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ABSTRACT 

Imperfect information regarding the true needs of recipients is a common problem for governmental or not-for-profit 
service providers. This can lead to potentially dangerous under-provision or wasteful over-provision of services. We 
provide a method for optimally improving a service provider’s information regarding true client need through costly 
information gathering. Our contribution is to allow providers to endogenously and optimally choose the intensity of 
information gathering. Providers do so by specifying the level of correlation between observed and true recipient need, 
subject to an arbitrary cost function over the specified correlation. We derive the conditions that characterize the choice 
of optimal correlation for providers with quadratic utility. Using a realistic exponential correlation cost function, we 
show that there exists a critical value of true client need variance below which it is never optimal to engage in informa-
tion gathering. Further, for true client variance above this critical level the optimal correlation will always exceed 0.5. 
Our findings have a wide range of policy implications in areas such as health care, social wellfare and even counter- 
terroism. 
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1. Introduction 

Most commercial firms are motivated to some degree by 
profit; government providers and NGO’s, on the other 
hand, do not generally subscribe to a profit motive. In- 
stead, these providers are motivated by a desire to assist a 
target group of recipients as best as their resources allows. 
In some cases the level of need faced by potential reci- 
pients is clear and the more pressing concern for pro- 
viders is the acquisition of resources, or the rationing of 
resources amongst recipients if available resources fall 
short of observed needs. However, the provider may not 
be able to observe the true needs of recipients perfectly. 
For example, in treating a certain health condition, it may 
not be clear what the true need of the patient is. In such 
cases the provider risks under-treating or over-treating 
the patient. Or in a counter-terrorism setting an intelli- 
gence agency may not know the true risk of a suspect, 
and may inefficiently commit to the costly surveillance 
of a low-threat suspect while inadequately monitoring a 
high-threat suspect. In general, this sort of problem is 
likely to occur in settings where a provider wishes to pro- 
vide a service to a large number of recipients but cannot 
accurately determine the efficient level of services for 

individual recipients, due to imperfect information regar-  
ding each recipient’s true need for the service. 

To reduce the level of imperfect information, the pro- 
vider can engage in information gathering. At times, this 
can be straight-forward. Imagine, for example, a public 
health care provider that has to provide care for a patient 
that presents herself with an injury to her arm after a fall. 
An X-ray is likely to provide a sufficient amount of 
information to determine the patient’s true need for ser- 
vice. But what if a patient presents herself with a raised 
temperature, loss of appetite and mild abdominal pain? 
The initial diagnosis could include mild gastroenteritis, 
appendicitis or even cancer. In a world of limitless re- 
sources the provider would simply perform as many tests 
as necessary to determine the true need for care. How- 
ever, in an environment of severe resource limitations, 
the provider needs to carefully assess if the amount of 
additional information obtained by a test is sufficiently 
large to justify the expense. The model presented in this 
paper explictly links the quality of information to the cost 
of obtaining that information, in a setting where the 
service provider can choose the quality of information 
(but at a cost). This formulation allows us to characterise 
the optimal level of costly information gathering, in, for 
instance, a health care setting. *Corresponding author. 
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Our research topic is related to the literature on infor- 
mation gathering and signal extraction. Papers in this 
literature generally consider a situation where an un- 
derlying signal X is added to a white noise random 
variable ε to yield the observed signal =Y X   (see 
e.g. Burman [1]; Sargent [2]; Boone and Hall [3]). Our 
paper takes a different approach by modeling noise (or 
signal quality) via the correlation parameter   between 
the true signal X and the observed signal Y.1 In most of 
the previous literature signal quality is not modeled 
explicitly. An exception is Alles and Lundholm [4], who 
model signal quality in the context of public disclosure of 
information in the securities market. The authors intro- 
duce a signal precision variable and determine how much 
effort a trader should expend in order to obtain a more 
precise signal through costly reduction in the variance of 
the noise term. Our approach differs from Alles and 
Lundholm [4] in two regards. In Alles and Lundholm [4], 
the observed signal is the sum of a market signal (in this 
instance price) and an error term; that is, it follows the 
standard signal extraction model. In our paper, the pro- 
vider observes a signal and noise is modeled via the 
correlation between the true need and the observed signal. 
Furthermore, in Alles and Lundholm [4] signal precision 
is increased by reducing the variance of the error term. In 
our setting, however, this approach does not yield an 
analytically tractable solution. 

Thus a key contribution of our paper is the develop- 
ment of a signal extraction model that enables us to ob- 
tain tractable results in a setting where the standard 
signal extraction specification fails. The solution thus 
obtained provides insights into the link between the qua- 
lity of information obtained and signal extraction costs. 
This is done by linking information cost to the corre- 
lation between the true distribution of client need and the 
observed distribution of client need. Furthermore, we 
endogenise the level of correlation by letting the provider 
optimally select the desired level of correlation given an 
arbitrary cost function defined over such correlation. 

We find that for a provider with quadratic utility, opti- 
mal service is a linear transformation of the observed 
client need, parametrized by the correlation between true 
client need and observed client need as well as the 
variance of observed client need. We also derive the first 
and second order conditions which the optimal choice of 
correlation should satisfy, which, along with the optimal 
service relationship above, maximizes overall provider 
utility. 

We illustrate our model by specifying a bounded do- 
main exponential correlation cost function. We show that 
with such a correlation cost function, there exists a 
critical value of true client need variance below which it 

is optimal not to gather information and above which  

only correlations exceeding 
1

2
 are optimal. Optimal  

correlation given a true client need standard deviation 
above the critical value is increasing at a decreasing rate, 
and in the limit as true client need standard deviation 
approaches infinity, optimal correlation tends towards 
one. 

While our findings may apply in a variety of economic 
settings, there are clear applications in the public health 
and wellfare sector. Insights into the relationship be- 
tween signal quality and information gathering costs 
could improve decision-making in the areas of waiting 
list prioritization, medication allocation and, more gene- 
rally, needs-based wellfare schemes. Specifically, the 
identification of critical threshold client need variance 
levels may help service providers to identify situations in 
which it would be more efficient to withdraw from any 
information gathering. 

This paper is structured as follows. In section two we 
describe our model and explain how our setting differs 
from existing approaches. Section three provides the so- 
lution to the model. To illustrate our findings we provide 
an example with a specific cost function in section four 
and outline applications in section five. Section six dis- 
cusses empirical implications and section seven conclu- 
des. 

2. Theoretical Model 

Our model setting is as follows. A provider wishes to 
provide for the need of a recipient. Since we are con- 
sidering the best course of action for the provider in 
expectation, the model should be interpreted as being 
applied to a large number of recipients with identically 
and independently distributed (IID) needs.2 

The provider cannot directly observe the true need of 
the recipient, but instead can observe a related variable, 
the signal. We denote by X the numeric representation of 
the recipient’s true need and by Y the signal observed by 
the provider. X and Y are drawn from a bi-variate normal 
distribution3 with correlation   and their marginal dis- 
tributions are given by X X 2~ ,X N   and 

 2~ ,Y N Y Y 

= 0

 respectively. Note that although X and Y 
are both normally distributed they are not independent 
except for the special case where  . 

The provider would like to provide services, denoted 
by , to meet the recipient’s need. We assume that the 
provision of services above or below the recipient’s need 

s

= ( , ).corr X Y

2As long as the recipient’s needs are IID, it does not matter whether 
they are arranged chronologically or cross-sectionally (or both). 
3The true distribution of client need is the distribution of client need 
conditional on the person being a client presenting with a particular 
need and is not the same as the unconditional distribution of need in the 
general population. 

1That is,   
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2 2are inefficient. The impact of inefficiency is modeled by 
subjecting the provider to quadratic utility  (or, 
equivalently, quadratic loss aversion) over inefficiencies 
(

( , )u X s

X s

2
s

= ( , )corr X Y

). 

 ,u X s X            (1) 

The degree to which the provider can avoid inefficiency 
is related to the correlation of its observed signal Y with 
the unobserved true recipient need X. We endogenise the 
correlation between signal and needs   
by letting the provider choose 4 subject to a 
cost function 

  0,1
( )g   expressed in the same units as 

. The provider has overall utility ( ,u X s) ( , , )v X s   
given by 

     
 

g

g

 

 2

,u X s

X s

, ,v X s



 

  
      (2) 

Hence the provider has utility defined over two choice 
variables, services s and correlation  . 

It is easy to show that the provider’s optimal choice of 
service s is simply X. However X—the true client need— 
is not directly observable by the provider and is also a 
random variable. Nonetheless, the provider knows the 
distribution of both X and Y and observes the realization 
of the observed client need Y = y, which is correlated 
with X. Therefore the provider can use Bayesian updating 
to obtain the posterior distribution of X given Y = y, 
which can then be used to compute the expected level of 
true recipient need X. 

We show (in the Appendix as Theorem 1) that the 
optimal level of service delivery, conditional on the 
observed client need Y = y, is given by 

*
= =Y y

X

Y

X Y y X

Y

s y



   


 
 
 




          (3) 

From the perspective of the provider observing Y = y 
the optimal quantum of services  

*
= = X Y

Y y
y XXs y

Y Y

    
 
  




 is therefore a point  

value that it can put forward as its best estimate of X 
under the circumstances. In general s  is a linear trans- 
formation of the random variable Y. Therefore s  is 
itself normally distributed with mean X  and variance 

X .5  
We now extend the model by endogenising the corre- 

lation parameter  ; in simple terms, this allows the 
provider to choose how much to pay for better quality 
information. We show (in the Appendix as Theorem 2) 
that provider utility is maximized in expectation if the 
provider chooses optimal service s  as above and if it 
chooses a correlation   that satisfies one equation (the 
first order condition) and one inequality (the second 
order condition). Formally: 

     2
, ,v X s X s gProvider utility     

=Y y

 2~ , YX N

 con- 
ditional on observed  is maximized in expectation 
given joint normally distributed X   and 

 2~ ,Y YY N   with endogenous correlation  0,1  , 
if 

1) = X X Y Y X

Y Y

s Y
    
 

  
 

 
, and 

 22 X g 2)   , and  

  2> 2 Xg3)   . 

The first condition simply restates our finding regard- 
ing optimal service delivery, given some correlation  . 
The second and third conditions characterizes the optimal 
correlation to be used in calculating the service delivery 
s  in condition one. The second condition states that the 
optimal choice of correlation for the provider should 
equate the marginal cost of information (  g 

22
) with the 

marginal benefit ( X ). The third condition enforces 
second order conditions for maximum provider utility— 
this ensures that the correlation is chosen to maximize 
rather than minimize provider utility. 

3. Costly Information 

To make the above more concrete, we consider a specific 
correlation cost function in the form 

   = ln 1g    

= 1

          (4) 

5
For expectation, 

 

4This excludes the choice of  , in which case  is per-= =X Y y

fectly observed and the model is trivially solved with =s y

= 1

. We ex-

clude   because the joint density function XYf  requires 1  . 

The other corner solution = 0  implies that X is independent of Y

(since they are jointly normal) and therefore the provider should simply 
use = [ ] = Xs E X  . 

*[ ] =

= [ ]

=

= =

X Y y XX

Y Y

X Y y XX

Y Y

X Y y XX
Y

Y Y

y X X Y y X

X

Y

E s E Y

E Y

   
 

   
 

    
 

     




  
  

  
 

 
 

 
 

 
 

  

and for variance  

 

*

2 2
2 2

2 2 2 2

2

= =

= = = =

X Y y XX X

Y Y Y

X X X
Y Y X

Y Y Y

VAR s VAR Y VAR Y

VAR Y

    
  

      
  

      
         

      

   
   
   

. 
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as plotted in Figure 1, with > 0 . Note that the para- 
meter  g  regulates the degree of curvature of   
over the interval .   0,1

 g

This specific function has a number of properties that 
make it quite appealing as a correlation cost function. 
First, the correlation cost function   is strictly in- 
creasing in  , consistent with the intuition that addi- 
tional information incurs additional cost. Second, it is 
increasing at an increasing rate in  . This corresponds 
to the notion that obtaining additional information be- 
comes increasingly expensive, or alternatively, that in- 
cremental dollars reveal less and less incremental infor- 
mation—the law of diminishing returns. Finally,  g   
tends towards infinity as   tends towards 1. In other 
words, perfect information ( 1  ) is prohibitively ex- 
pensive, as is often the case in practice. 

We show (in the Appendix as Theorem 3) that, given a 
correlation cost function in this form, the optimal choice 
of correlation is given by 

2 2

2
X X

X

* =
  


 

           (5) 

if 2X  0 

22

 and by  otherwise. 
Graphically (Figure 2), this solution can be represented 

as the intersection of the plane X

 g

—representing 
provider marginal (inefficiency related) utility—and 

 , representing provider marginal cost of correlation 
(this is the gray surface that does not vary along X ). 

To summarize, two major features emerge from the 
model. First, we show the existence of a critical value of 
true client need standard deviation = 2X   such that 
below that critical value there is never any benefit in 
increasing correlation   beyond zero. The provider’s 
optimal course of action for < 2X 


 is to simply use 

 Xs E X    and let 0  . Second, for 2X    

an optimal interior 
1

2
   exists and the limit of this  

solution as X  tends to infinity is 1  . Combined 
with the previous point, this means that it is never op-  

timal to select a   strictly between 0 and 
1

2
. 

This is clearly illustrated in Figure 3 below, which 
plots the two optimal solutions to correlation   against 
recipient needs standard deviation X  for 1  . 

4. Empirical Predictions 

While we have framed our model normatively—that is, 
what an optimal provider should do—it can also be 
interpreted descriptively, that is, as a theory of provider 
behavior that could be tested empirically. 

Equation (14) can be rewritten as an ordinary least 
squares estimation in the form 

 

( ) ( )g ρ α ρ = ln 1  for Figure 1. Correlation cost function 

 α 0.5,1,2  as a function of ρ. 

 

 

Figure 2. Marginal inefficiency related utility and marginal 
cost of correlation plotted against σX and ρ.  
 

 

Figure 3. Optimal correlation ρ as a function of recipient 
needs standard deviation σX, with α = 1. 
 

1 0=s Y                (6) 

with theory predicting that 0 = X Y y X

Y

   





 and 

1 = X

Y





 
 
 

, which can be tested as formal hypotheses. 

(The coefficients in X Y y X

Y

   

 

 and X

Y


 are all  


parameters of the joint distribution of X and Y, which 
could themselves be estimated.) 

Furthermore, if the cost of obtaining additional infor- 
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= ln(1 )mation is described well by ( )g      for a 
suitable choice of  , then our theory predicts a critical 
value of client need variance 2

X = 2   below which 
providers will cease to spend money on costly ob- 
servation or monitoring. It also suggests that, if providers 
do spend money on observation or monitoring, this will 
only be the case if the resultant correlation between what  

they observe and the true state of affairs exceeds 
1

=
2

 . 

5. Conclusion 

Operating in an environment that is characterized by 
resource constraints, public service providers have to be 
efficient in their service provision, that is, match the 
quantum of service delivery for each recipient with the 
need experienced by that recipient. However in practice, 
recipient need is often difficult and costly to observe 
accurately. Providers therefore face a trade-off between 
better information and increased cost of information 
gathering with regards to individual recipients. The 
framework we suggest formally models this tension and 
provides criteria for the optimal trade-off between better 
information and higher cost. This model is normative, in 
the sense that it yields the optimal course of action for a 

provider facing a prescribed problem. But it can also be 
interpreted as a descriptive model that yields empirically 
testable implications. Using a correlation parameter to 
model the signal-quality of observed patient need, our 
model provides a tractable solution to the problem of 
optimal information gathering and identifies thresholds. 
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Appendix: Formal Proofs 

Theorem 1. For given correlation   the optimal choice 
of service s  under Bayesian updating is given by 

= Xs Y X Y y X

Y Y

   
 

 
 

 
 

Proof. The joint density of X and Y, with correlation 
 , is given by 

2
( ) ( )

22(1 )

21

X YX Y

X Y

X Y

 
 



( , ) =
2π

XY

e
f x y

  

  
  

 







      (7) 

Hence the marginal densities of X and Y is given re- 
spectively by 

   2 2

22

) =
2π

X YX Y

Y

Y

e
y

 





 
22

( ) = and (
2π

X

X Y

X

e
f x f





 

  (8) 

Recall that provider utility, for given service provision 
s  and correlation  , is given by 

2) ( )s g( , , ) = ( , ) ( ) = (v X s u X s g X      (9) 

The provider’s first order conditions with regards to 
service s  is thus 

 2
( )

= 0

X s g
( , , )

=

= 2( )

v X s

s s
X s

      

=

 


   (10) 

which is solved by 

s X                  (11) 

The second order requirement for optimality with 
regards to s is given by 

  = 2 < 0X s   

=

2

2

( , , )
= 2

v X s

ss

 


   (12) 

Therefore s X

=Y y

=Y y

 is the optimal choice of s. How- 
ever, the stochastic variable X is by definition un- 
observable. Hence the provider uses Bayesian updating 
to form an expectation of true recipient need X given the 
observed signal . 

First, the provider uses Bayesian updating to obtain the 
posterior distribution of X given . 

 

    

 

2

2

2 21)

2π 1

X

X YX Y

Y

 

  

 

  





2(

|

( , )
= =

( ) 2

Y X

XY
X Y

Y X

f x y e
f x y

f y

 

 (13) 

The provider can then takes expectations of X under 
the probability distribution  |X Yf x y

=Y y
 which optimally 

incorporates all the information contained in  in a 
Bayesian sense. This yields the optimal choice of service 

s. 

|= = = ( , )d

=

X Y

X Y y XX

Y Y

s E X Y y X f x y x

Y
   

 




  

 
 

 



     2
, , =v X s X s g

    (14) 

Theorem 2. Provider utility  
   

=Y y
 conditional on observed 

 is maximized in expectation given joint normally 
distributed  2~ ,X N X Y  2~ ,Y N and Y Y  

 0,1 
 with 

endogenous correlation , if the following three 
conditions are met 

1) = X X Y Y X

Y Y

s Y
    
 

  
 

 
22 = ( )X g

, and 

2)   , and 
2( ) > 2 Xg3)   . 

Proof. Condition (1) follows from Theorem 1. Optimal 
s is itself a function of   in Equation (14). Hence, by 
the Envelope Theorem, we can rewrite optimal utility as 

2

2

( , , ) = ( ) ( )

= ( )X X Y Y X

Y Y

v X s X s g

X Y g

 

    


 

  

    
           

 (15) 

So optimal expected utility is now a function of   
and the two random variables X and Y. By taking ex- 
pectations over X and Y using joint density XYf , optimal 
expected utility is reduced to 

 

  

  
   

2

2

2 2

= , ,

= ( ( )

= ( ) d d

= 1

fXY

fXY

XY

X

v E v X s

E X Y g

X s g f x y

g



   



  

 

 

  

       

  

 

 
  (16) 

Therefore optimal expected provider utility can be ex- 
pressed as a function of   parametrized by the vari- 
ance 2

X  of true recipient need X. 
Optimal   should satisfy first order conditions for 

utility maximization 

 2 2

2

= 1 ( )

= 2 ( ) = 0

X

X

v g

g

  
 

 

      


22 = ( )g

    (17) 

This yields Condition (2): X  . 
Second order conditions for utility maximization   

requires 

 

 

2
* 2 2 *

2

2 *

=

= 2 < 0

X

X

v g

g

  


 

    


      (18) 

Copyright © 2012 SciRes.                                                                                  TEL 



P. GEERTSEMA, C. SCHUMACHER 

© 2012 Sci                                                                              TEL 

336 

  2> 2gThis yields Condition (3): 

Copyright Res.     

X 

 ln 1

. 
Theorem 3. Given a correlation cost function of the form 
 g       optimal correlation is given by 

2 2

= 2
X X

X

  
2

0 < 2

X

X

 
 

 



( )g



  





 

Proof. First and second derivatives of   is given 
by 

   =g g =
1

 
  
          (19) 

   
 

2

=g g 
 2 2

=
1





 

 2 ln 1

      (20) 

The provider’s expected utility is given by substituting 
Equation (4) into Equation (16). 

 * 2= 1 Xv            (21) 

From Equation (10), optimal   should solve 

 22 =X g   22 = 0
1X







     (22) 

yielding two solutions of   

2

1

2

=
2

or =

X X

X

 



2

2

2

2
X X

X



  


 

  


2 2X



       (23) 

for  
2 < 2

 and no real interior solutions for  

X 

 

. 
Second order conditions for maximum expected utility 

as per Equation (18) requires 

 2 22 =X Xg 
2

2 < 0
1







    (24) 

Substituting the solutions in Equation (23) into Equ- 
ation (24), we obtain 

 
 

2 2

1
2

2 1

4 2

2

and =

X X X

X X

soc

soc soc

   

 

 


 



2

2

2
= < 0

X 





< 0soc

 

Closer analysis shows that 1  for > 2X 
< 0soc

 
and 2  for < 2X 

> 0
, as is required for a 

maximum. But since we assume X , only the first 
solution is admissible. Therefore optimal   is given by 

2

1

2
= =

2
X X

X

  
 


  

2 2

        (25) 

provided that X 
2 < 2

. 
Now consider the case where X  . Taking the 

first derivative of Equation (21) with regards to  , we 
obtain 

 * 2 2

2

= 1 ln(1 )

= 2
1

X

X

v    
 




       




 0,1 

 

which is negative over the range  for 

0 < 2X . (To show this note that the maximum of   

 1   is given by  1 = 0 






, which is solved 

by 
1

=
2

 (1 ). Hence, the maximum that    can be 

is 
1 1 1

1 =
2 2 4
  
 

. Therefore 
1

(1 )
4

   , and so  

 4 1 1 0    0,. Multiplying by    we have 
 4 1 0    1 0. Dividing by   

 

 we obtain  

4 0
1







2 < 2X . Noting that    in this case, 

we replace   with 21

2 X  to obtain  

 
21

4 < 0
2 1X

 



  

 or 22 < 0
1X







= 0

 as re- 

quired). 
Hence, expected utility is strictly decreasing over this 

range and there will be no interior maximum—instead, the 
maximum will be found at 2 < 2 .X  for all   

 


