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ABSTRACT 

The Hamiltonian associated to the mass variable system is constructed from first principles through finding a constant 
of motion of the system. A comparison is made of the classical motion of a body with its mass position depending in the 
(x,v) space and (x,p) space which are defined by the constant of motion and the Hamiltonian, for a particular model of 
mass variation. As one could expected, these motion looks different on these spaces. The quantization of the harmonic 
oscillator with this mass variation is done, and a comparison is made by using the usual Hamiltonian approach with the 
proposed quantization of the constant of motion approach. This comparison is done at first order in perturbation theory, 
and one sees a difference between both approaches which can, in principle, be measured. 
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1. Introduction 

Mass variation problems for classical mechanics has a 
long history [1] and important applications have been 
studied on the dynamics of the Universe as black hole 
formation [2,3], where they have been known as Gylden- 
Meshcherskii problems [4-11]. These types of problems 
are not free from controversy in the way they must be 
formulated and their relation with Galileo’s transforma-
tion [12]. In addition, these systems are becoming more 
and more important in quantum mechanics systems since 
the discovery of the neutrinos mass oscillations problem 
[13] and [14], the kinetic theory of dusty plasma [15], 
propagation of electromagnetic waves in a dispersive- 
nonlinear media [16], and other possible applications in 
fluid dynamics [17]. 

The approach used so far to study these systems fol-
lows guessed Lagrangian or Hamiltonian with include 
the mass variation of the system [18-20]. Above all, there 
is not right mathematical justification for this approach. 
Therefore, one may considered that to find the Hamilto-
nian for a mass variation system, one must do it from 
first principles, Newtonian’s mechanics, and this can be 
done by using a well known approach for one dimen-
sional autonomous system to construct the associated 
Lagrangian and Hamiltonian of the system [21-23]. Once 
these expressions are gotten, one can proceed to make 
the quantization of the system [24]. On the other hand, 
there has been a proposed extension for the non relativis-

tic quantum mechanics for autonomous systems based on 
the use of the constant of motion instead of the Hamilto-
nian in the Schrödinger equation [25]. Therefore, in this 
paper the Hamiltonian and the constant of motion are 
found for several conservative systems with position de-
pending mass, using a model for the mass variation. The 
trajectories of the motion on the (x,v) and (x,p) spaces are 
shown to see the difference of this description. The quan-
tization of the mass position depending systems is ana-
lyzed using the constant of motion and the Hamiltonian 
approaches, and finally, the spectrum of the harmonic 
oscillator are calculate at first order perturbation theory. 

2. Constant of Motion and Hamiltonian 

Consider a one-dimensional motion of a body with mass 
position depending,  =m m x , and which is affected by 
a conservative force  F x . This system is governed by 
Newton’s equation of motion [1] 

   
d

= ,
d

mv
F x

t
              (1) 

where v represents the velocity of the body. Since one 
has the expression 

d
= ,

d x

m
m v

t
                (2) 

where one has defined = d dm xxm , the equation of 
motion can be written as the following system 
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    2= ,xF x m v
d

d

v
m x

t
          (3) 

which in turns, this equation can be written as the fol-
lowing autonomous dynamical system 

    2F x
= , =x v v  x v

m
          (4) 

where   has defined as 

  = .xx m m

> 0v
< 0v

 ,

               (5) 

This autonomous system is dissipative for  and 
anti dissipative for  because of the quadratic term 
in the velocity. A constant of motion of this system is a 
function K x v  which satisfies the first order partial 
differential equation 

 
    2 = 0.

K K
x v

v

  


   

 =

F x
v

x m x
       (6) 

The general solution of this equation is given by 
K G C

 

, where G is an arbitrary function, and C is 
the characteristic curve given by 

     2 d
0 0 d

.

x s

s
e

2 d
2= 2

s s F s
C v e

m s

    

 m x

    (7) 

Suppose  of the form    = m g x

g

 

o , 
where one demands that . In addition, assum-
ing that , one gets the usual constant of motion of 
the conservative system with constant mass (so called 
“Energy of the System”). Then, one can select the func-
tionality of G of the form 

m x
 0 = 0g

0

= ,
2

om
G C C               (8) 

such that under the mentioned conditions for g, one gets 
the energy of the system as a particular limit. The result-
ing constant of motion of the system is 

 
   

 
 2 d

0 0d
.

x s

s
e

2 d
21

, =
2

s s

o o

F s
K x v m v e m

m s

    

 

  (9) 

Given the constant of motion of a one-dimensional 
autonomous system, the Lagrangian for this system is 
determine through the well known expression ([21-23]) 

  2

,  d
.

K x
, =L x v v

 
          (10) 

Using this expression with Equation (9), it follows that 

 
   

 
 2 d

0 0 d
.

x s

s
e

2 d
21

, =
2

s s

o o

F s
L x v m v e m

m s

    
  (11) 

The generalized linear momentum, =p L v 

 2 d
0= ,

x
s s

op m ve


=

, is 
given by 

            (12) 

H vp Land the Hamiltonian of the system,  , is de-
duced as 

   
  

 2 2 d 2 d
0 0 d

, = .
2

x s
s s

o
o

F s sp
H x p e m e

m m s

   


 



   

 

(13) 

Since from Equation (5) one has that 

0
d = ln ,

x

o

m x
s s

m


 
 
 



 

          (14) 

The constant of motion, Lagrangian, generalized linear 
momentum, and Hamiltonian are written as 

     
2

2

0

1
, =  d ,

2

x

o o

m x
K x v v m s F s s

m m
 

 

  (15) 

     
2

2

0

1
, =  d ,

2

x

o o

m x
L x v v m s F s s

m m
 

   

   (16) 

2

, = ,
o

m x
p x v v

m

 
 

           (17) 

and       
2

2 0

1
, =  d .

2

xo

o

m p
x p m s F s s

mm x
 

 

H   (18) 

Defining the effective potential as 

   
0

1
=  d ,

x

eff
o

V x m s F s s
m

 

 

     (19) 

the constant of motion and Hamiltonian have the follow-
ing form 

   
2

2, =
2 eff

o

m x
K x v v V x

m


 
 

        (20) 

and 

 2
2

, = .
2

o
eff

m
H x p p V x

m x


 m x

      (21) 

To be able to continue with analysis, one needs a 
model for the variation of mass, . Let us assume 
that  m x

 
 is given by 

 1
1= 1 ,x x

om x m m e        (22) 

 0 = m  om and where  = ,  a1m m nd 1x  d termines the 
asymptotic distance where the mass would be 1om m

e
 . 

ll have and increasing of mass going from = 0x  
to > 0x  1 >m nd vi a if 1 < 0m . For this 

 The effective potential is given by 

One wi
 if 0 , a se vers

model,

         11

0
= d ,

x s x
eff

o

m
V x V x V x e F s s

m
     (23) 
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where  V x  is the usual conservative potential
e force  

 due to 
F x , 

The trajectories in the space  ,

   
0

=  d .
x

V x F s s           (24) 

th

x v  are d
the constant of m Equation (20), 

 traje

etermined by 
given the initial otion 

conditions  0x  and  0 .v  The ctories in the space 
 ,x p  are determined by Equation (21) with the initial 
conditions  0x  and 0p , where Equation (17) re-
l oth initial conditions. Figures 1 and 2 show the 
trajectories in e space  ,


s bate

 th x v  and  ,x p  for a con-
stant force   =F x f . Figures 3 and 4 show the trajec-
tories in the spaces  ,x v  an   ,d x p  fo  a Coulomb 
Force  

r
2=F x  (zero potential is taken at  =k  x x  ).

Figures 5 and 6 show ajectori he spaces 
 

the tr es in t  ,x v  
and  ,x p  for the Hook’s law (harmonic os ) 
  =

cillator
F x kx  (for the dissipative case > 0v ). 
continu black line represents 1 = 0m , dotted lines 
corres o 1 < 0m  and continuous lines t  1 > 0.m  
The following values have been us ake this plots 
(units MKS), g,m  1 = 10 m,x   0 = 0 m,x
 

Gross 

o

  

ous 
pond t

ed to m
= 10 Ko

0 = 1.5 m s ,v  = 10 Newtons,f  and = = 1k k  (in their 
respective units). 

 

 

Figure 1. Constant of motion trajectories, F = f. 

 

 

Figure 2. Hamiltonian trajectories, F = f. 

As one can see from these plots, the effect of the first 
terms in Equations (20) and (21) is clearly marked on 
these trajectories. The constant of motion brings about 
some “regular” behavior meanwhile the Hamiltonian 
brings about some type of little odd behavior due to ex-
pression (17). 

From Equations (23), (20) and (21) one sees that the 
constant of motion and the Hamiltonian can be written as 

        2 2 21
, = ,

2o o
o

K x v K x v W x m x m v
m

    (25) 

and 

     
 

2
2

, = , ,
22

o
o

o

1m
H x v H x v W x p

mm x
    

 
 (26) 

where the terms 

 

 W x , oK  and oH  are given by 

      11

0
=  d ,

x s xm
W x V x e F s s

m
     (27) 

o

   21
, = ,

2o oK x v m v V x         (28) 

and 

   
2

, =
2o

o

p
H x p V x

m
           (29) 

 

Figure 3. Constant of motion trajectories, F = –k'/x2. 
 

 

Figure 4. Hamiltonian trajectories, F = –k'/x2. 
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F . 
 

igure 5. Constant of motion trajectories, F = –kx

 

Figure 6. Hamiltonian trajectories, F = –kx. 
 

This form of writing the constant of motion and the 
Hamiltonian is suitable for quantization studies. Before 
leaving this classical part, it is necessary to make some 
observations about the motion of the body and its mass 
position dependence. First, in our mass position depend-
ence model, Equation (22), it has been assumed that the 

ptotic ( 1x ) mass valu n by 1om masym e is give  . If 
dy oscillates (harmonic r), in addition to 

ing-antidamping effect d e term with 2v  in 
ion (3), one must consid ffect of decreasing 

> 0v ) and in  (f ) of mass effect 
 these oscillatio . Seco e would like to
e scilla-

the bo
damp
Equat
(for 
during

nsid
ons, i

oscillato
ue to th
er the e
or < 0v
nd, if on

creasing
ns  

co
ti

r pure decreasing of mass during these o
t is necessary to change the model for  m x . 

Third, if one wants to consider pure damping effect dur-
ing these oscillations, this will only happen if   < 0m x  
for < 0v  and   > 0m x  for > 0v , [26]. Finally, if 
  > 0m x  (our model) or   < 0m x  for any position 

“x”, the damping-antidamping effect will appear. 

3. Quantiz n with Mass Position 
Depending Systems 

The usual Schrödinger quantization approach is based on 
the association of an Hermitian op r to the Hamilton 

function, [27,28], and the solution of a linear complex 
partial differential equation for the wave function, 

atio

erato

 ,x t , 

  ˆ= , ,i H x p


        ) 

 is the Hermitian o  associated to the 
generalized linear momentum, 

t
    (30

where p̂ perator
ˆ =p i x   ,   is the 

Plank constant divided by 2π , having the confutation 
relation  ˆ, =x p i I  (with “I” the identity o

 basis 
perator) in 

the  ˆ, ,I x p  of the Weyl algebra. However, as a 

ion fun
for the wave function, 

possible extension of this quantization approach, there is 
the proposal of using the constant of motion, instead of 
the Hamiltonian, in the Schrödinger equation, where an 
Hermitian operator is associated to the constant of mo-
t ction, and the Schrödinger like equation is solved 

  ˆ= , ,i K x v


           (31) 

or associ d

t

where v̂  is the Hermitian operat ate  to the 
velocity,  ˆ =v i m x   , satisfying the obvious com- 
mutation

 

 relation 

ˆ, = .x v i I
m


            (32) 

These realtions can be assumed to be valid for position 
mass depending as 

     
ˆ ˆ= , and , = .v i x v i I

m x x


 


 

   (33) 
m x

Of course, for constant mass conse
there is not difference at all between both approaches 

he
nd the velocity 

r, as we have seen previously, for mass 
position depending systems this relation is not trivial any 
more, Equation (17). Therefore, to fin
for the quantization of the constant of motion to make 
ph

rs, and to see experimentally 
whether or not it makes sense. Mass position depending 
systems have indeed this property because of th
tion (17). 

ven

rvative systems, 

since t  relation between the generalized linear mo-
mentum a of the body is really trivial, 

= op m v . Howeve

d out the possibility 

ysical sense, it is necessary to look for a system where 
both approaches diffe

e Equa-

For autonomous systems, one does not need, of course, 
to fully solve the Equations (30) and (31) to see whether 
or not there is a difference on both approaches. To see 
this, it is enough to look at their spectra, and this spectra 
can e  be calculated at first order in perturbation the-
ory. Even more, one can see these spectra just a second 
order in the Taylor expansion of the mass position de-
pending. Doing this with the Equations (25)-(27), one 
gets 
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      
2 2

21 1
1 2

1 1

1
, ,

2o
o

m m x
K x v K x v W x x m v

x m x

  
      

   
(34) 

and  

      
2 2

21 1 1
2 2

1 1

, ,

2 31
                  

2 2

o

o o oo

H x p H x p W x

m m m x
x p

m m x mm x

 

  
     

   

 

(35) 

where the function   W x  is defined as 

    21 1 1
d d .

x xm
W sF s s s F s s

 
        (36) 

20 0
1 1om x x 

To associate a Hermitian operator to these functions, 
one knows that there is an ambiguity, not resolved yet by 
any experiment, on selecting a proper Hermitian ope
to make the quantization. Although one could norm
follow Weyl approach [29] and [30], it is easier to take 

wing approach by noticing the following for 
polynomials operators: given the Herm operators ˆ

rator 
ally 

the follo
itian A  

and B̂  to the functions A and B rator , the ope  ˆ ˆ
n

A B  
is an Hermitian operator for any mber “n

ing H asso-
ciated to the product of functions 

 integer nu ”. In 
this way, the follow ermitian operators can be 

  1 ˆ ˆˆ ˆ= ,
2

AB AB BA            (37) 

  2 2 21 ˆ ˆ ˆˆ ˆ ˆ ˆ= ,
3

AB B A BAB AB         (38) 

and 


 
2 2

2 2 2 2 2 2

   
1 ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ= .
6

A B

A B B A ABAB BABA BA B AB A    
 

) 

Taking the following identifications ˆ =

(39

A x  and  
ˆ ˆ=B p  or v̂ , it follows that the Hermitian operators 

associated to the expressions (34) and (36) are given by 

        
 

 

1

1
2
1 1

2
1

2 2 2 2 2 2

ˆ ˆˆ ˆ ˆ, = ,
3

               
12

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ         

o

o

m 2 2 2ˆ ˆ ˆ

      

K x v K x v W x x v
x

m m m

x

v x vxv

x v v x xvxv vxvx vx v xv x

 




     

and 

 

(40) 

        

 

1
2
1 1

2 2
1

2 2 2 2 2 2

31
       

12 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ                 

o

oo o

m m

mm x m

2 21
2

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, = ,
3

          

.

o

m
H x p H x p W x p x pxp xp

m x

x p p x xpxp pxpx px p xp x

 
  

 
     

   

(41) 

Using the commutation relations  ˆ, =x p i I  and 

   

 
2 2

1 1 1
2 2

1 1

ˆ                                   , = , 

with                = 1 ,
2

o

o oo

x v i f x
m

m m m x
f x x

m x mm x

 
   

 



  

gets the following expressions for the constant of 
motion and Hamiltonian operators 

(42) 

one 

     

   

 

      

   

2 21

1

2
1 1

2
2 2

2

2

2

ˆ ˆˆ ˆ, = ,

ˆ ˆ ˆ                ,
3 3

                

ˆ ˆ                2  
6 6

ˆ ˆ                  ,
6 6

o

o o

o

o o

o o o

K x v K x v W x

m i i
x v D x fv f x v

x m m

m m m

i

12x

x v xf x g x v h x
m m

i i
xf x v xD x f v xg

m m m



 
   

 





   


  

 

 

    


x 


      

(43) 

and 

 21
2

1

2 2
2 21 1

2 2
1

ˆ ˆˆ ˆ ˆ ˆ, = , 2

31
ˆ ˆ                2 ,

22 2

o
o

oo o

m
H x p H x p W x xp x i xp

m x

m m
x p i xp

mm x m

  

  
     

  




 

(44) 

where the functions  x  and  h x , and the operator f
 ˆ,D x f v  have been defined as 

    
2

1 1 1
2 2

1 1

2
 =

2o oo

xf xm m m
g x f x

m x mm x

 
   

 
     (45) 

   

    

2
1 1

1 2

2
2
1

= 1
2

2
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   

  (47) 

ns (3  (31)
mous sys se equation are reduced 
to the solution of eigenvalue problems 

Now, since Equatio 0) and  represent autono-
tems, the solution of the

 ˆ ˆ, =H H HH x p E           

and 

     (48) 

 ˆ ˆ, = .K K KK x v E                (49) 
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Considering on Equations (43) and (44) that the terms 
appearing on the right hand side are small with respect 
the term ˆ

os K  and ˆ
oH , the modification of the ˆ

oK  
and ˆ

oH  sp
bation

 di
st have that 

for bot

ectra can be calcu  order in 
pertur  theory to see whether or here is a sig-
nificant fference in their predictions his case, one 

u the eigenfunctions and alues are the 
same h app when 1 = 0m

     0 0 0= .n nE      (50) 

lated just at first
not t
. In t

 eigenv
, 

m
roaches 

     0 0 0ˆ ˆ= ,  and  o n n n o nH E K 

Then, at first order perturbation theory, the eigenval-
ues would be given by 

    1 0 ˆ=E E n W n n H H n n        (51) 

and 

I

    1 0
K nE E n W ˆ= ,In n K n         (52) 

where =n W n W  is the expe
fu

nn

nction W  in the state  0
n , and ˆ

ctation value of the 

IK  and ˆ
IH  rep-

resent the remaining terms of the Equations (43) and 
(44), 
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m x
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

4. Harmonic Oscillator with Variable Mass 

The harm 1 = 0m  in the Weyl alge-
sis , ,


(54) 

onic oscillator with 
 †bra ba I a a  [31] has the following characteris-

tics 

     0 02 , = ,n
†ˆ ˆ= = , = 1o o nK H a a E n   n  (55) 

with the following identifications 
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2 2

                       =  ,
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M
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

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and having the well known properties 
†

†

  = , = 1 1 ,  =  

and                              , = .

nmn m a n n n a n n n

a a I

  

  
(57) 

s 

and  

x

 (56) 

1 ,

Note that all the expectation values of monomial term
of odd power have zero values. The expression for W  

n by 



up to fourth order in “x” is give

3 41 1km km
2

1 1

= .
2 8o o

W x x
m x m x

          (58) 

Thus, using the expectation values given in the ap
e terms appearing in 

Equations (53) and (54) can be calculated, resulting the 
following eigenvalues at first order 
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pen-
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 

where one has used the definition =
n

n n  . Let us 
define the following parameter J as 

     
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22
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1
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          2 1 ,
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 

 
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 




  (61) 

This parameter represents the relative variation of the 
eigenvalues of the constant of motion quantization and 
the Hamiltonian quantization approaches. Figure 7 shows 
this parameter as a function of 1 om m  (relative change 
of mass), considering that 24=10 Kg,om   34= 6.62 10 J s,   
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Figure 8. J vs m1/mo for various “mo”. 

 

 

Figure 9. J vs m1/mo for various “n”. 

the eigenv be rela-
vely large. Thus, this suggest the it can be observable 
perimentally, opening up the possibility to see whether 

or not the quantization of constant of motion makes sense 
for mass variable quantum systems. 

5. Conclusion 

A mathematical consistent approach has been used to 
deduce the constant of motion, Lagrangian, and Hamil-
tonian for a mass position depending non relativistic 
classical systems. The trajectories on the spaces ( ,

alues for both approaches (J) could 
ti
ex

x v ) 
and ( ,x p ) were given for constant force, Coulomb type 
force, and Hook force with a chosen model for the mass 
variation. The dependence of the generalized linear mo
mentum w f the 

ody makes the plots in the space ( ,

-
ith respect the position and the velocity o

xb p  to look quite 
ifferent from those in the space ( ,d x v ). In addition, an 

study was made about the quantization of the constant of 
motion, as an extension approach of the usual Hamilto-
nian quantization approach The harmonic oscillator with 
mass position depending was used for this study. One 
observed that, already, at first order perturbation theory, 
a significant difference on the spectra of the constant of 
motion and Hamiltonian approaches can be significant, 
bringing about the possibility for this difference to to be 
observed experimentally. 
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