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ABSTRACT 

Taylor vortex flow between two concentric rotating cylinders with finite axial length includes various patterns of lami- 
nar and turbulent flows, and its behavior has attracted great interests. When mode bifurcation occurs, quantitative pa- 
rameters such as the volume-averaged energy change rapidly. It is important to visualize the behaviors of vortices. In 
this study, a three-dimensional visualization system with respect to time is devised. This system can change the view- 
point of flow visualization, and we can observe the track of a vortex from any point. The volume-averaged energy is 
projected to the track of the center of a vortex. The proposed system can help to investigate the relationship between the 
mode bifurcation process and the volume-averaged energy. 
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1. Introduction 

Taylor vortex flow has been studied as an important vor- 
tex flow since it was first reported by Taylor in 1923 [1]. 
In a concentric double cylinder, when the rotation speed 
of the inner cylinder is gradually increased from zero, 
Couette flow first occurs in the gap between the inner 
and outer cylinders. When the rotation speed of the inner 
cylinder is further increased, Couette flow changes to 
Taylor vortex flow, in which many torus flows called 
cells are stacked, then to wavy Taylor vortex flow, and 
finally to turbulent flow. Taylor vortex flow often ap- 
pears in journal bearings, hydrodynamic machines and 
containers for chemical reactions, and clarification of the 
mechanism of Taylor vortex flow is highly important for 
the engineering field. 

Since Taylor’s study, Taylor vortex flow has been 
studied by many researchers, and the complexity of the 
flow has been clarified. Unsteady flow (e.g. Taylor vor- 
tex flow) causes unstable change in the physical quanti- 
ties that characterize the flow. Pacheco et al. [2] showed 
experimentally that in small aspect-ratio Taylor-Couette 
flows have a band in the parameter space where rotating 
waves become steady nonaxisymmetric solutions via in- 
finite-period bifurcations. Martinand et al. [3] showed 
that imposing axial flow in the annulus and radial flow 
through the cylindrical walls in a Taylor Couette system 
alters the stability of the flow. To analyze these unsteady 
flows, authors focused on quantitative values such as a 

mean energy [4]. The kinetic energy and enstrophy for 
flows with different final modes are compared. 

In this study, the flow structure of Taylor vortex flow 
is investigated numerically, where the inner cylinder is 
rotating, and the outer cylinder and both the upper and 
lower end walls are stationary. The main parameters in 
this study are the aspect ratio which is the ratio of the 
cylinder length to the gap between the cylinders, and the 
Reynolds number, which is estimated from the velocity 
of the inner cylinder. Changes in these parameters lead to 
the generation of various flow structures. In this study, 
the mode formation process and the bifurcation of Taylor 
vortex flow are analyzed. 

2. Identification of Vortices 

The most common method of identifying vortices is to 
use the velocity vector (Figure 1(a)). Figures 1(b)-(d) 
show the visualization methods using the vorticity, Q 
invariant and Stokes’ stream function, respectively. The 
visualization method using vorticity cannot distinguish 
the vortices. The center positions obtained using the Q 
invariant do not correspond to the centers of the vortices. 
On the other hand, the center positions obtained using 
Stokes’ stream function shows good agreement with 
those obtained from the velocity vector. 

Figure 2 shows a comparison between the velocity 
vector and Stokes’ stream function. The left-hand figure 
is a schematic flow pattern of the normal four-cell mode 
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(a)            (b)             (c)            (d) 

Figure 1. Comparison of visualization methods. (a) Velocity 
vector; (b) Vorticity; (c) Q invariant; (d) Stream function. 
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Figure 2. Comparison for N4. 
 
(N4). The center figure and right-hand figure respect- 
tively show the velocity vector and the contours of Stokes’ 
stream function. The contours of Stokes’ stream function 
can be clearly used to identify the centers of vortices. 
Moreover, using Stokes’ stream function it is possible to 
distinguish the borders of vortices. Figure 3 shows the 
flow of the anomalous four-cell mode (A4). Stokes’ 
stream function can be used to confirm the existence of 
extra vortices and to identify the centers of the extra vor- 
tices. Thus, the contours of Stokes’ stream function are 
adopted to analyze the mode formation process and the 
bifurcation of Taylor vortex flow in this study. 

3. Numerical Method 

The governing equations are the axisymmetric unsteady 
incompressible Navier-Stokes equation with cylindrical 
coordinates (r, θ, z) and the continuity equation. 

We use both SOR and ILUCGS methods to solve 
Poisson’s equation for pressure. The stress-free boundary  
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Figure 3. Comparison for A4. 
 
condition was used for the upper end wall and the sta- 
tionary (non-slip) condition is used for the lower end 
wall. We applied Neumann conditions based on the mo- 
mentum equation for pressure. As the initial condition, 
all velocity components are zero. Mixed solution of wa- 
ter and glycerin is assumed to be the working fluid, and 
its dynamic viscosity is 6.0 × 10–6 m2/s. For the discreti- 
zation method, we apply the QUICK method for convec- 
tion terms, the second-order central difference method 
for the other space integration, and Euler’s method for 
the time integration. Grids are staggered and equidistant 
in each direction. The number of grid points is 41 in the 
radial direction, and the number of grid points in the ax- 
ial direction is proportionally adjusted so that it becomes 
approximately 42 for the aspect ratio of 1.0. In order to 
examine the validity of the number of grid points, we 
analyzed Taylor vortex flow using several types of grids 
under various numerical conditions, and concluded that 
there are no differences among the modes that are finally 
formed, the formation of modes up to the final mode, and 
the manner of decay of the vortexes. 

4. Method of Tracking Unsteady Motion 

Figure 4 shows Taylor vortex flow. The right hand figure 
shows the contours of Stokes’ stream function ψ, defined 
as follows.  

1
u

r z


 


 

1
w

r r


 


          (1) 

Here, u and w are the velocity components in the radial 
and circumferential direction, respectively, and r denotes 
the coordinate in the radial direction. In Figure 4, the left 
hand indicates the rotating inner cylinder and the right 
hand shows the stationary outer cylinder. The red region 
indicates where ψ becomes positive, that is, the cell is 
rotating clockwise. The blue region indicates where ψ is 
negative, that is, and the cell rotating counterclockwise.  

Copyright © 2012 SciRes.                                                                                 WJM 



H. FURUKAWA 190 

 

L 

r 

z 

ro 
ri 

ω 

 

Figure 4. Taylor vortex flow. 
 
There are extreme in the contours of the stream function. 
The positions of which the extreme values of the stream 
function appear are defined as the centers of vortices. The 
black lines in Figure 4 are the trajectories of the centers 
of vortices. The centers are important parameters for show- 
ing the flow structure. 

The modes of Taylor vortex flow are roughly divided 
into two: normal modes and anomalous modes. The nor- 
mal and anomalous modes are defined as below and de- 
pend on the end-wall boundary condition of the cylinder 
and the flow direction in the vicinity of the end walls. 
When the cylinder end wall is stationary, the normal 
mode has a flow from the outer cylinder to the inner cyl- 
inder (inward flow) in the vicinity of the end wall, while 
the anomalous mode has a flow from the inner cylinder to 
the outer cylinder (outward flow). In the previous study, it 
was confirmed that the anomalous mode has extra vor- 
tices [5]. 

The following variables are defined: the radii of the in- 
ner and outer cylinders are ri and ro, respectively, and the 
radius ratio η ( ri/ro) is set to 0.667. The aspect ratio Γ is 
the ratio of the cylinder length, L, to the radial difference 
between the cylinders, D (= ro – ri). The angular velocity 
of the inner cylinder is ω, and the Reynolds number, Re, 
is estimated using ri, ω and D. All physical parameters 
are made dimensionless using the characteristic length L 
and characteristic velocity riω. 

5. Correspondence of Vortices 

It is necessary to confirm that the history of each center 
completely corresponds. When the past and current cen- 
ters of vortices are identical, it is called complete corre- 
spondence. When they are different, it is called noncor- 
respondence. Incomplete correspondence is defined as a 
flow in which the past and current vortices belong to 
same vortex but do not appear to be identical. The condi- 
tions used to classify the correspondence of vortices are 
as follows: 

1) The distance between the past and current centers of 
a vortex is less than 5 lattices. 

2) The past and current centers of a vortex are in- 
cluded in the same vortex. 

Complete correspondence satisfies both 1) and 2), 
noncorrespondence does not satisfy both 1) and 2), and 
incomplete correspondence is defined as other than these 
cases. 

Figure 5(a) shows a flow field at time step t, and Fig- 
ure 5(b) shows the flow field at time step t + 1. Figure 
5(c) shows a comparison of the vortices and their centers 
between time step t and t + 1. Plus signs denote the cen- 
ters. The arrows and numbers show the correspondence 
of the history of each vortex. Number 1 shows an exam- 
ple of noncorrespondence. The center of the vortex at 
time step t is not included in the area of the vortex at time 
step t + 1. Moreover, the center of the vortex at time step 
t + 1 is not included in the area of the vortex at time step 
t. Number 2 shows an example of incomplete corre- 
sponddence. Although the centers of the vortex at time 
steps t and t + 1 are included in the same vortex area, the 
distance between the centers at time steps t and t + 1 is 
more than 5 lattices. Number 3 shows an example of 
complete correspondence. The centers of the vortex at 
time steps t and t + 1 are included in the same vortex area, 
and the distance between centers of the vortices is less 
than 5 lattices. 

6. Tracking of Vortex Behavior 

6.1. Flow Development of Normal Mode 

Figure 6 shows tracks illustrating the formation process 
of the normal two-cell mode (N2). The Reynolds number 
is 200, and the aspect ratio is 3.0 in this calculation 
model. Vortices develop near the center of the inner cyl- 
inder at the fixed wall, and a total of six unstable vortices 
develop, including the two produced at the upper and 
lower ends of the cylinder. The vortices at the upper and  
 

 

t and t + 1 

(a) + (b) 

t + 1t
 

(a)            (b)                          (c) 

Figure 5. Pattern diagrams showing process of tracking 
vortices. 
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0.24   0.72    1.68     3.6    7.2    11.28
Non-dimensional time 

16.08  21.12   29.52   31.21  32.64   48.72
Non-dimensional time 

 

Figure 6. Flow development of N2. (Re: 200, Γ: 3.0). 
 
lower ends remain, and where the four central vortices 
are absorbed and eventually disappear. The two remain- 
ing vortices become stable, and the normal two-cell 
mode develops. The figure clearly shows that the visu- 
alization system in this study successfully captures the 
tracks of the centers of the vortices. 

6.2. Flow Development of Anomalous Mode 

Figure 7 shows the mode formation process of the ano- 
malous four-cell mode (A4). The Reynolds number is 
650, and the aspect ratio is 4.2. First, vortices are pro- 
duced near the center of the inner cylinder, and then they 
grow. Other vortices are produced at the ends of the inner 
cylinder. The transition of the mode to the anomalous 
four-cell mode begins when the nondimensional time is 
about 31.2. Four extra vortices are observed near both 
upper and lower end walls. 

7. Three-Dimensional Display Using Java3D 

In the previous analysis, we presented the calculated re- 
sults in two dimensions. However, to investigate the time 
dependence of the mode formation process, it is neces- 
sary to present the position of each vortex with respect to 
time. To clarify the complex process of vortex develop- 
ment with respect to time, we represent the behaviors of 
vortices in three dimensions using the Java3D library. 
Figure 8 shows an example of a track of a vortex ob- 
tained using the interactive visualization system. The 
calculation step axis is shown in green, the radial direc- 
tion is in yellow and the axial direction in blue. In this  

 

7.8    15.6    23.4    31.2   46.8    54.6 
Non-dimensional time 

54.6    70.2    85.8   93.6   101.4   156.0

Non-dimensional time 

 

Figure 7. Flow development of A4. (Re: 650, Γ: 4.2). 
 

system, the viewpoint of flow visualization can be 
changed. (Figure 9) We can observe the track of a vortex 
from any point by dragging the mouse, or by keyboard 
operation. The number attached to each box shown on 
the right-hand side of the screen corresponds to the 
number assigned to the center of the vortex. Only the 
tracks of the centers of vortices whose boxes have a 
check mark are displayed. The tracks of multiple centers 
can be displayed by checking multiple boxes. When a 
vortex remains until the final mode, the word “final” is 
added to the end of the center number after the check box. 
Such vortices play an important role in mode formation 
processes. 

Three-Dimensional Display of Normal Mode 

Figure 10 shows the tracks of a vortex that remained 
until the final normal two-cell mode. The Reynolds 
number of 200, and an aspect ratio of 3.0 are used, which 
are the same as the conditions used for Figure 6. Figure 
10 shows calculated results using the Java3D library for 
the t-z plane observed from the r direction and for the r-z 
plane observed from the direction of the calculation time 
step axis. Two vortices that develop at the upper and 
lower ends of the inner cylinder gradually move to the 
middle of the cylinder in the vertical direction and re- 
main of a constant distance. They then move horizontally.     
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Figure 8. 3D visualization system. 
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Figure 9. Example of 3D display. 
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Figure 10. Example of 3D display. (Re: 200, Γ: 3.0). (a) Nondimensional time-z plane; (b) r-z plane. 
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The centers of the two vortices move symmetrically with 
respect to the midplane in the axial direction. 

time of 600. After the Reynolds number begins to de- 
crease, the pair of vortices near the midplane in the axial 
direction become smaller. The two center vortices weak- 
en and disappear, and finally the flow becomes the nor- 
mal two-cell mode. 

8. Projection of Quantitative Parameter 

8.1. Bifurcation Process of Taylor Vortex Flow 

8.2. Bifurcation Process Displayed in Three 
Dimension 

When the Reynolds number is changed after a stable 
mode appears, a mode bifurcation occurs and the flow 
becomes another mode. Figure 11 shows the tracks of 
vortex centers during the formation process from the 
normal four-cell mode to the normal two-cell mode. A 
change in the Reynolds number is from 700 to 350, and 
an aspect ratio is 2.8. The Reynolds number is kept con- 
stant up to a nondimensional time of 2100, and then it is 
decreased linearly from 700 to 350 at nondimensional 
time of 4200. The Reynolds number is 700 in the figures 
showing Stokes’ stream function contours 1 to 7, and is 
decreased from 700 to 350 in the figures showing Stokes’ 
stream function contours 8 to 11. The Reynolds number 
is 350 in the figure showing Stokes’ stream function 
contours 12. In the bifurcation process, two centers vor- 
tices are initially larger than the upper and lower vortices 
until the figure showing Stokes’ stream function contour 
4. The upper and lower vortices gradually develop, and 
each vortex begins to oscillate after a nondimensional 

During the mode bifurcation, the characteristic parame- 
ters such as the volume-averaged energy oscillate and 
affect the flow structure. In this study, we develop an 
interactive visualization system that can project the quan- 
titative parameter of each vortex to the track line in three 
dimensions. Figure 12 shows the tracks of vortices ob- 
tained using the interactive visualization system. The 
Reynolds number and aspect ratio are the same as those 
in Figure 11. The color of each track indicates the vol- 
ume-averaged energy. High values are shown in red, and 
low values are shown in blue. Using this method, we can 
clarify the relation between the flow behavior and vol- 
ume-averaged energy. 

The tracks of the centers of the vortices numbered by 1 
- 4 are shown in Figure 12(a). Regions A and B are 
shown in Figure 12(b). Region A includes time steps 5 - 
7 shown in Figure 11, while region B contains time steps 
8 - 11. The positions of the centers oscillate slightly in 
region A. In this region, the change in color indicates the 
oscillation of the volume-averaged energy in vortices 1 
and 4. After the decrease in the Reynolds number, the 
oscillation disappears. Comparing each vortex, the vol- 
ume-averaged energies of vortices 1 and 4 are higher 
than those of vortices 2 and 3 when the Reynolds number 
is 700. After the decrease in the Reynolds number, vor- 
tices 2 and 3, whose volume-averaged energies are low, 
weaken and disappear. Then, the remaining vortices be- 
come stable and the normal two-cell mode appears. This 
mode transition occurs during the time shown in region B. 
After vortices 2 and 3 disappear, the volume-averaged 
energies of vortices 1 and 4 become high. After that, the 
volume-averaged energies of the remaining vortices de- 
crease and the flow field becomes stable. 
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9. Discussion 

To display the tracking results in three-dimensions, we 
followed the centers of the vortices using the Java3D 
library. Using this method, we can observe the mode for- 
mation processes in three-dimensional coordinates. Tracks 
showing the movement of vortices before their full de- 
velopment and vortices with complicated behavior that 
are difficult to observe by a two-dimensional representa- 
tion can easily be observed. Observation of the develop- 
ment process from various viewpoints is an effective 

eans of tracking the development of vortices. 
Figure 11. Mode formation process from N4 to N2. (Re: 700 
- 350, Γ: 2.8). m 
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Figure 12. Bifurcation process in 3D visualization system. (Re: 700 - 350, Γ: 2.8). (a) 3D visualization system. (Volume-averaged 
energy); (b) Nondimensional time-z plane; (c) r-z plane. 
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In the early stage of mode formation, vortices develop 

on the midplane in the axial direction and at the upper 
and lower ends of the inner cylinder. During the mode 
bifurcation, vortices whose volume-averaged energies are 
weak disappear. After the bifurcation, the volume-averaged 
energies of the remaining vortices become large for a while. 
The volume-averaged energies then decreases and the flow 
becomes stable. The mean energy is closely related to the 
bifurcation process. 

10. Conclusion 

The development of Taylor vortex flow generated in fi- 
nite-length rotating dual cylinders whose upper and 
lower ends were fixed was studied. The behavior of the 
vortices in three dimensions are presented by the Java3D 
library. This visualization system can be used to analyze 
the fusion and disappearance of vortices. The formation 
process for each final mode is nonunique, multiple and 
complicated. Tracks were colored to analyze the changes 
in the values of physical quantities. Using this method, 
changes in the values of physical quantities were measur- 
ed in detail. During the calculation, the Reynolds number 
was changed to investigate the behavior of the volume- 
averaged energy. When vortices disappear, the volume- 
averaged energies of the disappearing vortices are lower 
than those of the other vortices. When mode bifurcation 

occurs, the volume-averaged energy becomes large for a 
while, then decreases gradually, and the flow becomes 
stable. 
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