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ABSTRACT 

The nonlinear propagation of the DIA (dust ion-acoustic) waves in multi-ion dense plasma system containing degener- 
ate electrons, both positive and negative ions, arbitrary charged dust grains has been investigated by employing the re-
ductive perturbation method. The nonlinear waves (solitary and shock waves) have been observed to be formed in case 
of both positive and negative charged dust grains from the stationary solution of the Korteweg de-Vries (K-dV) equa-
tion and Burger’s equation. The fundamental properties of such nonlinear waves have been theoretically analyzed by 
comparing system potential for both positive and negative dust grains. It has been shown that the basic features of these 
waves are significantly modified by the positive and negative ions drift speed and polarities of dust grains. The implica-
tions of our results in space and laboratory plasmas are briefly discussed. 
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1. Introduction 

To study the fundamental properties [1-6] of degenerate 
or extremely dense, which means the denser than ordi-
nary solids, matter has an important role in understanding 
the electrostatic perturbation existing in extreme condi-
tions [1-6]. Now-a-days the most theoretical concerns are 
to analysis the environment of the compact objects hav-
ing their interiors supporting themselves via degenerate 
pressure. The degenerate pressure, which produces be-
cause of the combination effect of Pauli’s exclusion 
principle (Wolfgang Ernst Pauli, 1925) and Heisenberg’s 
uncertainty principle (Werner Heisenberg, 1927), de-
pends only on the number density of constituent particles 
[7-9], but it does not depend on its own temperature. 

Generally in case of considering the compact astro-
physical objects, primordial universe, and the process of 
expanding universe [10-17] which provides us the idea 
that there may be a possibility to have some heavy ele-
ments in addition with lighter elements which are con-
sidered by the authors in their previous research paper 
[7-9]. It has been found the existing plasma waves spec-
tra [18-20] are generally modified because of the pre- 
sence of the static dust grains. So, in the study of the 
propagation of nonlinear waves in the plasma system 
some important features can be observed under con- 
sideration of degenerate pressure and thus the dust grains 
have the vital role in multi-ion dense plasma systems.  

Considering this idea we are studying the multi-ion 
plasma with some additional particles, static dust grains 
with arbitrary positively and negative charge, to make 
our present analysis meaningful. This type of plasma is 
considered as a building block of our early universe [21], 
and also as an omnipresent ingredient of a number of 
astrophysical objects such as active galactic nuclei [22], 
pulsar magnetospheres [23], solar flares [24], fireballs 
producing  -ray bursts [25], etc. 

There are already a number of works on waves and in-
stabilities [26-35], quantum effects on linear [30,32,35] 
and nonlinear [31,33] propagation of electrostatic waves, 
analyzed by using the quantum QHD (hydrodynamic) 
model [26,35], and by using the quantum QMHD (mag-
neto-hydrodynamic) model [30-33]. Some others were on 
nonlinear propagation of electrostatic waves in degener-
ate quantum plasma [36-38]. Very recently, a number of 
authors are trying to study the electrostatic perturbation 
in degenerate plasmas [7-9] where their main concern is 
to develop the theoretical investigations on the interstel-
lar compact objects, having the density of their interiors 
becomes extremely high to provide non-thermal pressure 
through degenerate pressure of their constituent particles 
and particle-particle interaction. 

To the best of our knowledge, still there is no attempt 
has been made to study the effect of the linear or nonli- 
near propagation of the unmagnetized electrostatic waves 
in degenerate multi-ion dusty plasma on the DIA solitary 
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and shock waves. Therefore in our present work, we 
consider a multi-ion dense plasma system with degener-
ate electrons following the equations of the state valid for 
both the non-relativistic and ultra-relativistic limits, and 
ions (both positive and negative) following the non-rela- 
tivistic limits with two additional charged particles, posi-
tively and negatively charged dust grains. 

2. Governing Equations 

We are trying to investigating the propagation of an elec-
trostatic perturbation mode in a degenerate dense multi- 
ion dusty plasma containing ultra-relativistic degenerate 
electrons, non-relativistic degenerate inertial ions having 
both positive and negative ions and negative dust grains. 
The dynamics of the electrostatic waves propagating in 
such a plasma system is governed by 
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where sn = , , ( s p n e ) is the plasma species number 
density normalized by its equilibrium value 0sn  ( 0en ), 

su  is the plasma species ion fluid speed normalized by 

 1 22c m m=pmC me p e with  ( pm ) being the electron 
(plasma ion species) rest mass and c being the speed of 
light in vacuum,   is the electrostatic wave potential 
normalized by 2m c ee  with e being the magnitude of 
the charge of an electron, the time variable (t) is 

normalized by  1 22
0= 4π pn e mpm , and the space 

variable (x) is normalized by  1 22 2= 4πm c n e 0m e

The coefficient of viscosity 
. 

  is a normalized quantity 
given by 2

0pm m s sm n  ,   is the ratio of negative and 
positive ion masses multiplied by their charge per ion, 

jZ  (where ), = , nj p   is the ratio the number den-
sity of charged dust and ion, and p is positive when we 
consider the negative dust grains and it is negative when 
we consider the positive dust grains. The constants 

1 2
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,i i i

. The equa-
tions of state used here are given by 
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for the non-relativistic limit (where = π =mc 
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10−10 cm, and  is the Planck constant divided by ). 
While for the electron fluid, 
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in the ultra-relativistic limit [1-3,7,8]. 

3. Derivation of K-dV Equations 

To observe the electrostatic perturbations propagating in 
the ultra-relativistic degenerate dense plasma due to the 
effect of dispersion by analyzing the outgoing solutions 
of (1)-(5), we first introduce the stretched coordinates [39] 

 1 2= ,px V t               (11) 

3 2= ,t                   (12) 

where pV  is the wave phase speed ( k  with    be-
ing angular frequency and k being the wave number of 
the perturbation mode), and   is a smallness parameter 
measuring the weakness of the dispersion ( 0 < < 1 ). 
We then expand sn en, , su , and  , in power series of 
 : 
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and develop equations in various powers of  . To the 
lowest order in    1 1= , (1)-(16) give s p su V n

   

, 

 1 1 2
1= '

p pn V K       , 1 1 2
1= '

n pn V K 

   

, 

1 1
2= '

en K
 

2 1

1
=

1
e' '

p
n

p
V K K

p

  
 

  


 
, and  

   where 1 1= 1'K K    and 2 2= 1'K K  . The  

 
2 1

1
=

1
e' '

p
n

p
V K K

p

  
 

  


 
relation  represents the 

dispersion relation for the dust ion-acoustic type electro-
static waves in the degenerate plasma under considera-
tion. 

We are interested in studying the nonlinear propaga-
tion of these dispersive dust ion-acoustic type electro-
static waves in a degenerate plasma. To the next higher 
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order in  , we obtain a set of equations 
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Now, combining (17)-(21) we deduce a Korteweg-de 
Vries equation 

 
   1 1 13

3
= 0,A B

  


  


 

1
 

 
 

      (22) 

where 

 

 

 
 

  

22

2 21

,

'

p ep

1

1

32
1

2

2
2

=
2 1 1

3 2 1
      

2 1
            

p

p e

'

'
p

n

'

V K
A

V p

V K

V K

p

K

  

   



   

 
 

  



    
     
 

  
 



(23) 

22
1

= .
'

p e

V K

V p2 1 1

p
B

  



  

 

 
              (24) 

The stationary solitary wave solution of (22) is 

1 2= s ,m ech
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where 0= u   , 0m = 3u A , and  1 2
= 4B u 0 . 

It is obvious from (23) and (35) that the degenerate 
plasma under consideration supports compressive elec-
trostatic solitary waves which are associated with a posi-
tive potential. It is obvious from (23)-(35) that the am-
plitude [ m ] of these solitary structures depends on the 
density parameter  , i.e., the ratio of electron to positive 
ion number density. The electrostatic solitary profiles are  

shown in Figures 1-4. This is obvious that the profiles 
are quite different from those obtained from the previous 
investigation [7-9]. And the potential for non-relativistic 
degenerate ion fluid and ultra-relativistic degenerate 
electron fluid is different from that when both the parti-
cles follow the same limit. 
 

 

Figure 1. The effect of μ the potential of solitary wave for 
both electron and ions (both positive and negative) being 
non-relativistic degenerate with p = +1. 
 

 

Figure 2. The effect of μ the potential of solitary wave for 
both electron and ions (both positive and negative) being 
non-relativistic degenerate with p = –1. 
 

 

Figure 3. The effect of μ the potential of solitary wave for 
electron being ultra-relativistic and ions (both positive and 
negative) being non-relativistic degenerate with p = +1. 
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   

 

Figure 4. The effect of μ the potential of solitary wave for 
electron being ultra-relativistic and ions (both positive and 
negative) being non-relativistic degenerate with p = –1. 
 

Now we are returning to (22) with the term  1  
which changes proportionally with the parameter   
and the polarity, as well as with the sign of . We al-
ready have numerically solved (22), and have observed 
the effects of 

p

  on electrostatic solitary structures in 
case of both non-relativistic and ultra-relativistic dege- 
nerate electrons (ion always being non-relativistic de-
generate). When the number density of the charged dust 
increases, as well as the parameter   is increased, the 
system potential, which results from the balance between 
the nonlinearity and dispersion, decreases (increases) 
when  is positive (negative) which are depicted in 
Figures 1 and 2. This holds good for the width of soli-
tary profile (shown in Figures 1 and 2). The values of 
other parameters have been chosen from a standard 
theoretical analysis [7-9]. For example, when we were 
investigating the effect of dust number density (i.e., 

p

 ), 
other related parameters were kept constant (such as 

= 0.4e , n = 0.3 , etc.). For the case of ultra-relati- 
vistic degenerate electrons and non relativistic degener-
ate multi ions, the same effects are observed (shown in 
Figures 3 and 4). 

4. Derivation of Burger’s Equations 

To examine electrostatic perturbations propagating in the 
relativistic degenerate dense plasma due to the effect of 
dissipation by analyzing the outgoing solutions of (1)- 
(5), we now introduce the new set of stretched coordi-
nates [40] 
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To the lowest order in  , (1)-(10), (13)-(16), (26), 
and (27) give the same results as we have had for the 
solitary waves. 

To the next higher order in  , we obtain a set of 
equations 
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Now, combining (28)-(32) we deduce a Burger’s equa-
tion 
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where the value of A is the same as before and C is given 
by 
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The shock wave solution of (33) is 

 1 = 1 ,m tanh
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where 0m = u A  and 0= 2C u . 
The electrostatic shock profiles, caused by the balance 

between nonlinearity and dissipation, are shown in Fig-
ures 5-12. The effect of   and   on potential of the 
shock wave observed from Figures 5-8 for both of non- 
relativistic and ultra-relativistic degenerate electron and 
non-relativistic degenerate multi-ion dusty plasma in 
case of both positive and negative charged dust grains. 
We have also numerically solved Equation (33), and 
have observed the effects of   on electrostatic shock 
structures in case of both non-relativistic and ultra-rela- 
tivistic degenerate electrons (ion always being non-rela-
tivistic degenerate). When the number density of the 
charged dust grains increases, as well as the parameter 
  is increased, the system potential, which results from 
the balance between the nonlinearity and dissipation, 
decreases (increases) when  is positive (negative) 
which are depicted in Figures 9 and 10. 

p

The number density of dust grains, as well as   has 
significant effect on the potential of the electrostatic 
shock waves depending on its charged polarity, as well 
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Figure 5. The effect of μ the potential of solitary wave for 
both electron and ions (both positive and negative) being 
non-relativistic degenerate with p = +1. 
 

 

Figure 6. The effect of μ the potential of solitary wave for 
both electron and ions (both positive and negative) being 
non-relativistic degenerate with p = –1. 
 

 

Figure 7. The effect of μ the potential of solitary wave for 
electron being ultra-relativistic and ions (both positive and 
negative) being non-relativistic degenerate with p = +1. 
 
as p for ultra-relativistic degenerate electrons and non- 
relativistic degenerate multi-ion, the same manner as the 
previous just discussed which is shown in (11) and (12). 
So it is clear that the number density of charged dust (as 
well as  ) has a significant effect on the potential, as 
well as other parameters (like  ) of wave profile for 
non-relativistic degenerate ion fluid and both non-rela- 

tivistic and ultra-relativistic degenerate electron fluid 
depending on the polarity of the charged dust grains. All 
other parameters were kept constant (such as = 0.4e , 

= 0.3n ,  etc.). 0

The parameter 
= 0.1u

  was chosen from standard value 
[40] for the system under consideration. 
 

 

Figure 8. The effect of μ the potential of solitary wave for 
electron being ultra-relativistic and ions (both positive and 
negative) being non-relativistic degenerate with p = –1. 
 

 

Figure 9. The effect of the variation of μ and η on the 
potential of solitary wave for both electron and ions (both 
positive and negative) being non-relativistic degenerate with 
p = +1. 
 

 

Figure 10. The effect of the variation of μ and η on the 
potential of solitary wave for both electron and ions (both 
positive and negative) being non-relativistic degenerate with 
p = –1. 
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Figure 11. The effect of the variation of μ and η on the 
potential of solitary wave for electron being ultra-rela- 
tivistic and ions (both positive and negative) being non-rela- 
tivistic degenerate with p = +1. 
 

 

Figure 12. The effect of the variation of μ and η on the 
potential of solitary wave for electron being ultra-rela- 
tivistic and ions (both positive and negative) being non- 
relativistic degenerate with p = –1. 

5. Discussion 

The nonlinear electrostatic perturbation for degenerate 
dense relativistic multi-ion plasma with additional parti-
cles, positive and negative charged dust grains, has been 
analyzed. The nonlinear electrostatic propagation modes, 
particularly the solitary and shock profiles has been 
theoretically studied. It has been observed that the de-
generate electron and multi-ion pressures and the number 
density of the charged dust grains, as well as the charged 
polarity have significant effects on the potential of the 
electrostatic profiles (shown in (1)-(12)). 

Our recent observation is different from the related 
investigations [7-9] where we have considered the pres- 
sure of all the constituent particles (electrons and multi- 
ion), as the plasma system under consideration is degen-
erate and all the particles should follow the equation of 
state (6)-(10) whatever the limit is (either non-relativistic 
or ultra-relativistic), again the effect of arbitrary charged 
static dust grains. Hence our present investigation is 
more acceptable and the plasma system constituents have 
made the validity of our investigation totally different 
and also greater than the previous works [7-9]. 

In our numerical analysis we have tried to use a wide 
range of the degenerate plasma parameters, which are 
relevant for many cosmic environments and compact 
astrophysical objects. The results of the present investi-
gation is, therefore, expected to be useful in understand-
ing the dispersion properties of the electrostatic waves in 
such cosmic environments and compact astrophysical 
objects [10-17]. 
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