion. Further, if one carries out the T-matrix evaluation 
properly, then one can easily notice that the linear diver- 
gent term vanishes to zero simply because of the Trace 
evaluation, and thus the vanishing of the linear divergent 
term is proved before one worry about the infinity in the 
momentum integrals. 

It should be noted that good old physicists must have 
known that the triangle diagrams do not have any diver- 
gences at all. Unfortunately, however, theoretical fron- 
tier physics is often co

 when they 
pr

sap

ntrolled by imprudent and discon- 
certed physicists, and once it is accepted by majorities of 
these physicists, then it takes always quite long time to 
correct this wrong frontier physics to a right direction of 
modern physics, sometimes, more than 50 years, like the 
theory of the spontaneous symmetry breaking physics 
[6]. 

3. 0Z     Process 

Here, we discuss the physical processes which involve 
the axial vector coupling with vector bosons. In fact, if 
we include the weak interactions, then the triangle dia-

s with the axi ling should be connected 
he physical ob mely, there is a possible 

gram al vector coup
to t servables. Na
decay process of a weak boson into two photons, that is, 

0 2Z  . This decay process is forbidden due to the 
Landau-Yang theorem as far as one stays in the electro-
magnetic interactions where the theorem is proved [10, 
11]. However, the weak interaction certainly allows its 
decay due to the parity non-conservation, and this is just 

le diagram involving the axial vector coupling. 

3.1. T-Matrix Evaluation 

We can carry out the calculation of the Feynman dia-
grams which correspond to the 0

the triang

Z  decay into two pho-
tons (see Equation (2.7)), and we show that the triangle 

 coupling have neither lin-
es. This is proved without 

diagrams with the axial vector
ear nor logarithmic divergenc
any regularizations, and the total amplitude of 0 2Z   
decay process is indeed finite. H e, we briefly explain 
the T-matrix evaluation since the calculations in detail 
are given in [12]. 

3.1.1. Linear Divergence 
First, we show that the linear divergence should vanish 
completely because of the following equation 

er

 
4

22
0

d = 0lim
k

k
k s



 
         (3.1) 

agrams. In 
fact, the fermion self-energy  p  can b



which is just the same integration of the linear diver-
gence appearing in the fermion self-energy di

e written as 

 

 

 
   

4
2

4 2

2 4

d 1 1
=

2π
d

= ln 4 2

k
ie

p k m i k

e k k
p m


 




  
     


 (3.2) 

2
2 4 22

0

   

8π 2π

p

ie
m k s



  


where the last integral term is, of course, set to ze
to Equation (3.1), and the first term in the last equa
just the well-known fermion self-energy contribution. 
This fermion self-energy is well renormalized into the 
mass and the wave function, and in fact, this scheme is 

ro due 
tion is 

consistent with the Lamb shift energy. 
In reality, however, the apparent linear divergence 

vanishes to zero before the momentum integration. This 
can be easily proved since the corresponding Trace 
evaluation of the T-matrix in Equation (2.7) becomes 
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 
 

5 1 2

5 2 1T = 0

v

vr p p p

  

  
        

    (3.3) 

where we made use of the identity equation 

Tr p p p        

   5T p p  5T =r p p p r p         

Therefore, the linear divergence disa

. 

ppears
tion (2.7) before carrying out the momentum integral. 

Here, we should also note that the logarithmic dive nce 
in

 in Equa-

3.1.2. Logarithmic Divergence 
rge

 Equation (2.7) is proved to vanish to zero exactly due 
to the Trace evaluation, and the detailed calculations are 
given in [12]. 

3.2. Branching Ratio of Z 20   Decay 

The finite term of the T-matrix for the 0 2Z   proc-
ess can be written as 

 0 1 222
=

36π vZ
T k

2

1 2

2zg e
k    


        (3.4) 

he interm
uate the branch-

2

  
 

where the top quark state is taken as t ediate 
fermions [12]. In this case, one can eval
ing ratio of the 0Z   decay rate and find 

   0 00 02 2
=

Z ZZ e e Z e e      
      

 (3.5) 
8                2.4 10

where the experimental value of 0 = 0.034
Z e e 

   
is used. Now, th experimental upper lie pr mit of the 
branching ratio in this decay is given as [13] 

esent 

0 2Z 
  5< 5.2 10          

cay rate. This shows

esent upper 
limit of the observation, but we believe
measurable even though photon with

. Here, we first review the procedure of ob-
odel [4] 

property of the 

 (3.6) 

which is still consistent with zero de  
that the theoretical value of the branching ratio is, in fact, 
three orders of magnitude smaller than the pr

 that it should be 
 around 45 GeV 

energies should be quite new to the present experimental 
detectors. 

4. Anomaly in Schwinger Model 

In the Schwinger model [5], the chiral anomaly property 
is well evaluated since all the equations can be obtained 
analytically
taining the anomaly equation in the Schwinger m
since the anomaly equation represents the 
vacuum state of the Schwinger model [14]. Then, we 
show that we can calculate the exact value of the chiral 
charge 5Q  without any regularization, and the exact 
value of the chiral charge does not agree with the regu-
larized chiral charge. Therefore, the anomaly equation is 

the artificial result of the regularization, and it is not a 
physically meaningful equation at all. 

4.1. Chiral Charge of Schwinger Vacuum 

The Schwinger model is the two dimensional QED with 
massless fermions and its Lagrangian density can be 
given as 

  1
= ,

4
L i igA F F    (4.1)           

where =F A A       . After the field quantization, 
we can calculate the charge and the chiral charge of the 
vacuum state in the Schwinger model. In this case, we 
know that the charge of the vacuum state becomes infin-
ity since we count the number of the nega
particles. In order to obtain the finite number of the 

 we can employ t

tive energy 

charge, he   function regularization. 
In this case, the regularization can be done in accordance 
with the large gauge transformation. Therefore, we ob-
tain the regularized charge and chiral charge as 

   

 

1 1
2π 2π

= =

=

2
   = 1

LgA LgANL k k

k k NR

L R

Q e e

N N O

 




  





   

 
     (4.2) 

   1 1
2π 2π

5
= =

1

=

    =
π

LgA LgANL k k   

k k NR

L R

Q e e

LgA
N N





 

 
     (4.3) 

where 1A  denotes the vector field which only depends 
on time, and   is an infinitesimally small number. The 

LN  and RN  denote integers which characterize the 
vacuum state for the left and right mover ferm
the physical vacuum must have zero charge, we can set 

1 =

ions. Since 

L RN N . Therefore, we can write the chiral charge 
as [4] 

1
5 = 1

π

LgA
Q                (4.4) 

where we set = 0RN . Now, the important point is that 
t zed chiral charge is described by 1he regulari A , and 
therefo hould depend on time. This means that the 
chiral c

re it s
harge of the Schwinger vacuum state is not con-

served any more, in contrast to th
regularization. It is now easy to prove that Equation (4.4) 

on (1.2)
n 

o divergence in contrast to the 

e situation before the 

leads to Equati . 
Until now, this result of Equation (4.4) is take as the 

indication that the conservation law of the axial vector 
current is violated due to the regularization, and people 
believe that it should give rise to some physical effect. 
However, we should here note that the chiral charge of 
the vacuum state has n
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va

 is 

um 

amiltonian of the Schwinger mode where the fer-

cuum charge, and in this respect, there is no need of 
the regularization at all. In fact, from the definition of the 
chiral charge 5Q , we can see that the value of 5Q  must 
be some integer value whatever physical conditions we 
impose on the system. Indeed, we can easily calculate the 
exact value of the 5Q  in the vacuum state and finds 

5 = 1Q   as will be seen below. Here, we note that the 
Schwinger vacuum state has two fold degeneracy as indi-
cated by 5 = 1Q  and this is not resolved in th model. 
However, we do not discuss this degeneracy of the va- 
cuum state since it is not relevant to the present discus- 
sion. 

4.2. Exact Value of Chiral Charge in Schwinger 
Vacu

In order to explain the exact value of the chiral charge in 
the Schwinger mode, we should first start from the quan-
tized H
mion field is quantized as 

 
2π1

=
i nxn L

a
x e

 
          (4.5) 

n nbL
 
 

where na  and nb  denote the creation and annihilation 
operators. In this case, the Hamiltonian of the Schwinger 
model becomes 

   

1 1

2

0 02 2
0

2π
=

2

1
       

8π

n

p

L 2 ?
n n

†
1

2π
       n n

n

H A n gA
L

g L
j p j p

p

 
 

 







 

where we take the Coulomb gau  of 1
1 = 0A . 

nt  j p  denotes th m r
 the fer rrents 

a a



n gA b b
L

    
 

     (4.6) 

ge fixing
e momentuThe curre

tion of
0

mion cu
epresenta-

 j x , and can0  be 

†= .k k p ka b b         (4.7a) 

presen
n as 

†
ka ) 

In this case, the chiral charge of the vac

written 

  †
0 k p

k

j p a

Also, the axial vector current in momentum re -
tation is writte

  †
5 = .k p kj p a b b        (4.7bk p

k

uum state 
vac  which is filled with negative energy particles can 

be easily calculated as 

 
 

=0 =1

1lim
k k

Q ac j ac
 






 
 

wh

arge is written in Equation (4.4) 

 

5 5= v 0 v = 1 = 1

  (4.8) 

ere we have made no regularization, and this is just 
the exact result. On the other hand, as we show above, 
the regularized chiral ch

1 1
2π 2π

5
0 =0 =1

= lim

LgA LgA
k k

k k

Q e e
 



            
   



 
 


1    = 1
π

LgA


 



 
 

which is different from the exact result. Now we can 
clearly see that the regularized chiral charge does not 
agree with the exact value of the chiral charge of the 
vacuum state, and therefore the regularization induces 
something unphysical. In fact, the chiral charge must be 
some integer value, but the induced value of the regular-

 be found in the Schwinger vacuum 
state or not. Now, we see that the vacuum energy can be 

ized charge is not an integer. Therefore, the axial vector 
current conservation is always valid, and there is no vio-
lation at all. This clearly states that the regularization 
cannot change the conservation law in quantum field 
theory. Or in other words, we should always be careful 
when we employ the regularization method, and the 
regularization scheme should be applied to the system 
such that the basic conservation law must be kept invari-
ant. In addition, we should not make any regularization 
for the physical quantity which has no divergence. In the 
context of the Schwinger model, the regularization can 
be done for the charge Q  since it is divergent, but not 
for the chiral charge. Concerning the charge of the vac-
uum, Q  does not depend on time even if we use the 
gauge invariant regularization, and this is indeed shown 
in Equation (4.2). 

4.3. Zero Mode in Schwinger Vacuum 

It is well known that the Schwinger model can be bos-
onized, and in this case, the zero mode is related to the 
chiral charge 5Q  [4]. Here, we should examine whether 
the zero mode can

written as 

2 2
1 1 1 1 1 5

0 >0

= = .
2 2vac

k k

L L
E A gA gA A gA Q



       (4.9) 

Therefore, if one identifies the zero mode of the boson 
fields  0  and its conjugate field  0  as 

   1 5
1

2π
0 = , 0 =

A Q
LA

g
        (4.10) 

then one can rewrite the vacuum part of the Hamiltonian as 

     † 0H   (4.11) 

which is indeed the zero mode Hamiltonian 
field. Therefore, the Schwinger model is bosonized 

 
2

†1
= 0 0 0

2 2πvac

g
   

of the boson 

properly since there is the zero mode part in the boson 
Hamiltonian. The basic point is concerned with the de-
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gree of freedom for the zero mode, and in fact, the
field of 1

 gauge 
A  plays this role for the zero mode fiel

rrect, but the 
 since they are 

 to the fer-

ion  p  can be written as 

d in the 
bosonized Hamiltonian. In this respect, there is no need 
of the chiral anomaly from this point of view. This is in 
contrast to the massless Thirring model which has an 
intrinsic problem of the proper bosonization since the 
massless Thirring model has no degree of freedom which 
corresponds to the zero mode [6]. 

4.4. Summary of Anomaly Problem 

The chiral anomaly problem is one of the most serious 
theoretical syndromes, and it means that they are mathe-
matically correct, but physically incorrect. The regulari-
zation is a mathematical tool, and the procedure of its 
application to physics is mathematically co
anomaly equations are physically incorrect
discovered when the regularization method is applied to 
the systems which have no divergence as a physical 
process. It is very unfortunate that there are too many ex- 
amples of “mathematically correct, but physically incur- 
rect” such as the spontaneous symmetry breaking physics, 
general relativity, field theory path integral and so on [6]. 
We should understand nature in depth, both mathemati-
cally and physically, and we have to connect the mathe-
matics to physical observables, and this connection is 
real physics which is always extremely difficult indeed. 

5. Renormalization Scheme in QED 

In this section, we briefly explain the essential point of 
the renormalization scheme. In particular, we show that 
the self-energy of photon is not needed in the renormali-
zation procedure since there is no relevant physical 
process which can make use of the renormalized wave 
function of the photon self-energy, in contrast
mion self-energy case. The important point is that the 
vertex correction corresponds to the Feynman diagram in 
which the external electromagnetic field couples to the 
intermediate fermion state in the fermion self-energy 
diagram. On the other hand, the triangle diagrams corre-
spond to the Feynman diagram in which the external 
vertex of   couples to the intermediate fermion or anti- 
fermion states in the photon self-energy diagram. Both of 
the procedures in the renormalization scheme are quite 
similar to each other, but the vertex correction has the 
logarithmic divergence which should be absorbed into 
the renormalized wave function of fermions while the 
triangle diagrams have no divergences at all, and thus 
there is no need of the renormalization procedure for the 
photon self-energy case as long as we aim at producing 
physical observables. 

5.1. Renormalization of Fermion Self-Energy 

Before going to the discussion of the renormalization 

procedure of the photon self-energy, we first explain the 
renormalization procedure of the fermion self-energy 
case which can be directly related to the vertex correction. 
The self-energy of ferm

 
 

4

 
2

2
        = ln 4

8π

e
p m

m

    
 

    (5.1) 

where 

2
4 2

d 1 1
=

2π

k
p ie

p k m k


  
 

  denotes the cutoff momentum. It is, of course, 
clear that this contribution a  is not a physical ob-
servable. However, if one ca es the vertex correc

lone
lculat tion 

which is indeed a physical process, then one realizes that 
one must make use of the logarithmic diverge
fermion self-energy contribution such that the logarith-
mic divergence of the vertex correction can be com-

ca
 

nce of the 

pletely nceled out by the wave function renormaliza-
tion arising from the fermion self-energy diagram. In fact,
the total Lagrangian density of free fermion together with 
the fermion self-energy part can be written as 

2

2
= ln =

8πF r r

e
L p p p

m
     

     
  

  (5.2) 

where r  is defined as 

2

2
= 1 ln

8πr

e

m
    

 
         (5.3) 

Here, we only write the p  term since the mass term 
is not relevant in the present discussion. Now 
calculate the vertex correction  ,p p  as 

 
 

we can 

4
2 d k 

4

1 1
, =

2π

1

term

p p ie
p k m

 



 
  





(5.4) 

Therefore, the total interaction Lagrangian density 

2

2

2

                    

              = ln finite s.
8π

k

e

m



   
 

 

p k m 

IL  
can be written as 

3

2
= ln

8π

    =

I

r r

e
L eA A

m

eA

 
 




   

  

    
 


    (5.5) 

whe

5.2. Renormalization of Photon Self-Energy 

The self-energy of photon can be easily calcu
the divergent terms of the vacuum polarization tensor 

re the logarithmic divergent part can be comp
absorbed into the renormalized wave function. 

letely 

lated, and 

 k  can be written as 
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 
 

4
2

4

d 1 1
= T

2π

p
k ie r

p m p k
   

 
 

  


2
2 2            = ( ) lng k k k g

   
   

22π 3π m e     
 

(5.6) 

it is obvious that th

.

m





  

Now e self-energy of photon itself 
is not a physical observable. Further, the important point 
is that the vacuum polarization diagrams are never used 
for the renormalization scheme of evaluating physic
observables in the triangle diagrams, in contrast to the 
fermion self-energy case. 

5.3. Triangle Diagrams with Two Photons 

udoscalar) ,
  (5.7) 

n

ere is no necessity 
of considering the photon self-energy into the 
zation scheme. 

It is surprising that this fact is indeed overlooked by 
ex

5.

 least, Bethe’s treatment of the Lamb shift 
sic problems since it cannot 
ence in his treatment [15]. 

ver, the logarith-
m

 6. It turns out that 
hoice of the 

al 

In analogy with the vertex correction, we should consider 
the triangle diagrams which can be viewed as an external 
vertex   coupled to the photon self-energy diagram. The 
vertex   which couples to fermion or anti-fermion can 
be written in the following functions, 

5

      (axialvector) , (vector).   
  

5

However, as we show explicitly in Appendix B, the 
calculated results of these T-matrices of the triangle dia-
grams i volving two photons have no divergences and 
the physical processes with the vacuum polarization dia-
grams are all finite. This means that th

= 1 (scalar) , (pse

renormali-

perts. We should note here that the calculations of the 
triangle diagrams are not so easy, but if smart graduate 
students spent a half year, then they should be able to 
find that all of the triangle diagrams with any vertices 
coupled to fermions should not have any divergences at 
all. 

4. Lamb Shift Energy 

The renormalization scheme is, by now, well understood 
since the logarithmic divergence only appears in the ver-
tex corrections due to the photon propagation. However, 
the Lamb shift is still very difficult to understand since it 
has a logarithmic divergence, even though it is a physical 
observable. At
energy must have some intrin
avoid the logarithmic diverg
Even though his treatment is non-relativistic, the hydro-
gen atom wave function can be well evaluated by the 
non-relativistic calculation. Therefore, the basic problem 
of the logarithmic divergence in the Lamb shift energy 
may well be related to some other fundamental physical 
reasons, unles one can prove that the relativistic treat-

ment of the Lamb shift energy is finite. 
The basic difficulty must come from the fact that the 

Lamb shift energy is evaluated outside the Fock space of 
the renormalization scheme, that is, the bound states 
cannot be found in the Fock space of free fields. This 
should give rise to a difficulty since it cannot be handled 
in terms of the wave function renormalization. Indeed, 
the Lamb shift is concerned with the mass term of the 
fermion self-energy contribution. Howe

ic divergence is still there in the Lamb shift calculation, 
even though it is a physical observable. This situation is 
far from being satisfactory, but we do not find any direc-
tion of solutions at the present stage. 

5.5. Specialty of Photon Propagations 

As we understand by now, the only serious divergence 
we have in the calculation of physical observables is 
concerned with the vertex corrections due to the propa-
gation of photon, since there is no divergence in the ver-
tex corrections due to the propagation of the massive 
vector boson as discussed in Section
this logarithmic divergence arises from the c
propagator of photon 

  2
= .

g
D k

k i








        (5.8) 

This is, of course, the standard photon propagator. The 
problem is that we cannot employ the following propa-
gator 

 
2

2
=

g
kD k

k i

k k 










 

since it is not allowed because of the infra-red singularity 
in

 calculations in terms of the covariant formulation. 
This propagator leads to the logarithmic divergence of the 
vertex corrections by photon propagation, even though 
the vertex corrections are physical obse ables. At pre-
sent, we do not find any other solutions than the renor-

 the numerator of the propagator. Therefore, we have to 
choose the photon propagator of Equation (5.8) to carry 
out the

rv

malization procedure which makes use of the self-energy 
of fermions as discussed above. 

It should be interesting to note that the vertex correc-
tions by the photon propagation contain the infra-red 
singularity of log  [16]. Up to the present stage, we 
have neglected this infra-red singularity since it is con-
sistent with experiments. However, this does not mean 
that we have understood the problem theoretically. On 
the other hand, the renormalization scheme of the mas-
sive vector boson propagations does not have any diver-
gences at all in the vertex corrections, and in this sense, it 
is well understood as we discuss below. 
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6. Renormal ion Scheme in Weak 
Interactions 

Here we discuss the renormalization scheme in which 
fermions are affected by the weak vector bosons. In this 
case, we should first evaluate the propagator of the mas-
sive vector bosons since the new condition of the polari-
zation vector is obtained. Then, we calculate the fermion 
self-energy and vertex corrections due

izat

 to the massive 
ior at the 
ropagator 

of tor boson. We see that the fermion 

weak boson propagator which has a right behav
high momentum region, in contrast to the old p

 the massive vec
self-energy has a logarithmic divergence while the vertex 
corrections are all finite, that is, there exist neither quad-
ratic nor logarithmic divergences in the T-matrices of the 
vertex corrections. Therefore, there is no need of the re-
normalization procedure for the vertex from the massive 
vector boson propagations. Before going to the renor-
malization scheme, we should first evaluate the propaga-
tor of the massive vector boson in a correct way. 

6.1. Propagator of Massive Vector Fields 

At present, most of the field theory textbooks employ the 
following propagator of the massive vector boson 

 
2

2 2
= .old

k k
g

MD k
k M i

 









 
 

However, as we show below, this is not a right propa-
 is basi-

onstraint 

or. As 
we prove in Appendix C, the Lorentz condition 

= 0k 
  

always h  the massive and gauge bosons as well 
si

gator for the massive vector boson. This mistake
cally due to the fact that the solution of the c
equation for the polarization vector of Equation (C.11) 
was not used for the determination of the propagat

olds for
nce it is the result of the equation of motion for the po-

larization vector  . Here, we evaluate the propagator 
of the massive vector field. First, starting from the 
S-matrix expression, we can calculate the second order 
perturbation energy for the bosonic part. In this case, we 
insert the expression  Z x  of Equation (C.10) into the 
T-p    1 2roduct of Z x Z x  , and the calculation can be 

traight forward w y. The result becomes carried out in a s a

    

 
   

 1 2

1 2

43

4 2 2
=1

   0 0

d
= , ,

2π

ik x x

T Z x Z x

k e
i k k

k M i

 

 


   






 

 (6.1) 

where 0  denotes the vacuum state of massive boson 
Fock space. After th ation over the polarization 
states, we find hape for 

   3

=1
, ,k k 



e summ
 the following s

     as 

   
3

2
=1

, , =
k k

k k g
k

 
  


   

 
  
 

   

which satisfies the Lorentz invariance and the condition 


hould be given as 

 

 (6.2) 

of the polarization vector = 0k . It is only this solu-
tion that is possible for the free massive vector field. 
Therefore, we see from Equation (6.2) that the right 
propagator of the massive vector boson s

2

2 2
= .

k k

kD k
k M i

 



g






 
       

Here it may be important to note that the polarization 

   (6.3) 

vector  ,k   should depend only on the four momen- 
tum k  , and it cannot depe e boson mass at this 
expression. Later on, one may replace the 2k  term in the 
numerator of Equation (6.3) by 2

nd on th

M  in case the vector 
boson is found at the external line. But in the propagator, 
the replacement of the 2k  term by 2M  is not allowed. 

6.2. Fermion Self-Energy by Weak

Th

 Bosons 

e interaction Lagrangian density for the 0Z  boson 
Z   and electron    can be written as 

5=II zL g Z
               (6.4) 

In this case, the self-energy of mion  fer  p  due to 
the weak 0Z  boson can be written as 

 
 

4 2
2

54 2 2

d
= z

p kp ig
k M i 

5

2π

1
             

k
g

p k m i 

k 


 


  
  

 

 
 

 (6.5) 



 


  

w

 

 

hich can be easily evaluated to be 
2 3zg   
2

= 3 ln
48π

p p m
m

      
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       (6.6) 

where   denotes the cutoff momentum. It is, of course, 
clear that this contribution alone is not a physic
servable. 

6.3. Vertex Corrections by Weak Bosons 

rection 

al ob- 

 ,p pNow we can calculate the vertex cor   of 
electromagnetic interaction due to the 0Z  boson as 

 
 

4

1 1
.

k k
g






2
2

54 2 2

d
, =

2π
z

k kp p ig e
k M i




5                  
p k m p k m 



 


   
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 


 (6.7) 

 
 

 

  
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This can be easily calculated, and below uss 
the results in terms of the apparent log thmic diverg

we disc
ari ent 

term and the mass dependent term, respectively. 

6.3.1. No Divergence 
First, the apparent divergent terms in Equation (6.
be written as 

7) can 

 
 

 

4
12

4 0

2

2π

k kk
k k k

k


 


  

 
 

 

  (6.8) 

32

d
, = 2 d

                 = 0

z

k
p p ieg x x

k s i





 

 

 

where    2 2 2= 1 1s M x m x x x p    . Therefore,  
there is no logarithmic divergence for the vertex correc-
tion. This is quite interesting since the vertex correction 
is related to physical observables and thus the result 
should be obtained as a finite number. In addition, the 
self-energy of fermions has logarithmic divergen
this time it is simply useless because the vertex correc-
tion has no divergence. 

lectron g – 2 by Z0 Boson 

ces, but 

6.3.2. E
The finite part of the vertex correction due to the Z0 
boson can be easily calculated and, therefore, the elec-
tron g – 2 should be modified by the weak interaction to 

2
1472

2 10
2 12π

ez mg

M

     
 

        (6.9) 

where 
2

= 2.7 1zg
  30 .z

  This is a very small effect,  

 
a very large effect tron 2g  , ev
successfully treated the problem of the q
logarithmic divergences in some way or the other, by 

hem into the fe
rongly suggests fro

gato

ted v

4π
and therefore, it is consistent with 2g   experiment. 
We should note that, if we employed the standard 
propagator of the massive vector boson as given in the 
field theory textbooks [9], then we would have obtained

on the elec en if we had 
uadratic and 

renormalizing t rmion self-energy contributions. 
This st m the point of view of the 
renormalization scheme that the propa r of the mas- 
sive vector field should be the one given by Equation (6.3). 

6.3.3. Muon g – 2 by Z0 Boson 
Here, we should also give a calcula alue of the muon 

2g   due to the Z0 boson since it is just the same for-
mula as Equation (6.10) except the mass of lepton. The 
result becomes 

2

1072
8.6 10

2 12π
z

mg

M




      
   

     (6.10) 

which is much larger than the electron case. This is, 

observed by the muon however, still too small to be 
2g   experiments at the present stage. 

6.4. Ward Relation 

Here, we should make a comment on the Ward relation 
[17]. This relation starts from the following equation 

 
 

 
 

2 2

1
=

p p k m i

p k m
pp k m i









2

1
   

1

p k m i p k m i

2

1 1
=

p p k m i



   p k m




   

 





     

    (6.11) 

which is always valid as an operator equation, and the 
Ward relation is written as 

   

   


  
  

  

, = .
p

p p
p









      

Since the self-energy of fermion is defined in Equation 
(5.1), the Ward relation corresponds to taking the first 
term in Equation (6.11) before the momentum integra-
tions. The second term of Equation (6.11) should con-

re, one should be careful for 
the validity of Equation (6.12) since one normally makes 
use of the following free dispersion rel

2 2= .p m                (6.13) 

    (6.12) 

tribute to the vertex corrections, though it depends on the 
shape of the integrand. He

ation 

In the evaluation of the self-energy of fermion  p , 
we replace the 2p  term by 2m  in the denominator of 
the fermion self-energy calculations. In this case, there is 
no guarantee that Equation (6.12) holds true since one 
has neglected the second term in Equation (6.11) to cal-
culate the self-energy of fermion  p  before the dif-
ferentiation with respect to p . Therefore, one should 
carefully evaluate the vertex corrections 
ring to the Ward identity. In fact
(6

f 

.8). 
ha

apply the mathematical equations to physical processes. 

without refer-
, the validity of Equation 

.12) can be proved for the logarithmic divergence in 
the evaluation o the vertex corrections for the photon 
propagation. However, we believe that it is simply acci-
dental because, this is not valid any more for the vertex 
corrections from the massive vector boson propagation as 
one can clearly see it in Equation (6

In this respect, we see t t identity equations are 
sometimes useful for checking mathematical formula, but 
we should be very careful for applying the identity equa-
tion to physical processes. This is, of course, clear since 
there should be always many severe conditions when we 
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In fact, it is very rare that identity equations can be ap-
plied to physics without making mistakes. The Ward 
relation and the gauge condition are good examples in 
which we can easily make mistakes. 

7. Conclusions 

We have critically reviewed the anomaly problem in four 
and two dimensional QED and have clarified that the 
anomaly equation is a spurious equation and it has noth-
ing to do with real physics. However, there is one thing 
which is still unclear, that is, why people believed that a 
new term which is derived from the regularization can be 
a new physical quantity even though it violates the con-
servation law. This conservation law of the axial vector 

s fermions is derived from the sym-
d this symmetry is, of course, kept 

d to be finite, a
th

current for massles
metry argument, an
valid after the field quantization. But it is accepted that 
this conservation law can be violated by the regulariza-
tion scheme as an operator form. This means that the 
regularization scheme is something which is beyond our 
normal understanding of field theory. This is the very 
point we cannot understand up to now, and this blind 
belief in the regularization scheme spread over most of 
the physicists. This jeopardizes a sound scientific think-
ing, and the chiral anomaly physics must be one of the 
biggest stains in modern field theory. 

Further, we have discussed the renormalization schemes 
in QED and weak interactions so as to clarify the present 
understanding of the renormalization procedure. The 
renormalization scheme in QED is basically a review 
since it has a good understanding of the renormalization. 
However, the renormalization scheme in weak interac-
tions should be examined more carefully since the pro- 
pagator of the massive vector boson should be modified 
to a correct expression. This leads to the new scheme in 
which the vertex corrections are foun nd 

us there is no need of the renormalization. This is 
somewhat similar to the situation of the triangle diagrams 
which have no divergence, and thus no renormalization 
procedure is necessary for the vacuum polarization dia-
grams. In this respect, the renormalization scheme be-
comes much less ambiguous than before, and we should 
try to understand further what kind of physical observ-
ables we can calculate by the renormalization schemes. 
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Appendix 

1. Regularization 

It should be worthwhile clarifying what the regulariza-
tion means in physics. Mathematically, most of the regu-
larizations are clear, except the dimensional regulariza-
tion which has made crucial mistakes in using mathe-
matical formula. 

1.1. Cutoff Momentum Regularization 

The simplest and most reliable regularization method is 
known in terms of the cutoff   in which the integral of 
the momentum  can be set to p

 
0

li  
0

d dmF p p







F p p





= 2πN L

         (A.1) 

where  is called the cutoff momentum. This has a 
good physical meaning since the integral over the mo-
mentum corresponds to the summation of all the possible 
states in the Fock space of the field theory one considers. 
Therefore, the introduction of the cutoff momentum 
means that the maximum number of the states in the field 
theory model is now fixed to  with L the box 
length. In this sense, if the cutoff momentum   is 
much larger than any scales in the model field theory, 
then one can reliably obtain the calculated results under 
the condition that the physical observables should not 
depend on the . 

1.2. Pauli-Villars Regularization 

Now, another popular regularization must be the Pauli- 
Villars regularization [18]. This is rather simple and it 
makes the divergent integral to the convergent integral in 
the following way 

4
2 2

2
4

2 2 2 2

1
d

1
d

p
p m i

p
p m i p





 

2 log
m

    
 






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


  (A.2) 

which is indeed convergent. However, if we make the 
 to infinity, then we can get back to the infinity as the 

original integral (l.h.s. of Equation (A.2)) indicates. 
Therefore, there is no point to employ the Pauli-Villars 
regularization. 

1.3.  -Function Regularization 

The third example can be the   function regulariza-
tion [4], and in this case, the summation can be replaced 
in the following way 

0

1 1
 lim =0 =0

1 =
1

n

n n

e
e



where the original infinity is certainly kept in terms of 
 . In this respect, the apparent infinity can be expressed 
in terms of some finite numbers and the original infinity 
can be recovered when the parameter is set to zero or 
infinity depending on the regularization. Mathematically, 
the regularizations we discuss here can satisfy the im-
portant condition that the original divergence can be re-
covered by setting the parameters to zero or infinity. 

1.4. Dimensional Regularization 

Finally, we discuss the dimensional regularization which 
is, however, quite different from other examples [19,20]. 
It cannot satisfy this most important mathematical condi-
tion that the original infinity should be recovered when 
we set the parameter to zero or infinity. In the dimen-
sional regularization, the parameter is   since they 
replace the integral dimension from 4 to = 4D  . In 
this case, one uses the following integral formula 

 



 
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  


      (A.3) 

   

2

12
1

1
2

  d

1
  1

2
= π 1  (for   3).

2

D
n

D
n

n D

p p
p

p s i

n D
g

i n
n

s

 







 

 

    
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



3n 

= 1n

 (A.4) 

The important point is that Equation (A.4) is only 
valid for , and this is the very strict condition. In 
fact, if one applies Equation (A.4) to the calculation of 
the photon self-energy diagram ( ), then one cannot 
recover the quadratic divergence in the dimensional 
regularization even when one sets the value of the pa-
rameter   to infinitesimally small. What does this means? 
It indicates that the dimensional regularization must be 
mathematically incorrect for the quadratic and higher di- 
vergent evaluations. For the case of the logarithmic diver- 
gence, the dimensional regularization can give a correct 
result, though the divergence level is somewhat different 
from the normal regularizations. In this respect, the dimen- 
sional regularization is a useless regularization method. 

1.5. Summary of Regularization 

To summarize, we see that the regularization is simply a 
mathematical tool, and if we employ some regularization 
method and obtain some equations which violate the 
conservation law, then we should realize that the regu-
larization method we use must be inappropriate for the 
case we treat. In terms of physics, the regularization 
cannot be more than the mathematical tool, and we have 
to always think over in depth what are physically inter-
esting observables. The regularization may present some 
way of finding interesting physical observables by mak-
ing infinite quantities to finite numbers for a while, and 
this finite numbers may enable us to understand some 
phenomena in physics in a better way. 
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2. Gauge Invariance variance of the S-matrix evaluation is guaranteed as far 
as the fermion current is conserved, which is always sat-
isfied in the perturbation calculation. 

In connection with the anomaly problem, the gauge con-
dition is closely related to the derivation of the anomaly 
equation. Therefore, we should clarify the situation of 
the gauge invariance in QED since there is a serious 
misunderstanding among some of the educated physicists 
concerning the gauge invariance of the calculated ampli-
tudes which involve the external photon lines. Their ar-
gument is as follows. The polarization vector 

2.1. Vacuum Polarization Tensor 

The best example can be found in the vacuum polariza-
tion tensor  . People believe that the following 
gauge condition should be satisfied [16] 

  is 
gauge dependent and therefore the calculated results must 
be kept invariant under the transformation of 

ck    

= 0k ε

. 

However, this condition is unphysical since we al-
ready fixed a gauge (for example, Coulomb gauge fixing 
of ) before the field quantization. The gauge in- 

= 0k 


 
 

                (B.1) 

which is required from the above argument of the gauge 
condition as well as some incorrect mathematical identity 
equation [21]. However, as one can easily examine, this 
is a wrong equation. In fact we can easily calculate and 
write the result of the standard calculation of the vacuum 
polarization tensor as [22] 
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   (B.2) 

 

though their argument of the polarization process is not 
in the right direction in terms of the renormalization 
scheme [21], their calculations themselves are indeed 
correct. 

where  denotes the cutoff momentum. There is no 
way that the first term of the right hand side can satisfy 
the gauge condition of Equation (B.1). Namely we find 

               (B.3) 

2.2. Vacuum Polarization Tensor for Axial 
Vector Coupling 

and therefore, Equation (B.1) cannot be satisfied by the 
vacuum polarization tensor. People believed Equation 
(B.1) should hold true, basically because of the mathe-
matical mistake due to the wrong replacement of the in-
tegration variables in the infinite integrals [6,21]. Since 
then, the gauge conditions are imposed by hand on the 
amplitudes which have some external photon lines. 
However, it should be noted that the same type of the 
calculations of the vacuum polarization was done a long 
time ago by Heisenberg and Euler [23,24] and they ob-
tained the similar results as above including the quadratic 
divergence and logarithmic divergence as well. Even  

Here, we should check whether the gauge condition can 
be satisfied for other reaction processes or not. First, we 
should present an example of the vacuum polarization 
tensor which is induced by the axial vector current which 
couples to fermions as 

5= .III PL g A
    

In this case, the vacuum polarization tensor for the ax-
ial vector current can be written as 
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 (B.4) 

 

This clearly shows that the axial vector current con-
servation is not related to the gauge condition since we 
have 

             (B.5) 

On the other hand, the Compton scattering case is dif-

ferent and it can satisfy the gauge condition since there is 
no fermion loop in this calculation. 

2.3. Compton Scattering 

The Feynman amplitude of the Compton scattering can 
be written as 
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   

   

u p
i

u p
i



 

 


 




2 1
=

1
                    

M ie u p
p k m

u p
p k m

 
 

  

    

  (B.6) 

Therefore, we can check 
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Now, using some identities 
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and the free Dirac equations of 

       = 0p m  

= 0.k M 


ck

= 0,p m u p u p    (B.8) 

we can easily prove 

            (B.9) 

However, this is, of course, clear since the Compton 
scattering does not contain a loop diagram, and therefore 
the gauge condition,     

0π 2

 just corresponds to 
the conservation of the fermion current, and this can be 
easily seen since the initial and final fermion in the 
Compton scattering can satisfy the free Dirac equation. 
On the other hand, if the Feynman diagrams involve the 
fermion loop, then there is no reason that the gauge con-
dition can directly correspond to the fermion current 
conservation since the free Dirac equation cannot be 
used. 

2.4. Decay of 

0 2

 

Among the Feynman diagrams that contain the fermion 
loop, the decay of the π 

0π 2
 can satisfy the gauge con-

dition. Now, the T-matrix of   can be evaluated 
to be 
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4
2

π 4π 2

5

2
π

1 2 1 22

d 1
T

2π

                            

          .
4π

p
T e g r

p M i

p k M i p

e g
k k

M



   







1 2

2 1

1 1

k M i



 


  






 

 
      





 

(B.10) 

Defining the amplitude M 
1 2= as T M0π 2

 

 


, 

we can prove 

2

1 1 1 2

π
= = 0

ge
k M k k k

M
   

      (B.11) 

which is due to the anti-symmetric character of the   
tensor. This property is basically due to the 5  interac-
tion which generates the anti-symmetric nature of the 
invariant amplitude. In this respect, it is very special that 
the 0π 2

2

 decay process satisfies the gauge condi-
tion, and it is not due to the nature of the electromagnetic 
interactions. This pion and nucleon interaction is, in fact, 
beyond QED, and it indeed involves the strong interac-
tion. Since the strong interaction satisfies the parity in-
variance, the Feynman diagram of the decay process 
keeps the anti-symmetric nature, and thus the amplitude 
satisfies Equation (B.11), and this is, of course, acciden-
tal from the point of view of the gauge condition. This 
point can be clearly seen if we examine the reaction 
process of the scalar meson decay into two photons since 
the scalar interaction has the symmetric nature. 

2.5. Decay of Vector Boson Z0 into   
0 2ZThe T-matrix for the   decay process is given 

in Equation (3.8) 

 
2

0 1 2 1 222

2
= .

36π
z

vZ

g e
T k k    


   



   
 

M

 (B.12) 

Therefore we can define the amplitude 

0 1 12
= VZ

T M
 as 

  

  


, we can now prove 

2

1 1 22

2
= = 0.

36π
zg e

k M k k  
    

 

0 2Z

  (B.13) 

Therefore, the gauge condition is not satisfied in the 
case of of 


 decay process. This is, of course, 

clear since the 5 
5

 interaction has a symmetric nature 
and therefore it is just opposite to the   interaction. 

2.6. Decay of Scalar Boson Φ into 2  

Now, the T-matrix of 2 

 

 can be evaluated to be 

   

 

4
2

2 0 4

2
0

d 1
T '

2π

1 1
                                 

           '

p
T e g r

p M i

p k M i p k M i

e g M

  


 








 


       





 

 (B.14) 

where M denotes the nucleon mass, and 0g  is the cou-
pling constant of N  interaction as described by 

M0=IL g . Defining the amplitude  

2 =T M 
 as  

     , we can now prove 
2

0= = 0.k M e g Mk g 
         (B.15) 
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Therefore, the gauge condition is not satisfied in the 
case of of 2 

5

 decay process. This is, again, easy 
to understand since the scalar interaction has a symmet-
ric nature and therefore it is opposite to the   interac-
tion. 

It should be noted that there is no scalar meson in na-
ture which decays into two photons. However, the simi-
lar type of the Feynman diagram becomes important 
when we consider the photon-gravity interaction. In fact, 
photon can interact with the gravitational field via loop 
diagrams which are essentially the same as the T-matrix 
given in Equation (B.14) [6]. In this respect, the T-matrix 
of Equation (B.14) can be considered to be a physical 
process. 

2.7. Photon-Photon Scattering 

The T-matrix of the box diagrams in the photon-photon 
scattering can be written as 

 
   

   

4
4

1 34

4 2

d 1
T

2π

1
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p m p

p k m p

   

 






 



3

1 1 2

1

1

k m

k k m






      



 

(B.16) 

where the energy of photon can be written as  

1 2= = k k 3 4= =k k

m

 

at the center of mass system of two photons. The leading 
behavior of the finite terms in this T-matrix can be easily 
evaluated under the condition of   and we write it 
in terms of M   which is defined  =T M 

   
as 

 g g   

c c

= 0.k M 
 

=T M

2 4
4

1 21M e c c
m m

           
     

 (B.17) 

where 1  and 2  denote some numerical constants. 
Therefore, it is clear that the gauge condition does not 
hold, and we have 

           (B.18) 

It should be important to note that the apparent diver-
gences can be completely cancelled out due to the kin-
ematical cancellation by adding up three independent 
Feynman diagrams together, and the disappearance of 
the divergences is not due to the regularization [25]. 

2.8. Gauge Condition and Current Conservation 

As we saw above, the serious mistake must be concerned 
with the confusion between the gauge conditions and the 
current conservation. Somehow, people believed that the 
gauge condition should be directly connected to the cur-
rent conservation [1]. Or in other words, the gauge con-

dition of the Feynman amplitude (we denote it as 


  

= 0k M 


= 0.j

) for some reaction process 

            (B.19) 

should be identical to the current conservation of 

            (B.20) 

This is, of course, a wrong statement, and the current 
conservation must hold true for any occasions while the 
gauge condition of Equation (B.19) is in some cases sat-
isfied and in other cases not, depending on the reaction 
processes as we saw above. Basically, the current con-
servation cannot manifestly be traced in the Feynman 
amplitude of M 

=T M  

 unless there are external fermion 
lines which can satisfy the free Dirac equation, and con-
sequently can be related to the current conservation. 

In this sense, the condition of the reaction amplitude 

v   involving the axial vector vertex of   
5

 v with its polarization vector   

= 0q M
 

ck

           (B.21) 

does not mean that the axial current conservation is vio-
lated. We have shown that the gauge condition of 

    
c k

 does not have any physical meaning, but 
the replacement of v v

     

0π 2

 is even worse than 
the gauge condition since the axial vector coupling has 
nothing to do with the gauge theory. In this respect, the 
whole business of the anomaly equation is just the castle 
in the air. 

2.9. Summary of Gauge Condition 

To summarize, we see that the Compton scattering and 


0 2Z

 decay process can satisfy the gauge condition, 
while other examples of the photon self-energy, the vac-
uum polarization for the axial vector current, the 


2

 decay process, photon-photon scattering dia-
grams and  

ck

 decay process do not satisfy the 
gauge condition, and this is mainly because they have a 
fermion loop. 

It is by now clear that the gauge condition of 
    

= 0k 

ck

 is physically a meaningless procedure. 
This is basically due to the fact that the Lorentz condi-
tion of   is obtained from the equation of mo-
tion as explained in Appendix C. Therefore, this con-
straint equation cannot be taken as the gauge fixing con-
dition, and thus the requirement of     

k = 0


= 0k 

 is 
physically a wrong procedure. 

3. Lorentz Condition  

Here, we clarify that the Lorentz condition of   
should be obtained from the equation of motion, and 
therefore it is more fundamental than the requirement of 
the gauge fixing condition. 
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3.1. Gauge Field of Photon 

We write the Lagrangian density for the free gauge field 
as 

.    

1
=

4
L F Fem


             (C.1) 

with =F A A     

  = 0.A A    

 

. In this case, the equation of 
motion becomes 

           (C.2) 

Since the free photon field should have the following 
solution 

 
2

†
, ,

ikx ikx

=1

,
=

2

k
A x

V


 


k k

c e c e


 

    k k    (C.3) 

we can insert this solution into Equation (C.2) and obtain 
the following equation for  ,k 

  = 0.k  
 

 
2k k              (C.4) 

This equation can be written in terms of the matrix 
equation for the polarization vector   as 

 k  
3

= 0k 
2

=0

k g 


             (C.5) 

where we write the summation explicitly. In order that 
the   should have a non-zero solution, the determi-
nant of the matrix should vanish, namely, 

 2 = 0.k k  

2 = 0k

  = 0.k k 

2 = 0k

= 0k 


det k g           (C.6) 

Now it is easy to prove that  is the only physical 
solution of Equation (C.6) since one finds 

det  

Therefore, putting the solution of  into Equa-
tion (C.4), we obtain 

                (C.7) 

which becomes the solution for the polarization vector. 
Here, we should note that this process of determining the 
condition on the wave function of   is just the same 
as solving the free Dirac equation. Obviously this is the 
most important process of determining the wave func-
tions in quantum mechanics, and surprisingly, this has 
been missing in the treatment of determining not only the 
massive vector boson propagator but also the photon 
propagator as well. 

This constraint equation of Equation (C.7) is obtained 
from the equation of motion, and therefore it is more 
fundamental than the gauge fixing condition even though 
it is just the same equation as Lorentz gauge fixing con-
dition. In this respect, the condition of  should 

e always satisfied since it is derived from the equation 

of motion. As one can see by now, the gauge fixing con-
dition is still left for use. In fact, if we take the Coulomb 
gauge fixing of 

= 0k 


= 0 A = 0k ε
= 0

 , then we find  which 
leads to the condition of 0 . Therefore, we now see 
that the photon field has only two degrees of freedom 
which can be naturally obtained from the equation of 
motion and the gauge fixing condition. 

In addition, one realizes that the Lorentz gauge fixing 
is not allowed in the free field gauge theory since the 
same equation of the Lorentz gauge fixing is already 
obtained from the equation of motion. Namely, it cannot 
give a further constraint on the polarization vector. In 
this respect, one sees that the Coulomb gauge fixing 
gives a proper condition on the polarization vector. 

3.2. Massive Vector Fields 

The massive vector field can be treated just in the same 
manner as above. We first write the free Lagrangian den-
sity for the vector boson field   with its mass M Z

b

21 1
=

4 2WL G G M Z Z 
  

=G Z Z

    (C.8) 

with        . In this case, the equation of 
motion becomes 

  2 = 0.Z Z M Z    
    

 

    (C.9) 

Since the free massive boson field should have the 
following shape of the solution 

 3
†

, ,
=1

,
=

2
ikx ikxk

x c e c e
V




 


 


   k k
k k

Z   (C.10) 

we can insert this solution into Equation (C.9) and obtain 
the following equation for the polarization vector   

   2 2 = 0.k M k k  
  

2 2 = 0k M

     (C.11) 

In the same way as above, we can prove that 

 

should hold, and this is the only physical solution of 
Equation (C.11). Therefore we obtain the following 
equation for the polarization vector   

= 0k 
               (C.12) 

which should always hold. This is just the same equation 
as Lorentz gauge fixing condition in QED. However, 
there is no gauge freedom for the massive vector boson, 
and therefore the degrees of freedom of the polarization 
vector   for the massive vector boson is three, in con-
trast to the gauge field. Even though the gauge field 
naturally requires the massless nature of the photon field, 
one should not claim that the number of the degrees of 
freedom of the photon field is a direct consequence of 
the massless nature.  


