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ABSTRACT 

With the aid of a direct projective approach, a general transformation solution for the nonautonomous nonlinear 
Schrödinger (NLS) system is derived. Based on certain known exact solutions of the projective equation, some periodic 
and localized excitations with novel properties are correspondingly revealed by entrancing appropriate system parame-
ters. The integrable constraint conditions for the nonautonomous NLS system derived naturally here are consistent with 
the compatibility condition via the Painlevé analysis in other literatures. 
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1. Introduction 

Nonlinear science is believed, by many outstanding sci-
entists, to be the most deeply important frontier for un-
derstanding nature and applications in reality. For exam-
ple, nonlinear optical solitons are regarded as the natural 
data bits and an important alternative for the next ge- 
neration of ultrahigh speed optical telecommunication 
systems. It is known that the propagation of electromag-
netic waves in nonlinear optical waveguides and the 
ground state wave functions of Bose-Einstein conden-
states (BECs) can be described by nonlinear Schrödinger 
(NLS) system [1], which is actually one of the fundamen-
tal dynamical models in nonlinearity [2,3]. The nonauto- 
nomous NLS system in (1 + 1)-dimensional form is 

       2 = ,t xxi f t g t V t x ih t
2       

 = ,

   (1) 

where 

enhance the stabilities of the solutions [5,6]. Moreover, 
timemodulated nonlinearities and/or dispersions can fa-
cilitate the manipulation of the soliton behaviors. These 
facts have greatly enlarged our knowledge on nonlinear 
excitations and given an origin to some important con-
cepts such as nonautonomous soliton [7], and Feschbach 
resonance, which has been used to control some nonlin-
earities of matter waves by manipulating the scattering 
length either in time or space, and have led to certain 
proposals of many novel nonlinear phenomena. Disper-
sion management (DM) for BBCs has also proposed re-
cently and has induced plenty of consequent studies. In 
nonlinear optics, nonlinear management (NM) and DM 
are also both used for experiments and theories with tem- 
poral or spatial optical solitons, soliton lasers, ultrafast 
soliton switches [7]. Furthermore, some recent progres- 
ses on inhomogeneous nonlinear media have generated 
novel concepts such as the optical similariton [8]. How-
ever, the nonautonomous NLS system (1) and/or its si- 
milar versions are very difficult to be solved because of 
the presence of the time-dependent dispersion, nonlinear 
interaction managements and external potential. Up to 
now, a general exact solution to the nonautonomous NLS 
system (1) has been rarely found although the knowledge 
of such exact solutions is very valuable for various pur-
poses. Certainly, some special exact solutions have been 
obtained by the Lax par method [7], the similarity trans-
formation [8] and so on. In the short note, we try to give 
a general exact solution to the nonautonomous NLS sys-
tem via a selfsimilarity projective approach (SPA), which 
can convert all exact solutions of selfsimilar well-known 

x t   is the complex wave envelope in a 
comoving frame, with time-modulated dispersion  f t

 
, 

nonlinearity g t , net gain (>0) or loss (<0) h t , and 
external harmonic trap potential  in BECs, which 
is usually absent in nonlinear optical transmission aspect 
[4]. The subscripts x and t denote the spatial and tempo-
ral partial derivatives. These coefficients are often as-
sumed to be real. In the contexts of many physical fields, 
the BECs and nonlinear optics provide excellent proving 
grounds for exploring nonlinear systems with distributed 
coefficients. It has been reported that specific dependen-
cies of the equation coefficients on time variables can  

 V t
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models to corresponding solutions of the nonautonomous 
NLS system. In the following section, we first briefly 
describe the projective approach. In Section 3, a general 
exact solution to the nonautonomous NLS system will be 
derived via the SPA. A brief summary and discussion is 
given in the last section. 

2. A Brief Review on the Projective 
Approach 

In recent decades, many powerful approaches have been 
devised, such as inverse scattering theory, Bäcklund 
transformation, Hirota’s bilinear method, Darboux trans-
formation, the hyperbola function method, the mixed 
exponential method, homogeneous balance method, and 
multilinear variable separation approach et al. [9]. Be-
sides these methods, one can also obtain solutions of a 
nonlinear partial differential equations (NLPDEs) by the 
technical of establishing and making full advantage of a 
direct projective relation between the given NLPDE and 
other NLPDE and its known solutions sometimes. For 
example, using a deformation projective method first 
presented by Lou and his coworkers [10], some scholars 
[11-13] obtained many soliton solutions and periodic 
solutions of nonlinear models through finding some rela-
tions between the exact solutions of the given models and 
those of the cubic nonlinear Klein-Gordon (NKG) system 
which has been studied widely in the previous literature 
[10]. The basic idea of the algorithm is as follows: For a 
general nonlinear physical system 

   0 1 2= , , , , ,P v P x t x x x v , , , ,n x x xi i j
v v 

 1 2= , , ,
T

qv v v

  , ,
T

qP v

 P v v

 =
n

   (2) 

where , v v

     1 2= ,P v P v P v , 

i  are polynomials of i  and their derivatives, (T 
indicates the transposition of a matrix). By using a tra- 
velling wave transformation based on the following 
ansatz 

=0 k kk i i= ,v v x   , where k  are real 
arbitrary constants, and substituting the ansatz into Equa-
tion (2) yields an ordinary differential equation system. 
Then  iv   is expanded into a polynomial in   

= 1, 2, , ,kx i q

 

 
=0 =0

= , ,
N n

j
i ij k

j k

v           (3) 

where ij  are constants to be determined and N is fixed 
by balancing the linear term of the highest order with the 
nonlinear term in Equation (2). If we suppose  
   = tanh   ,   = s  ech    and    = sn    

or    = cn    respectively, then the corresponding 
approaches are usually called the tanh-function method, 
the sech-function method and the Jacobian-function 
method. Although the Jacobian elliptic function method 

is more improved than the tanh-function method and the 
sech-function method, the repeated calculations are often 
tedious since the different function   

 

 should be 
treated in a repeated way. The idea of deformation pro-
jective approach is that,  

2='

 is not assumed to be a 
specific function, such as tanh, sech, sn and cn, etc., but a 
solution of the projective equation, such as the Riccati 
equation    , (  is a constant and the prime 
denotes differentiation with respect to  ), the cubic 
nonlinear KG equation 

2 2 4= c    , (here c,   
and   are all arbitrary constants), or the Jacobian ellip-
tic equation. Using the projective relation (3) and the 
solutions of the related projective equations, one can ob-
tain many explicit and exact travelling wave solutions of 
system (2). Along with this line, some scholars further 
assume that the projective function  is an exact 
excitation of the generalized Jacobian elliptic equation 

  = 

42
=0

= ,j
jj

C  i

      1 2
=

= , , , , , ,

= 1,2, , ,

N
j

i ij n
j N

v x x x t x x x

i q

  


 



 where C  are all arbitrary constants.  

Because the generalized Jacobian elliptic equation pos-
sesses more exact solutions [14], one may derive more 
travelling wave solutions of system (2) than previous 
ones. 

Recently, the above projective transformation ap-
proach is further extended for finding novel localized 
excitations of a physical model [15-17]. With the help of 
projective transformation idea and based on the general 
reduction theory, the projective algorithm is extended 
that: For the system (2) we assume its solution in an ex-
tended symmetric form 

 (4) 

 ij  x x , where   are arbitrary functions to be de-
termined,   is a solution of the Riccati equation or the 
generalized Jacobian elliptic equation. N is also deter-
mined by balancing the highest nonlinear terms and the 
highest-order partial terms in the given nonlinear system. 
Substituting the ansatz (4) together with the related pro-
jective equations into Equation (2), collecting coeffi-
cients of polynomials of  , then setting each coefficient 
to zero, yields a set of partial differential equations con-
cerning  ij  x x  and 

 
. Solving the system of par-

tial differential equations to obtain ij  x x  and  , 
substituting the derived results and the solutions of the 
related projective equations into Equation (4), one can 
derive many exact solutions to the given nonlinear sys-
tem. 

Motivated by the above ideas, one may assume a self- 
similar family model as the projective equation, which 
has been extensively studied in other literature [18,19]. 
For instant, when discussing a nonautonomous Korteweg-de 
Vries (KdV) system, we may use the classical (1 + 1)- 
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dimensional KdV equation as a projective equation since 
the autonomous KdV equation has been widely explored. 
In the following part of the paper, the (1 + 1)-dimen-
sional nonautonomous NLS system is selected to illus-
trate the selfsimilarity projective approach, and a general 
exact solution to the nonautonomous NLS system is de-
rived, which can convert all exact solutions of self-simi-
lar well-known standard nonlinear Schröding equation to 
the corresponding exact solutions of the nonautonomous 
NLS system. 

3. An Exact Projective Solution to the 
Nonautonomous NLS System 

The standard nonlinear Schrödinger (NLS) equation can 
be used as a self-similar projective equation of the 
nonautonomous NLS system assumed, the dimensionless 
autonomous NLS form is 

2
= ,i i    

,

           (5) 

where    = , are system parameters,      is a 
complex wave function of related system dynamics in 
physical fields such as BBCs and nonlinear optics. As is 
known, the nature of NLS equation has been widely ex-
plored via different approaches before, and its exact so-
lutions are vast in related literature. For example, when 

= 1 2  and = 1 , the NLS equation possesses a ca-
nonical bright soliton solution      exp 2i ,   = sech , 
while = 1 2   and = 1 , the NLS equation has a 
fundamental dark soliton solution 

     , = tanh exp i    

  exp , ,

. 

For more detailed information, one may refer to a re-
view in reference [20]. Actually, in (1 + 1) dimensions, it 
has been proven when a physical system can be ex-
pressed by a partial differential equation, then under 
some suitable approximations, one can always find non- 
linear Schrödinger type equation [21,22]. This is why the 
(1 + 1)-dimensional nonlinear Schrödinger system can be 
successfully used in almost all the physical branches. 

In order to build a direct projective relation between 
the nonautonomous NLS system (1) and the standard 
NLS Equation (5), we construct an ansatz to the no- 
nautonomous NLS system as follows 

        , = , ,x t x t t A    t i x t

 ,

  (6) 

where     is an exact complex solution to the stan-
dard NLS Equation (5),    , ,  x t t   are similarity 
variables,  ,x t  is a similarity wave phase, and 
 A t  is a time-dependent function to modulate the wave 

amplitude to be determined. The reason for  A t
 

 to be 
factored out of   , , x t   t  in format (6) is the ex-
istence of the coefficients functions of time t in Equation 
(1). All the parameters all real differential functions, and 

should be well chosen to avoid some singularity of the 
complex wave function  ,x t . Substituting Equation 
(6) together with Equation (5) into the nonautonomous 
NLS system (1), collecting coefficients of polynomials of 
  and its derivatives, then setting each coefficient to 
zero, yields a set of partial differential equations 

= 0,t xxA fA hA              (7)   

2 = 0,tgA 

= 0,x tf

                (8) 

                (9)  

= 0,xx                   (10) 
2 2 = 0,x tf Vx  

2 = 0t x xf

           (11) 

  . 

 

            (12) 

After some careful and direct algebra, one can obtains 
the amplitude, self-similarity variables and phase of the 
complex wave pulse 

 
1

2
= ,

g
A t H t

f




 

             (13) 

   
2

2
0 10

, = d ,
tg g

x t H t x C H t t C
f f

  

 

    (14) 

 
2

2
20

1
= d ,

t g
t H t t C

f





 

        (15) 

 
   

 

2 0

2 2
20

30

2 21
, =

2 2

              d ,
4

tt t

t

H tf g C g
x t h x H t x

f f g H t f

C g
H t t C

f

 
      

 

 

2 3, , ,C C C C

 

(16) 

 Hwhere 0 1  are integrable constants, t

   

 is 
defined by 

 0
= exp 2 d ,

t
t h s sH           (17) 

and with a constraint condition 

2 2

2 2

2

2
2 2 2 4 = 0.

tt tt t t t t

t t
t

g f g f g f

g f f gg f

f g
h h h fV

f g

   

 
     

 

= 0h

   (18) 

It is interesting to note that when the net gain coeffi-
cient , the constraint condition (18) becomes 

2 2

2 2

2
4 = 0,tt tt t t t tg f g f g f

fV
g f f gg f
        (19) 

which is just the completely integrable compatibility 
condition via the Painlevé analysis [4,7], i.e., a subtle 
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balance condition to keep the nonautonomous NLS sys-
tem integrable. 

From the management viewpoint of the solitons, 
Equation (18) provides an effectively way to manipulate 
soliton dynamics. When any three parameters among 
  ,   , ,f t g  V tt h t  and  are set, the remaining one 

can be tuned correspondingly via Eqaution (18) to con-
trol the coherent dynamics of solitons. Actually, some 
special applications of equation (18) have been explored 
in reference [7]. However, the general selfsimilarity pro-
jective transformations (13)-(16) were not reported in the 
previous literature. Such transformations are quite system-
atic in obtaining the exact solutions of the nonautono-
mous NLS system. For a given nonautonomous NLS 
system or its similar versions, we first check if the coef-
ficients satisfy the constrain condition Equation (18). If it 
is true, then the nonautonomous NLS system can be re-
duced to the standard NLS Equation (5). All allowed 
exact solutions, including canonical solitons, of the stan-
dard NLS Equation (5) can be converted into the corre-
sponding exact solutions of the nonautonomous NLS 
system. In the sense, the canonical soliton of the standard 
NLS equation can be naturally viewed as a seed solution 
of the corresponding localized solutions of Equation (1) 
under the compatibility condition Equation (18). For 
example, when = 1 2  and = 1 , a simple exact so-
lution of the NLS Equation (5) is given by 

 
 0 1 2 3 1

   ,

= dn , expk k k m i

  

    2 3 ,        

 

 (20) 

where 

2 2 2
1 1

,
2

m k
0 1 2 1 1 2

2
= , = , =k k k


  

 

, , ,k k

 (21) 

and 1 3 1 3 
m

 are arbitrary constants, dn(·, m) de-
notes the dn type Jacobian elliptic function with  
being its modulus. This leads to the following family of 
double periodic wave solutions to the nonautonomous 
NLS system (1) 

      
1

2

0

2
, = dn , ,

g   exp , ,x t H t x t m
f

 
 
 
 

i x t   

(22) 
where 

     2
3d ,

2

1 2 0
, = 2

tg g
x t k H t x k

f
   H t t k

f
   (23) 

   
 

 
2

2
2 30

2 21
, =

2

               2 d ,

tt t

t

H tf g 2
1

g
x t h x x

f f g H t

g
H t t

f
 

  

 

f


 
   

 

 , = 0,1, 2,3C j

1m 

 (24) 

and the integrable constants j  in Equa-
tions (13)-(16) are set to be zero for simplicity. In the 
limit case , the above double periodic wave solu-
tion (22) will be reduced to a solitary wave solution 

 

 

   

  

1

2

0

2
2

1 2 30

  ,

2
=

  sech 2 d

   exp , .

s

t

x t

g
H t

f

g g
k H t x k H t t k

f f

i x t




 
 
 

 
   

 
 


 (25) 

with the constraint condition (18). As a special case, if 
  = 0h t  and   = 0V t

      0
= exp d ,

t

, the constrain condition (18) 
becomes 

t g t g s s f        (26) 

where   is a integrable constant, then the above corre-
sponding exact solutions read 

 

        
  

1

2
0 1 2 30

,

= 2 dn 2 d ,

exp , ,

t

x t

G t k G t x k g t G t t k m

i x t

  



  

 

  

(27) 

 

        
  

1

2
0 1 2 30

,

= 2 sech 2 d

exp , ,

s

t

x t

G t k G t x k g t G t t k

i x t

  



  

 



 

 

(28) 
where 

     2
1 2 30

, = 2 d ,
4

t
x t G t x G t x gG t t  

       

    0
= exp d .

t
G t g s s  

 (29) 

with 

        (30) 

 gOnce the nonlinear parameter t

  = 0h t

 is explicitly 
given, then all the exact solutions and their related dy-
namic behaviors of the nonautonomous NLS system are 
correspondingly determined. For integrality and readabi- 
lity, some remarks are given as follows: 

Firstly, as a special situation, if ,  = 0V t  
and    =t g t = 0, i.e., f   in Equation (26), the 
nonautonomous NLS system (1) has the canonical soliton 
solutions regardless of the explicit form of the time- de-
pendent nonlinearity and dispersion. This is because in 
this case the the constraint condition is identified and the 

 A t  is a constant scale factor . In this sense  
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the soliton solution of Equation (1) is a fundamental ca-
nonical soliton. While    f t g t 0, i.e.,    in 
Equation (26), the original balance between nonlinearity 
and dispersion is broken down. In the case the canonical 
soliton must deform itself to build new balance between 
nonlinearity and dispersion, and the soliton-like solution 
of Equation (1) is a deformed canonical soliton or a 
similariton due to the amplitude of the soliton scaled by 
the factor  A t . And it actually means that if   = 0h t

 V t
 

and , the exact solitons of the nonautonomous 
NLS system (1) are quasi-canonical or deformed solitons 
depending on if 

= 0

 f t  is equal to  g t  or not as men-
tioned above. 

Secondly, for more general cases, if   0h t   and 
, the constraint condition (18) indicates that   0V t 

   f t g t
 

, which means the amplitude of the soliton 
must vary with factor A t . This leads to an important 
and a novel phenomenon that there does not exist the 
canonical and even quasi-canonical matter-wave solitons 
under the constraint condition (18). However, when we 

set   =g f H t  , ( 0 

 
 is an arbitrary constant), 

i.e., =A t   

 

, 

     0
xp 4 d ,

t2= eg t f t h s s 
 V t

       (31) 

and  is tuned by the constraint condition (18) as 
follows 

   22 ,t thf fh 

 

2

1
=

2
V t fh

f
       (32) 

then we can rederive fundamental canonical solitons, 
which distinctly indicates the influence of the dispersion, 
nonlinear managements and net gain to the localized ex-
citation behaviors. 

Finally, it is also interesting to mention that the exter-
nal trap potential V t  is absent in the selfsimilarity 
projective transformations (13)-(16). However, the pres-
ence of the potential affects the balance between nonlin-
earity, dispersion and net gain via the constraint condi-
tion (18), and builds a deep relation between the optical 
solitons and the matter-waves. 

4. Summary and Discussion 

In summary, the direct self-similarity projective approach 
is successfully applied to the nonautonomous nonlinear 
Schrödinger system. In terms of the known exact solu-
tions of the self-similarity projective equation, i.e., the 
standard nonlinear Schröding equation, some significant 
types of localized excitations with novel properties are 
correspondingly revealed by entrancing appropriate sys-
tem parameters. The present analysis can be applied to 
all exact solutions of the nonautonomous nonlinear 
Schrödinger system. The self-similarity projective ap-  

proach provides an effective and a systematical way to 
investigate the nonlinear dynamics of the nonautono-
mous nonlinear Schrödinger system. By the way, as a 
comparison it is helpful to mention some techniques to 
find the localized excitation solutions of the nonautono-
mous NLS equation in previous literature. The Lax pair 
analysis is very useful in discussing integrability condi-
tions. And a widely used approach is the deformation 
projective method, which introduces some explicit trans-
formation parameters. These parameters are determined 
by a set of partial differential equations, which in general 
case are little solved analytically as emphasized in refer-
ence [23]. Another similarity transformation reducing the 
nonautonomous nonlinear Schrödinger equation to a sta-
tionary NLS one has also been introduced [24]. Alterna-
tively, by the Lie point symmetry group analysis, the 
nonautonomous nonlinear Schrödinger system or its 
similar versions can be classified into different classes 
and each one can be converted into the corresponding 
representative equation by some allowed transformations. 
As a result, some exact solutions of the representative 
equation can be transformed into the corresponding solu-
tions of the equations in the same class. However, it was 
also pointed out in [25] that in most cases it is still diffi-
cult to obtain the exact solutions of these representative 
equations and the integrability of certain representative 
equations is not clear. Quite different from the above 
mentioned techniques, the present work builds a direct 
connection between the nonautonomous NLS equation 
and its autonomous counterpart, which provides a more 
systematical way to find exact solutions of the no- 
nautonomous NLS equation. The corresponding trans- 
formation formulas are explicit and straightforward. 
Furthermore, one can naturally derive the integrable con-
strain condition (18) via the SPA rather than some inte-
grable conditions via Painlevé analysis first in previous 
discussions. From the control viewpoint, the self-similar-
ity projective approach provides an effective and a po- 
werful way to control the soliton dynamics as mentioned 
above. In addition, the SPA that we use to solve the 
nonautonomous nonlinear Schrödinger system will pave 
the way to new methods for solving high-dimensional 
partial differential equations. 
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