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ABSTRACT 

This paper explores the effects of trade policy under induced innovation in general equilibrium. The analysis considers 
the effects of discrete changes in tariffs and import quotas, allowing for heterogeneous technologies among firms. The 
interactions between induced innovation and the effects of trade policy give a set of “LeChatelier effects” comparing 
short run versus long run market equilibrium. We investigate how induced innovation can reduce the adverse effects of 
tariffs on trade, and influence the effects of quotas on corresponding quota rents. The analysis presents new LeChatelier 
results that apply globally, i.e. under any discrete change in trade policy. 
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1. Introduction 

Globalization has stimulated much research on the ef-
fects of trade policy (including tariffs and quotas) on 
resource allocation and welfare. The relationships be-
tween trade and technology have also been the subject of 
much interest (e.g., [1]). Yet, technology can evolve in 
response to changes in market conditions. Hicks [2] pro-
posed the idea of induced innovation, where changes in 
relative prices stimulate the adoption of technologies that 
increase (decrease) the use of inputs that are becoming 
cheaper (more expensive). And applied to the output side, 
induced innovation means that price changes induce the 
adoption of technologies that increase (decrease) the 
production of commodities exhibiting higher (lower) 
prices. This has stimulated much research on how tech-
nology can adapt to changing resource scarcity (e.g., 
[3-5]). When market prices influence technology, trade 
policy would also affect technology choices. Indeed, im- 
port tariffs and quotas on specific commodities increase 
their prices in domestic markets. And they influence the 
prices of all goods through market equilibrium effects. 
This suggests that induced innovation would stimulate 
the adoption of technologies in response to the changes 
in all prices affected by trade policy. 

The interactions between technology choice and trade 
policy (and its effects on market prices) is relevant when 
the process of technology adoption is slow. This can 
happen when new technology is embodied in physical or 
human capital, as firms that just invested in capital do not  

have incentives to adopt an improved technology until 
their capital depreciates. Or this can happen when the 
adoption of a new technology involves learning cost. 
Firms facing lower learning cost are likely to be “early 
adopters” of a new technology, while other firms would 
be classified as “late adopters”. Technology adoption 
being slow, this motivates a need to distinguish between 
short run and long run situations. This distinction is at the 
heart of “LeChatelier effects” investigated in this paper. 

The LeChatelier principle reflects the basic intuition 
that restricting choices can lower the ability to make 
economic adjustments. It was first introduced in eco- 
nomics by Samuelson ([6,7]), who proved that such re-
sults hold “locally”, i.e. for small changes in the neigh- 
borhood of a point. Local LeChatelier effects have been 
examined in the context of trade by Neary [8] and 
Kreickemeier [9]. It is well known that local LeChatelier 
results do not necessarily hold globally, i.e. when facing 
discrete changes in economic conditions ([7,10,11]). It is 
also known that local LeChatelier results can hold glob-
ally under some restrictive assumptions. This raises the 
following questions. Is it possible to obtain general im-
plications of the LeChatelier principle without imposing 
restrictive assumptions? And what are these implications 
in the context of trade policy? Our analysis answers these 
two questions in a positive way. 

This paper investigates LeChatelier effects under in- 
duced innovation in the context of trade policy changes 
in general equilibrium. Our LeChatelier results apply 
globally to any discrete change in trade policy (including 
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both tariffs and quotas). This is important for two reasons. 
First, actual policy changes typically take the form of 
large changes in policy instruments. Second, our “global 
LeChatelier results” are obtained without imposing re- 
strictive assumptions (e.g., without assuming super- 
modularity). While we show how “local results” hold as 
a special case, obtaining global LeChatelier results is a 
key contribution of our analysis.  

Capturing the economy-wide effects of trade policy 
under induced innovation requires a general equilibrium 
model. Following Dixit and Norman [12] and Luenber- 
ger [13], we rely on a dual general equilibrium model of 
trade. The presence of early adopters and late adopters 
requires considering that technology can vary among 
firms (e.g., exporting firms versus domestic firms). Our 
analysis allows for firm entry/exit and its general equi- 
librium effects. The model also considers an arbitrary 
number of commodities. This allows for differentiated 
products. In this context, the paper studies the effects of 
discrete changes in both tariffs and quotas. This is rele- 
vant as trade policy reform often means partial market 
liberalization that involves the joint effects of tariff and 
quotas. Considering discrete changes in trade policy ex- 
pands on previous analyses of market liberalization that 
focused on small changes in policy instruments (e.g., 
[14-16]). 

Our analysis studies market equilibrium under price 
and quantity distortions. This provides a basis for evalu- 
ating the efficiency gains/losses from any discrete change 
in trade policy. The analysis presents conditions under 
which a discrete policy change improves aggregate effi- 
ciency. It examines the interactions between induced 
innovation and the effects of trade policy. These interac- 
tions generate a set of “LeChatelier effects” comparing 
short run versus long run market equilibrium. 

Three important results are obtained. First, we show 
that induced innovation tends to reduce the aggregate 
welfare loss generated by distortionary trade policy. It 
means that previous research that ignored induced inno- 
vation has overstated the adverse effects of trade policies. 
This result holds under very general conditions. To the 
extent that trade policy is motivated by rent seeking be- 
havior (which redistributes welfare toward the “rent 
seekers”), this also means that induced innovation can 
tamper the efficiency losses from rent seeking behavior. 
Second, we examine how induced innovation can reduce 
the adverse effects of tariffs on trade, providing informa- 
tion on how technology choices can moderate the nega- 
tive impact of restrictive trade policy on trade. Third, we 
study how induced innovation can influence the effects 
of quotas on corresponding quota rents. The analysis also 
examines the presence of interaction effects between 
quotas and tariffs. Importantly, our “global LeChatelier 
results” hold without imposing restrictive assumptions  

and apply globally, i.e. for any discrete change in trade 
policy. 

The paper is organized as follows. Section 2 starts 
with a discussion of induced innovation at the firm level. 
Section 3 presents a dual general equilibrium model of an 
economy under trade policy distortions, including both 
tariffs and quotas. The model provides a basis for ana- 
lyzing the efficiency gains/losses generated by a discrete 
change in trade policy. Section 4 introduces the role of 
induced innovation. It presents global LeChatelier results 
showing how induced innovation interacts with the ef- 
fects of both tariff and quota policies. Section 5 discusses 
the economic implications for economics and welfare. 
While local LeChatelier results apply as a special case, 
our global analysis provides new insights in the eco- 
nomic analysis of trade policy. Finally, section 6 con- 
cludes. 

2. Preliminary: Induced Innovations at the 
Firm Level 

Consider an economy involving a set K = {1, …, K} of 
goods produced by a set M = {1, …, M} of firms. Using 
the netput notation, the j-th firm produces yj = (y1j, …, 
yKj)  Yj  K, where ykj is the k-th output (k-th input if 
negative) of the j-th firm, and Yj is the feasible set repre- 
senting the technology available to the j-th firm, j  M. 
Assume that all firms are price takers and that the set Yj 
is bounded and convex, j  M. Denote by p = (p1, …, pK) 
   the vector of prices for the K commodities. Then, 
the profit maximizing decisions of the j-th firm facing 
prices p are given by1 

K


j(p, Yj) = pT yj
*(p, Yj) = maxy {pT yj: yj  Yj}  (1) 

where j(p, Yj) is the indirect profit function, and yj
*(p, 

Yj) is the corresponding profit maximizing decision, j  
M.  

As discussed in the introduction, following Hicks [2], 
induced innovation reflects that relative prices can help 
guide the innovation process (e.g., [3-5]). Induced inno- 
vation stimulates the adoption of technologies that in- 
crease (decrease) the use of inputs that are becoming 
cheaper (more expensive). And applied to the output side, 
induced innovation suggests that price changes stimulate 
the adoption of technologies that increase (decrease) the 
production of commodities exhibiting higher (lower) 
prices. To see that, consider the case where the j-th firm 
has the option to choose between T technologies: Yj

1, …, 
Yj

T. Denote the set of technology indexes by I = {1, …, 
T}. Then, from (1) and for given prices p, the incre-
mental profit obtained by j-th firm switching from tech-
nology Tj

i to Tj
i’ is: jii’  j(p, Yj

i) – j(p, Yj
i’), for i, i’  

I.  
1In our notation, all vectors are treated as column vectors, and the su-
perscript “T” denotes the transpose. 
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Technology adoption is typically slow. As discussed in 
the introduction, this can happen for at least two reasons: 
when technology is embodied in physical or human 
capital that depreciates slowly; and when learning about 
a new technology is costly. To capture the dynamics of 
technology adoption, for the j-th firm, denote the cost of 
switching from technology i to i’ after t periods by Cj(i, i’, 
t)  0. For the j-th profit maximizing firm, the decision to 
switch technology from i to i’ after t periods would de- 
pend on the present value of incremental profit jii’ minus 
switching cost Cj(i, i’, t). We make the following as-
sumption: 

Assumption As1: For any i, i’  I, limt→ Cj(i, i’, t) = 
0.  

Assumption As1 states that, over time, the cost of 
switching between any two technologies declines toward 
zero. Assume for the moment that p is constant. In the 
short run, technology adoption decisions can be complex. 
The firm would decide to switch from i to i’ when the 
incremental profit jii’ is large enough to dominate the 
switching cost Cj(i, i’, t). But a positive incremental 
profit is not sufficient: the presence of large switching 
cost could induce the firm to stay with technology i even 
if jii’ > 0.  

Under Assumption As1, technology adoption deci-
sions are simpler in the long run (when t → ). Under 
As1 and profit maximization, the long run technology 
decision made by the j-th firm is as follows:  

Yj
*(p) = maxY{j(p, Yj

i): i  I}        (2) 

This shows that, in the long run, technology choice 
Yj

*(p) in general depends of prices p. This is consistent 
with the induced innovation hypothesis.  

Now, consider a change in prices from p to p’  . 
It follows that, for the j-th firm in the long run, the profit 
maximizing technology would change from Yj

*(p) to 
Yj

*(p’). This illustrates that induced innovation involves 
the interactions between technology choice and market 
prices. These interactions become relevant when the 
process of technology adoption is slow. This suggests the 
need to distinguish between short run and long run situa-
tions. We define the short run (S) as a situation where a 
firm does not have enough time to change their previous 
technology. And under As1, we define the long run (L) 
as corresponding to situations where a firm has had 
enough time to adopt profitable technologies. Implica- 
tions of this distinction for economic analysis of trade 
policy are investigated in sections 4 and 5 below. 

K


In the long run for the j-th firm, note that a price 
change from p to p’ induces netput changes from yj

*(p, 
Yj

*(p)) to yj
*(p’, Yj

*(p’), j  M. This includes two effects: 
the direct price effect and the indirect effect of induced 
innovation (from Yj

*(p) to Yj
*(p’)). While analyzing each 

effect is straightforward, analyzing them jointly is more 

challenging. Two aspects of these adjustments are worth 
stressing. First, our analysis allows for some firms in M 
to be inactive. Indeed, the j-th firm would be completely 
inactive under prices p and technology Tj if yj

*(p, Yj) = 0 
in (1). Or it could be inactive in some markets (when 
ykj

*(p, Yj) = 0 for some k  K) while being active in oth-
ers (when yk’

*(p, Yj) ≠ 0 for some k’  K – k). As prices 
change and technology changes, it follows that the num- 
ber of inactive firms in any particular market would also 
change. It means that the changes from yj

*(p, Yj
*(p)) to 

yj
*(p’, Yj

*(p’), j  M, can capture entry/exit processes of 
firms in any of the K markets. Importantly, both price 
changes (from p to p’) and induced technological inno- 
vation (from Yj

*(p) to Yj
*(p’)) can affect entry-exit in 

any market.  
Second, our analysis allows for technology to vary 

across firms as well as over time. The heterogeneity of 
technology across firms is captured by defining a feasible 
set that is firm-specific (Yj for the j-th firm). This can 
reflect the role of agroclimatic and location-specific ef-
fects. And the technological options available in the 
process of induced innovation are also firm-specific 
((Yj

1, …, Yj
T) for the j-th firm. This can capture hetero- 

geneity in human capital across firms. Note that the role 
of entry-exit and heterogeneous technology has been 
identified in the literature (e.g., [17]). The above discus- 
sion indicates that our analysis does capture such effects.  

So far, our discussion has been at the firm level. This 
provides a building block for the rest of the paper. But it 
suffers from a significant drawback: it does not explain 
what causes price changes. To resolve this issue, we need 
to present the analysis at the aggregate level, where 
prices are the outcome of market equilibrium. As dis-
cussed in the introduction, our focus is on the analysis of 
trade policy. It means that we need to evaluate the evolu-
tion of prices as the outcome of trade policy reforms. 
This is the topic of the next sections.  

3. Trade under Policy Distortions 

As discussed in Section 2, the economy involves a set K 
= {1, …, K} of goods produced by a set M = {1, …, M} 
of firms. The j-th firm produces netputs yj = (y1j, …, yKj) 
 Yj  K, where Yj is the feasible set representing the 
technology available to the j-th firm, j  M. The K goods 
are consumed by a set N = {1, …, N} of households. The 
i-th household has initial endowment wi = (w1i, …, wKi), 
consumes xi = (x1i, …, xKi)    and has preferences 
represented by the utility function ui(xi), i  N. Let x  
(x1, …, xN), y  (y1, …, yM), and Y  Y1 × … × YM. As 
noted above, this allows for heterogeneous technologies 
among firms. An allocation (x, y) is feasible if it satisfies 
x  

K


NK
 , y  Y, and 

iN xi  iN wi + jM yj        (3) 
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where Equation (3) is the commodity balance equation 
stating that aggregate consumption cannot exceed the 
aggregate supply of each good. 

Throughout the paper, we assume that the set Y is 
closed, bounded and convex,2 and that the set {jM Yj + 
iN wi}    has a non-empty interior. And we as-
sume that the utility function ui(xi) is continuous, non- 
satiated and quasi-concave on  , i  N.  

K


K


Under prices p   , let production decisions be 
made by profit maximizing firms according to Equation 
(1). And let  

K


ei(p, Ui) = pT xi
*(p, Ui) 

= Minx {pT xi: u(xi)  Ui, xi   }     (4) K


be the expenditure function for the i-th household, where 
xi

*(p, Ui) is the corresponding Hicksian demand, i  N.  
To analyze trade policy, consider that the economy in- 

cludes two regions, A and B. Region A has a trade policy 
involving a mix of tariffs and quotas on imported goods. 
Let with t = (t1, …, tK) be the tariffs on imported goods, 
where tk is the import tariff (or export subsidy if tk < 0) 
on the k-th product. And let q = (q1, …, qK)   K

  de- 
note the import quotas, where qk the import quota on the 
k-th product. While we allow for both tariffs and quotas, 
our analysis considers situations where each type of po- 
licy instrument applies to different goods. It means that 
import tariffs may be imposed on some goods while im- 
port quotas are imposed on other goods. In this context, 
tk = 0 when the k-th good is not subject to a tariff (or tax), 
while qk =  when the k-th good is not subject to an im-
port quota, k  K. Let N = (NA, NB) and M = (MA, MB) 
where Nr is the set of households in region r, and Mr is 
the set of firms in region r, r = A, B. The tariffs t apply to 
net imports into region A: mA  iNA xi – iNA wi – 
jMA yj. Similarly, the quotas q impose the following 
trade restricttion:3 

iNA xi – iNA wi – jMA yj  q       (5) 

We want to analyze the implications of trade policy 
represented by the policy instruments (t, q). Let  = 
(1, …, K)    denote the quota rents associated 
with the quota restrictions (5).4 Below, following Dixit 
and Norman [12] and Luenberger [13], we present a dual 
general equilibrium model of trade and use it to examine 
the effects of trade policy (t, q) on prices p, on the quota 
rents , on trade, and on welfare. As investigated in pre- 
vious literature (e.g., [8,18-22]), the dual approach to 

trade policy analysis relies on the profit function j(p, Yj) 
in Equation (1) and the expenditure function ei(p, Ui) in 
Equation (4).  

K


Let g   K
  be some reference bundle satisfying g  

0. Under the price normalization rule pT g = 1, consider 
the following minimization problem 

V(U, t, q, Y)  
= minp, {(p +  + t)T iNA wi  

+ pT iNB wi + T q  
+ jMA j(p +  + t, Yj) + jMB j(p, Yj)  
– iNA ei(p +  + t, Ui) – iNB ei(p, Ui) 

: pT g = 1, p   K
 ,    },       (6) K



which has solution p*(U, t, q, Y) and *(U, t, q, Y), 
where U = (U1, …, UN). Let  

W(U, t, q, Y) 
 V(U, t, q, Y) – tT mA

*(U, t, q, Y),    (7) 

where mA
*(U, t, q, Y) is the aggregate demand for net 

imports into region A defined as  

mA
*(U, t, q, Y)  iNA xi

*(p*(U, t, q, Y)  
+ *(U, t, q, Y) + t, Ui)  
– iNA wi – jMA yj

*(p*(U, t, q, Y) 
+ *(U, t, q, Y) + t, Yj).  

It is clear that V(U, t, q, Y) in Equation (6) and W(U, t, 
q, Y) in Equation (7) involve monetary measures. The 
function W(U, t, q, Y) in Equation (7) will play a key 
role in our analysis. As discussed below, it is a welfare 
indicator that will provide a basis to evaluate the eco-
nomic and welfare effects of trade policy. As a starting 
point, two key results are stated next (see the proof in the 
Appendix).  

Lemma 1: Let U  {U’: W(U’, t, q, Y) = 0}. Then, 
under trade policy (t, ), 

1) p*(U, t, q, Y) and *(U, t, q, Y) in Equation (6) are 
market equilibrium prices and quota rents, respectively; 

2) W(U, t, q, Y) in Equation (7) is a monetary measure 
of aggregate benefit, W(U, t, q, Y) being non-increasing 
in U.  

Lemma 1 includes as a special case competitive mar- 
kets in the absence of trade policy (when t = 0 and q = , 
i.e. when there is no tariff and quotas are non-binding). 
Then, W(U, 0, , Y) is Allais’ distributable surplus un- 
der perfect competition ([23,24]). W(U, 0, , Y) being 
non-increasing in U reflects that reaching higher utilities 
is typically possible only with a redistribution of the ag-
gregate surplus W, i.e. a reduction in W. When t = 0 and 
q = , and following Luenberger ([13,25]), Equation (6) 
defines a “minimal allocation”; and Equation (6) along 
with U  {U’: W(U’, 0, , Y) = 0} define a “zero- 
minimal allocation”, i.e. a minimal allocation where all 
surplus has been redistributed to consumers. Zero-mini- 
mality, competitive equilibrium and Pareto efficiency are 
closely related concepts (e.g., [13,25]). It means that 

2Note that assuming that Y  Y1 × … × YM is a convex set rules out 
technologies exhibiting increasing returns to scale. Yet, it allows each 
firm to be active (if its productivity is “relatively high”) or inactive (if its 
productivity is “low”). 
3Note that the trade quotas q place an upper-bound on imports in region 
A. When q  0, such quotas impose no restriction on exports from region 
A. 
4The quota rent k would be positive (zero) when the corresponding 
quota restriction is binding (not binding) for the k-th commodity, k 
K. 
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p*(U, 0, , Y) are the competitive prices supporting a 
Pareto efficient allocation. In addition, the set {U’: W(U’, 
0, , Y) = 0} defines the Pareto utility frontier, i.e. the 
set of consumer utilities that can be reached under effi-
cient allocations.  

Thus, Equations (6) and (7) along with U  {U’: 
W(U’, t, q, Y) = 0} provide a generalized representation 
of a zero-minimal allocation under trade policy (t, q). 
First, Equation (6) can be interpreted as a “distorted 
minimal allocation” under policy (t, q), with p*(U, t, q, 
Y) and *(U, t, q, Y) as the corresponding market equi-
librium prices and quota rents, respectively. Second, 
W(U, t, q, Y) in (7) is a measure of aggregate benefit 
obtained under policy (t, ). Note that the term [tT mA

*(U, 
t, q, Y)] in Equation (7) represents the aggregate revenue 
generated by the tariffs t. It means that V(U, t, q, Y) in 
Equation (6) can be interpreted as a measure of aggregate 
benefit before tariff revenues are redistributed, and that 
W(U, t, q, Y) in Equation (7) is a measure of aggregate 
benefit after tariff revenues are redistributed.  

Third, after choosing U to satisfy W(U, t, q, Y) = 0, 
Equations (6) and (7) characterize a “distorted zero- 
minimal allocation” under policy (t, q). They also repre- 
sent a “distorted market equilibrium” under policy (t, q). 
The introduction of trade policy in Equation (6) has two 
important effects. First, while p denotes prices in region 
B, producers and consumers in region A now face prices 
(p +  + t). When positive, this means that both import 
tariffs t and quota rents  contribute to increasing prices 
in region A, with ( + t) denoting price wedges between 
the two regions. Note that the import tariffs t have direct 
effects on agents in region A: they affect aggregate profit 
jMA j(p +  + t, Yj) as well as aggregate expenditure 
iNA ei(p +  + t, Ui) in region A. When applied to net 
imports into region A, mA, the import tariffs t generate 
tariff revenue [tT mA]. As noted above, this tariff revenue 
gets redistributed to consumers, as captured by the sub-
traction of [tT mA] in the evaluation of aggregate benefit 
W(U, t, q, Y) in Equation (7). In general, tariffs affect 
efficiency (as discussed below) as well as the distribution 
of welfare (depending on how tariff revenues are redis-
tributed). Second, the term T q in Equation (6) measures 
the aggregate quota rent generating income that is even-
tually captured by some agents. This quota rent affects 
both efficiency (as discussed below) and the distribution 
of welfare (depending on who captures it).  

We know that {U’: W(U’, 0, , Y) = 0} defines the 
Pareto utility frontier in the absence of trade policy. In an 
economy distorted by trade policy, choosing U to satisfy 
W(U, t, q, Y) = 0 means that {U’: W(U’, t, q, Y) = 0} 
identifies the utility frontier under policy (t, q). In other 
words, {U’: W(U’, t, q, Y) = 0} is the set of consumer 
utilities that can be reached under distortionary trade pol- 
icy. Thus, given U  {U’: W(U’, t, q, Y) = 0}, the dis- 

torted zero-minimal allocation defined in Equations (6)- 
(7) identifies p*(U, t, q, Y) as the market equilibrium 
prices in region B, *(U, t, q, Y) as the market equilib-
rium quota rents, and [p*(U, t, q, Y) + *(U, t, q, Y) + t] 
as the market equilibrium prices in region A.  

Interpreting W(U, t, q, Y) in Equation (7) as a measure 
of aggregate benefit under policy instruments (t, q), we 
will make use of W(U, t, q, Y) to evaluate the aggregate 
welfare effects of trade policy. This includes the effi- 
ciency effects of quotas q (and associated quotas rents ) 
and tariffs t (and associated tariff revenue). With {U: 
W(U, t, q, Y) = 0} representing the utility frontier under 
trade policy (t, q), the shift in the utility frontier associ- 
ated with a policy change from (t, q) to (t’, q’) can be 
measured by the associated change in aggregate benefit: 
W  W(U, t’ q’, Y) – W(U, t, q, Y), a money-metric 
measure of aggregate welfare impact. For a given U, 
finding W < 0 means an inward shift in the utility fron- 
tier, identifying a Pareto inferior move. And finding W 
> 0 means an outward shift in the utility frontier, identi- 
fying a potential Pareto improving move. Two particular 
choices of U are typically considered in welfare analysis. 
First, choosing U to satisfy W(U, t, q, Y) = 0 implies that 
W  W(U, t’ q’, Y), corresponding to a “compensating 
variation” measure. Second, choosing U to satisfy W(U, 
t’, q’, Y) = 0 implies that W  –W(U, t, q, Y), corre- 
sponding to an “equivalent variation” measure. We pro- 
ceed with our analysis below assuming that U follows 
one of these two choices.5 On that basis, our analysis of 
the aggregate efficiency of trade policy reform will rely 
on [W(U, t’ q’, Y) – W(U, t, q, Y)]. 

What about distribution effects? W(U, t, q, Y) pro- 
vides a measure of aggregate benefit, i.e. it is the sum of 
individual benefit across all households. Evaluating how 
individual welfare gets distributed is more challenging 
for three reasons. First, it involves the distribution of 
profit j among households. Any change in profit distri-
bution affects the distribution of welfare among house-
holds. Second, the way tariff revenue is distributed mat-
ters. The redistribution of tariff revenue tT mA is captured 
in Equation (7). How this redistribution takes place af-
fects the distribution of welfare among households. Third, 
who captures the quota rents * matters. This depends on 
how trade policy is implemented. For example, under 
“voluntary export restraints”, the quota rents get captured 
by exporters. Alternatively, when import quotas are auc- 
tioned among exporters, the importing country typically 
captures the quota rents. This illustrates how the distribu- 
tion of quota rents can affect the distribution of welfare 
among households. Since it allows for an arbitrary num- 
ber of firms and households, our analysis of aggregate 
5Holding U constant, it means that our analysis of consumer behavior 
below should be interpreted in terms of Hicksian compensated behav-
ior.
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efficiency remains valid under alternative distribution 
schemes. Each distribution scheme simply involves 
choosing a different point U on the utility frontier {U’: 
W(U’, t, q, Y) = 0}. In this context, it should be under-
stood that the choice of U depends on the distribution 
rules used in economic and trade policy. The analysis of 
efficiency presented in this paper is conditional on U. 
When using a compensating variation measure, this 
means that U satisfying W(U, t, q, Y) = 0 reflects the 
distribution rules under trade policy (t, q). Alternatively, 
when using an equivalent variation measure, it means 
that U satisfying W(U, t’, q’, Y) = 0 reflects the distribu-
tion rules under trade policy (t’, q’). 

Next, we analyze the general welfare effects of a 
change in trade policy from (t, q) to (t’, q’). Our analysis 
will rely on the following result. (See the proof in the 
Appendix).  

Proposition 1: For any (t, q) and (t’, q’),  

*(U, t’, q’, Y)T [q’ – q] + t’T [mA
*(U, t’, q’, Y)  

– mA
*(U, t, q, Y)]  

 W(U, t’ q’, Y) – W(U, t, q, Y)  
 *(U, t, q, Y)T [q’ – q]  

+ tT [mA
*(U, t’, q’, Y) – mA

*(U, t, q, Y)].    (8) 

Proposition 1 provides a general characterization of 
the aggregate effects of trade policy. First, note that 
choosing q’ =  implies that the quota constraint (5) is 
non-binding and that the associated quota rent is zero: 
*(U, t’, , Y) = 0 for any t’. Then, choosing t’ = 0 and 
q’ = , and for any trade policy (t, q), the first inequality 
in equation (8) gives: W(U, 0, , Y)  W(U, t, q, Y). 
Associating (t’, q’) = (0, ) with competitive markets in 
the absence of trade policy, this gives the well-known 
result that aggregate welfare is maximized in the absence 
of policy distortions, and that perfectly competitive mar-
kets are Pareto efficient. In this context, any trade policy 
(t, q) where t ≠ 0 and the quotas q are binding is in gen-
eral inefficient and tends to lower aggregate benefit, with 
[W(U, 0, , Y) – W(U, t, q, Y)]  0 providing a measure 
of the aggregate welfare loss associated with an inward- 
shift in the utility frontier. 

Second, for any (t, q) and (t’, q’), Equation (8) implies  

[*(U, t’, q’, Y) – *(U, t, q, Y)]T [q’ – q] 

+ [t’ – t]T [mA
*(U, t’, q’, Y) – mA

*(U, t, q, Y)] 

 0.                                  (9) 

When quotas do not change (q’ = q), Equation (9) be- 
comes [t’ – t]T [mA

*(U, t’, q, Y) – mA
*(U, t, q, Y)]  0. 

This is the well-known result that any ceteris paribus 
increase in import tariffs (t’ > t) tends to reduce imports 
mA

*. Similarly, if tariffs do not change (t’ = t), Equation 
(9) becomes [*(U, t, q’, Y) – *(U, t, q, Y)]T [q’ – q]  
0. Again, this is the well-known result that any ceteris 
paribus increase in import quotas (q’ > q) tends to de-

crease the quota rents *. Note that these results are 
global as they apply for any discrete change in trade pol-
icy.  

Third, Equation (8) presents bounds on the change in 
aggregate benefit when trade policy changes from (t, q) 
and (t’, q’). From the lower bound in equation (8), it fol-
lows that a sufficient condition for [W(U, t’, q’, Y) – 
W(U, t, q, Y)]  0 is  

*(U, t’, q’, Y)T [q’ – q] 

+ t’T [mA
*(U, t’, q’, Y) – mA

*(U, t, q, Y)] 

 0.                               (10a) 

Thus, Equation (10a) is a sufficient condition for trade 
policy reform from (t, q) and (t’, q’) to improve effi- 
ciency (by increasing aggregate benefit and thus shifting 
up the utility frontier). It applies under general conditions 
involving discrete changes in both tariffs and quotas. 
This includes as special cases some well-known results. 
For example, in situations where there is a move to 
eliminating all tariffs (with t’ = 0), then given *  0, 
Equation (10a) implies that any scenario where quotas 
are relaxed (q’ > q) is efficiency improving. Alterna-
tively, when quotas do not change (q’ = q), then using 
Equation (9), Equation (10a) always holds under any 
proportional reduction in tariffs (e.g., [14]). This well- 
known result (that a proportional decline in all tariffs 
tends to be efficiency improving) has guided trade policy 
reform supported by WTO over the last decade.  

Similarly, from the upper bound in Equation (8), it 
follows that a necessary condition for [W(U, t’, q’, Y) – 
W(U, t, q, Y)]  0 is  

*(U, t, q, Y)T [q’ – q]  

+ tT [mA
*(U, t’, q’, Y) – mA

*(U, t, q, Y)] 

 0.                               (10b) 

It means that Equation (10b) is a necessary condition 
for trade policy reform from (t, q) and (t’, q’) to improve 
efficiency (by increasing aggregate benefit and shifting 
up the utility frontier). Alternatively, finding any situa- 
tion where Equation (10b) does not hold implies an ag- 
gregate welfare loss. Then, the policy reform from (t, q) 
and (t’, q’) cannot be a Pareto improvement. This would 
identify rent-seeking behavior. Indeed, such policy re- 
form can be a rational move only if it implies a redistri- 
bution of welfare toward the “rent seekers” who benefit 
at the expense of others (as efficiency and aggregate 
benefit decline and the utility frontier shifts down).  

4. Trade Policy Analysis under Induced 
Innovation 

So far, we have explored scenarios of trade policy reform 
represented by a change in policy instruments from (t, q) 
to (t’, q’). We now consider the case where such policy 
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changes are associated with technological innovation. 
Induced innovation was discussed in Section 2 at the firm 
level. We showed in Equation (2) how prices affect firm 
technology choices in long run equilibrium. The analysis 
is now extended to the aggregate level in the context of 
trade policy.  

We know that the direct effect of import tariffs and 
quotas on specific commodities is to increase their cor- 
responding prices in domestic markets. But they also 
influence the prices of all goods through market equilib- 
rium effects. This applies in particular to substitute goods. 
Market equilibrium prices of substitute goods tend to 
move together. This means that, when the direct effect of 
an economic policy is to increase the price of some 
goods, induced innovation would help stimulate the ado- 
ption of technologies supporting the production of sub- 
stitute goods. Such general equilibrium effects are ana- 
lyzed below.  

From Equations (1) and (6), firms behave so as to 
maximize profit, conditional on prices (p +  + t) for 
firms in MA, and prices p for firms in MB. From Lemma 
1 and Equations (A2)-(A3) in the Appendix, this is fully 
consistent with the maximization of (distorted) aggregate 
benefit. And from Equation (2), the firm profit maximi-
zation motive extends to firm technology choice in the 
long run. Denote the technology options available to all 
firms by Y = {(Yj

1, Yj
2, …), j  M}, where Yj

i is the i-th 
technology option available to the j-th firm. It means that, 
in the long run, for a given U and under trade policy (t, 
q), technology choice are made as follows:6 

Y*(U, t, q)  argmaxY {W(U, t, q, Y): Y  Y}. 

Under trade policy reform, this identifies two possible 
technology choices: Y*(U, t, q) under policy instruments 
(t, q), and Y*(U, t’, q’) under policy instruments (t’, q’). 
As discussed in Section 2, this allows heterogeneous 
technologies across firms. Perhaps more importantly, 
under induced innovation, this allows for entry/exit and 
for technology adoption decisions to vary among firms 
(e.g., between “domestic firms” in MA and “exporting 
firms” in MB). 

Consider the case of a policy reform associated with a 
change from (t, q) to (t’, q’), with (t, q)  (t’, q’). We 
focus our attention on situations where induced innova-
tion plays a role, i.e. where Y*(U, t, q)  Y*(U, t’, q’). 
First, consider the situation before the policy change. It 
corresponds to policy instruments (t, q). Assuming that 
this trade policy has been in place for an extended period 
of time, the associated technology choice is Y*(U, t, q). 
Second, consider a policy change from (t, q) to (t’, q’). 
There are now two possible scenarios. There is a short 
run scenario (S) where firms have not had enough time to 

modify their technology, implying that firms are con-
strained to face the original feasible set Y*(U, t, q). And 
there is a long run scenario (L) where firms do adjust 
their technology and choose Y*(U, t’, q’). What is the 
difference between these two scenarios? Answering this 
question requires exploring how the effects of policy 
change differ between the short run and the long run.  

First, consider the short run scenario (S). Denote the 
optimal technology chosen under policy (t, q) by YS  
Y*(U, t, q). Keeping the feasible set Y in its original state 
YS, the short run welfare effects of trade policy reform 
can be measured as  

∆WS  W(U, t’, q’, YS) – W(U, t, q, YS)    (11) 

Second, consider the long run scenario (L) and the as- 
sociated welfare changes due to a policy change from (t, 
q) to (t’, q’). Denote the optimal technology chosen un- 
der policy (t’, q’) by YL  Y*( U, t’, q’). In the long run, 
the welfare effects of trade policy reform can be mea- 
sured as  

∆WL  W(U, t’, q’, YL) – W(U, t, q, YS)    (12) 

which allows a switch from technology YS to YL as trade 
policy changes from (t, q) to (t’, q’). This raises the 
question: how does ∆WL differ from ∆WS? Our analysis 
presented below answers this question. In the process, we 
will gain new and useful information on how induced 
innovation and trade policy interact with each other.7 

Our analysis explores the economic and welfare im- 
plications of induced innovation. Our main result is 
stated next. (See the proof in the Appendix) 

Proposition 2 (Global LeChatelier results): For any 
policy change from (t, q) to (t’, q’),  

0  ∆WL – ∆WS 

 [*(U, t, q, YL) – *(U, t’, q’, YS)]T [q’ – q]  

+ tT [mA
*(U, t’, q’, YL) – mA

*(U, t, q, YL)] 

– t’T [mA
*(U, t’, q’, YS) – mA

*(U, t, q, YS)].  (13) 

Equation (13) shows that the general implications of 
induced innovation for market equilibrium prices, quan- 
tities, and welfare. Importantly, these results hold glo- 
bally under any discrete changes in trade policy. Equa- 
tion (13) gives LeChatelier results related to the effects 
of trade policy under induced innovation. These results 
appear to be new. They apply globally for any discrete 
change from (t, q) to (t’, q’). The economic and welfare 
implications of Equation (13) are further discussed be-
low. 

While LeChatelier effects have been examined before 

7Note that induced innovation involves choosing among technologies, 
assuming that they are “on the shelf”. While our discussion below fo-
cuses on this case, the analysis could be easily extended to more general 
cases of technological changes. It could be used to show that techno-
logical progress can improve aggregate welfare beyond the gains ob-
tained from induced innovation. 

6But some abuse of notation, this maximization problem assumes that 
one technology Yj

i is chosen for each firm, j  N. 
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in the context of trade (e.g., [8,9]), they were developed 
for “small changes” in trade policy under differentiability 
assumptions. This suggests the existence of a local ver-
sion of Proposition 2. Such local results are presented 
next. (See the proof in the Appendix).  

Proposition 3 (Local LeChatelier results): Assume that 
W(U, t, q, Y) is differentiable in (t, q), that *(U, t, q, Y) 
is a continuous function of (t, q), and that mA

*(U, t, q, Y) 
is continuously differentiable in (t, q). Then, considering 
a small change in trade policy (dt, dq) in the neighbor- 
hood of (t, q),  

0 ≤ dWL – dWS  

= [*(U, t, q, YL) – *(U, t, q, YS)]T dq  

+ tT [dmA
*(U, t, q, YL) – dmA

*(U, t, q, YS)],  (14) 

where dmA
*(U, t, q, Y) = [mA

*(U, t, q, Y)/t] dt + 
[mA

*(U, t, q, Y)/q] dq.  
Proposition 3 is a local version of the LeChatelier re- 

sults presented in Proposition 2. Indeed, expression (14) 
is a special case of (13) obtained under differentiability 
assumptions and considering only a small change in trade 
policy (dt, dq) in the neighborhood of (t, q). Comparing 
equations (13) and (14), it is clear that the global results 
stated in Equation (13) are more general: they apply for 
any discrete policy change from (t, q) to (t’, q’), and 
without imposing restrictive assumptions (e.g., they ap- 
ply without assuming supermodularity or differentiabi- 
lity). Implications of these results are discussed next.  

5. Implications 

Propositions 2 and 3 give information on the welfare 
difference from a trade policy change between the short 
run (S) and the long run (L): ∆WL – ∆WS. From Equa- 
tions (13) and (14), this difference has a general lower 
bound of 0. It implies that the aggregate welfare effect of 
a policy change is always at least as large in the long run 
as in the short run. This is a general and intuitive result: 
induced innovation tends to generate long run benefits 
that are at least as large as the associated short run bene-
fits. In the context of trade policy changes, this means 
that the efficiency effects of trade policy changes become 
more positive (or less negative) due to induced innova-
tion. Importantly, this result holds under very general 
conditions.  

The global LeChatelier results given in Equation (13) 
provide useful information on the welfare and economic 
impact of trade policy. From Equation (13), the welfare 
change [∆WL – ∆WS] has a general upper bound equal to: 
[*(U, t, q, YL) – *(U, t’, q’, YS)]T [q’ – q] + tT [mA

*(U, 
t’, q’, YL) – mA

*(U, t, q, YL)] – t’T [mA
*(U, t’, q’, YS) – 

mA
*(U, t, q, YS)] ≥ 0. This upper bound provides a 

measure of the largest possible welfare gain generated by 
induced innovation. As discussed below, this upper 
bound also provides useful information on the interaction 

effects between induced innovation and trade policy re- 
form. 

First, consider the case where only tariffs change. Then, 
when quota policy does not change (q’ = q) and tariff 
policy changes from t to t’, Equation (13) gives the fol-
lowing important result:  

0  ∆WL – ∆WS  

 tT [mA
*(U, t’, q, YL) – mA

*(U, t, q, YL)] 

– t’T [mA
*(U, t’, q, YS) – mA

*(U, t, q, YS)].   (15) 

To interpret Equation (15), consider the case of an in- 
crease in tariff, with t’ > t  0. From Equation (9), we 
know that, ceteris paribus, any tariff increase tends to 
have negative effects on trade mA

*. In this context, Equa- 
tion (15) implies that a weighted sum (with tariffs as 
weights) of the trade reduction due to higher tariffs tends 
to smaller in the long run compared to the short run. This 
global LeChatelier effect indicates how tariff reform can 
affect trade under induced innovation. To illustrate, let-
ting t’  t + t and noting that mA

*(U, t, q, YL) = mA
*(U, 

t, q, YS), Equation (15) implies that:  

tT [mA
*(U, t’, q, YL) – mA

*(U, t’, q, YS)]  

 tT [mA
*(U, t’, q, YS) – mA

*(U, t, q, YS)]  

 0,                                  (16) 

where the last inequality follows from Equation (9). 
Equation (16) implies that a change in import value asso- 
ciated with an induced adjustment in technology from YS 
to YL, tT [mA

*(U, t’, q, YL) – mA
*(U, t’, q, YS)], is at 

least as large as the corresponding short run effect of 
tariff change, tT [mA

*(U, t’, q, YS) – mA
*(U, t, q, YS)]  

0. This LeChatelier result appears to be new. Note that it 
does not imply that induced innovation necessarily re- 
duces the adverse effects of tariffs on trade. But Equation 
(16) establishes a lower bound on the trade effects, tT 
[mA

*(U, t’, q, YL) – mA
*(U, t’, q, YS)], and it states that 

this lower bound is non-positive and given by tT 
[mA

*(U, t’, q, YS) – mA
*(U, t, q, YS)]. This indicates that 

induced innovation could stimulate trade, with tT [mA
*(U, 

t’, q, YL) – mA
*(U, t’, q, YS)] > 0, when |tT [mA

*(U, t’, 
q, YS) – mA

*(U, t, q, YS)]| is small and tariffs have only 
modest effects on trade. Alternatively, this suggests that 
induced innovation could possibly reduce trade, with tT 
[mA

*(U, t’, q, YL) – mA
*(U, t’, q, YS)] < 0, when |tT 

[mA
*(U, t’, q, YS) – mA

*(U, t, q, YS)]| is large and tariffs 
have large effects on trade. These results apply globally, 
i.e. for any change in t, and without imposing differenti- 
ability assumptions.  

When there is only a change in tariffs (with dq = 0), 
and under differentiability assumptions, Equation (14) 
becomes 
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dWL – dWS  

= tT [mA
*(U, t, q, YL)/t – mA

*(U, t, q, YS)/t] dt 

≥ 0.                                     (17) 

Equation (17) is a local version of Equation (15). It has 
the following implications. Note that, under differenti- 
ability, Equation (9) implies that [mA

*(U, t, q, Y)/t] is 
a negative semi-definite matrix, a standard result stating 
that tariffs tend to have negative effects on trade. This 
holds in the short run (when Y = YS) as well as in long 
run (when Y = YL). Consider a (small) proportional in- 
crease in tariff, where dt = k t > 0 and k is a small posi- 
tive scalar. Then, Equation (17) implies that tT mA

*(U, t, 
q, YL)/t – mA

*(U, t, q, YS)/t] tT ≥ 0, i.e. that [mA
*(U, 

t, q, YL)/t – mA
*(U, t, q, YS)/t] is a positive semi- 

definite matrix. It means that, under induced innovation, 
the long run negative effects of tariffs on trade, [mA

*(U, 
t, q, YL)/t], tends to smaller than its corresponding short 
run negative effects, [mA

*(U, t, q, YS)/t]. This is a 
standard local LeChatelier result: allowing for adjust- 
ments in technology tends to reduce the adverse effects 
of tariffs on trade. This is the result obtained by Neary [8] 
and Kreickemeier [9]. However, it holds only locally, i.e. 
only for small changes in tariffs. To see that this Le- 
Chatelier result does not hold globally, it suffices to note 
that {tT [mA

*(U, t, q, YL)/t – mA
*(U, t, q, YS)/t] dt} 

in equation (17) is the local version of the expression on 
the left-hand side of (16). But as discussed above, the 
left-hand side of Equation (16) can be either positive or 
negative. This illustrates the well-known fact that local 
LeChatelier results do not necessarily apply globally ([7, 
10,11]). 

Second, consider the case where only quotas change. 
Then, when tariff policy does not change (t’ = t) and 
quota policy changes from q to q’, equation (13) gives 
the following important result:  

0  ∆WL – ∆WS  

 [*(U, t, q, YL) – *(U, t, q’, YS)]T [q’ – q]  

+ tT [mA
*(U, t, q’, YL) – mA

*(U, t, q’, YS)].   (18) 

Equation (18) shows the complexity of the general 
LeChatelier effects associated with a discrete change in 
quotas under induced innovation. The right-hand side of 
Equation (18) provides an upper bound on the welfare 
change [∆WL - ∆WS] ≥ 0. This upper bound involves the 
difference between quota rents *(U, t, q’, YS) and *(U, 
t, q, YL). Note the interactions between quota effects and 
technology: the first quota rent is evaluated at (q’, YS) 
while the second is evaluated at (q, YL). And in the 
presence of tariffs (when t ≠ 0), the upper bound in (18) 
also includes the term {tT [mA

*(U, t, q’, YL) − mA
*(U, t, 

q’, YS)]}. This term reflects changes in tariff revenue 
(obtained under tariff t and quota q’) between the short 
run (S) and the long run (L). For any discrete change in 

quota from q to q’, Equation (18) gives global LeChate- 
lier effects showing how quota reform can affect quota 
rents and trade under induced innovation.  

While Equation (18) generates general implications of 
quota reform comparing the short run and the long run, it 
does not give sharp predictions on how induced innova- 
tion can affect quota rents. Yet, Equation (18) implies 
that the quota rents must change in such a way that the 
value [*(U, t, q, YL) − *(U, t, q’, YS)]T [q’ − q] is at 
least as large as −tT [mA

*(U, t, q’, YL) − mA
*(U, t, q’, 

YS)], the negative of the change in tariff revenue between 
the short run and the long run. This reflects the presence 
of significant interactions between tariffs and quotas in 
the evaluation of global LeChatelier effects related to 
quota reform. 

The analysis simplifies significantly in the absence of 
tariffs (when t = 0). Then, the global LeChatelier results 
in equation (18) reduce to:  

0  ∆WL − ∆WS  

 [*(U, t, q, YL) − *(U, t, q’, YS)]T [q’ − q].  (18’) 

This implies that [*(U, t, q, YL) − *(U, t, q’, YS)]T 
[q’ − q] ≥ 0, i.e. that any rise in quotas q tends to in- 
crease the difference between the long run quota rents 
*(U, t, q’, YL) evaluated at q’, and the short run quota 
rents *(U, t, q, YS) evaluated at q. These evaluations 
involve changes in both technology and quota level, 
When considering discrete changes in quota policy, note 
that this does not imply that induced innovation alone 
(i.e., the switch from YS to YL) necessarily reduces quota 
rents.  

What about considering small changes in quota policy, 
dq? Then, in the absence of tariff changes (with dt = 0) 
and under differentiability assumptions, Equation (14) 
becomes 

dWL − dWS = [*(U, t, q, YL) − *(U, t, q, YS)]T dq  

+ tT [mA
*(U, t, q, YL)/q − mA

*(U, t, q, YS)/q] dq 

≥ 0.                                     (19) 

Equation (19) is a local version of Equation (18). Like 
(18), Equation (19) shows that local LeChatelier results 
associated with quota changes involve interaction effects 
between quota policy and tariff policy. Again, when t  0, 
Equation (19) does not give precise information on the 
effects of changing quotas on quota rents under induced 
innovation. Yet, in the simpler case where there is no 
tariff (with t = 0), Equation (19) reduces to  

dWL – dWS 

= [*(U, t, q, YL) – *(U, t, q, YS)]T dq ≥ 0.  (19’) 

Equation (19’) is a local version of (18’). It implies 
that [*(U, t, q, YL) – *(U, t, q, YS)]T dq ≥ 0, i.e. that 
any rise in quotas q tends to increase the difference be- 
tween the long run quota rents *(U, t, q, YL) and the 
short run quota rents *(U, t, q, YS). We know from 
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Equation (9) that any rise in quotas tends to reduce quota  
rents. This gives the following local LeChatelier result: 
when t = 0 and for small changes in quotas, induced in- 
novation tends to reduce the corresponding quota rents. 
But while intuitive, this local result does not hold glob- 
ally. Indeed, comparing Equations (18’) and (19’), this 
result does not necessarily hold for arbitrary changes in 
quotas. Again, this illustrates that local LeChatelier re-
sults do not necessarily apply globally.  

While local LeChatelier results given in Equations (17) 
and (19’) are not new (e.g., [8,9]), our investigation has 
been innovative in three directions. First, we considered 
the case of discrete changes in trade policy. This is rele- 
vant as actual policy reforms typically involve large 
changes in policy instruments. Second, we have analyzed 
the joint effects of tariffs and quotas. Third, we have 
shown that global LeChatelier results involve an upper 
bound measure of welfare change. This is given in Equa- 
tion (15) for tariff changes and Equation (18) for quota 
changes. But the general result is the one stated in Pro- 
position 2. Indeed, Equation (13) presents the general 
implications of trade policy reform under induced inno- 
vation, providing useful information on both welfare ef- 
fects and economic adjustments in trade and quota rents. 

6. Concluding Remarks 

This paper has explored the effects of discrete change in 
trade policy (including both tariffs and quotas) under 
induced innovation in general equilibrium. It examined 
the general case where technology and adoption deci- 
sions can vary across firms (e.g., domestic versus export- 
ing firms). The interactions between induced innovation 
and the effects of trade policy give a set of “LeChatelier 
effects” comparing short run versus long run market 
equilibrium. In contrast with previous research, the 
analysis applies globally to arbitrary changes in trade 
policy and without imposing a priori restrictions (such as 
supermodularity).  

We show that induced innovation tends to reduce the 
welfare loss generated by distortionary trade policy. It 
means that ignoring induced innovation would overstate 
the adverse effects of trade policies. When trade policy is 
motivated by rent seeking behavior, it also means that 
induced innovation can tamper the associated ineffi- 
ciency losses. We examine how induced innovation can 
influence the adverse effects of tariffs and quotas on 
trade. We document how tariffs and quotas can interact 
with each other. Our analysis presents the general impli- 
cations of trade policy reform under induced innovation, 
providing useful information on both welfare effects and 
economic adjustments in trade and quota rents. 
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Appendix 

Proof of Lemma 1: Note that j(p, Yj) in (1) is convex in 
p on  , and that ei(p, Ui) in (4) is concave in p on K


K
 . 

Thus, the minimization problem (6) is a convex pro-
gramming problem. Luenberger [26] defined the benefit 
function as bi(xi, Ui)  max {: ui(xi –  g)  Ui, (xi –  
g)   }. The benefit function bi(xi, Ui) is a welfare 
measure giving the number of units of the reference bun-
dle g the i-th consumer is willing to give up starting at 
point xi to reach utility Ui. Under the quasi-concavity of 
ui(xi) on  , Luenberger [26] showed that bi(xi, Ui) is 
concave in xi, non-increasing in Ui, and satisfies ei(p, Ui) 
= minxi {pT xi – bi(xi, Ui): pT g = 1, p   }, i  N. 
Define  

K


K


K


L(U, x, y, p, , t, q) = iN bi(xi, Ui)  

+ pT [iN wi + jM yj – iN xi] 

+ T [iNA wi + q + jMA yj – iNA xi]  

+ tT [iNA wi + jMA yj – iNA xi].     (A1) 

Using Equations (1)-(4), ei(p, Ui) = minxi {pT xi – bi(xi, 
Ui): pT g = 1, p   } and assuming that an interior 
solution to problem (6) exists, it follows from Rockafel-
lar ([27], pp. 281-283) that solving the convex minimiza-
tion problem (6) is equivalent to finding a saddle-point 
(x*, y*, p*, *)     Y       of L() satis-
fying p*T g = 1, where  

K


NK


K


K


L(U, x, y, p*, *, t, q)  

 L(U, x*, y*, p*, *, t, q) 

 L(U, x*, y*, p, , t, q),       (A2) 

for all (x, y, p, )     Y       satisfying 
pT g = 1, and where V(U, t, q, Y) = L(U, x*, y*, p*, *, t, 
q). Interpret p* and * as Lagrange multipliers measuring 
the shadow prices of the constraints [iN wi + jM yj – 
iN xi]  0 and [iNA wi + q + jMA yj – iNA xi]  0, 
respectively. Under the normalization rule pT g = 1, this 
identifies p* as the market-clearing prices for the K 
goods, and * as the unit quota rents associated with the 
import quota restriction (5). From the saddle-point theo- 
rem ([28], p. 74), (A2) implies the following dual prob- 
lem 

NK


K


K


V(U, t, q, Y) 

= Maxx,y {iN bi(xi, Ui)  

+ tT [iNA wi + jMA yj – iNA xi]:  

iN wi + jM yj – iN xi  0,  

iNA wi + q + jMA yj – iNA xi  0, 

x   , y  Y}.                 (A3) NK


This identifies a feasible allocation satisfying the fea- 
sibility constraint (3), the quota constraint (5), x   NK

  

and y  Y. And (A3) satisfies profit maximization in (1) 
and expenditure minimization in (4). In addition, it fol-
lows from Equations (A3) and (7) that W(U, t, q, Y) 
measures the largest feasible aggregate benefit iN bi(xi, 
Ui) under policy instruments (t, q). And bi(xi, Ui) being 
non-increasing in Ui, Equations (A3) and (7) imply that 
W(U, t, q, Y) is non-increasing in U. Finally, choosing U 
 {U’: W(U’, t, q, Y) = 0} implies that iN bi(xi, Ui) = 
0 at the optimum, giving Ui = ui(xi) as the utility level 
obtained for each i  N.  

Proof of Proposition 1: For a given U, let (po, o, xo, yo) 
be the solution of the saddle-point problem in (A2) under 
(t, q), and (p’, ’, x’, y’) be its solution under (t’, q’). 
The second inequality in (A2) implies that 

V(U, t’, q’, Y)  L(U, x’, y’, po, o, t’, q’).   (A4) 

And the first inequality in (A2) implies  

L(U, x’, y’, po, o, t, q)  V(U, t, q, Y).   (A5) 

Adding Equations (A4) and (A5), and using (A1), we 
obtain 

V(U, t’, q’, Y) – V(U, t, q, Y)  

 L(U, x’, y’, po, o, t’, q’) – L(U, x’, y’, po, o, t, q), 

= oT [q’ – q] + [t’ – t]T iNA wi + [t’ – t]T jMA yj’ 

– [t’ – t]T iNA xi’, 

= oT [q’ – q] – [t’ – t]T mA’,                 (A6) 

where mA’  iNA xi’ – iNA wi – jMA yj’. Using 
Equation (7), (A6) implies 

W(U, t’ q’, Y) – W(U, t, q, Y)  

 oT [q’ – q] 

+ tT [mA
*(U, t’, q’, Y)] – mA

*(U, t, q, Y)].   (A7) 

This gives the second inequality in (8). The first ine- 
quality is obtained by switching (t, q) and (t’, q’) in 
Equation (A7) and multiplying by (–1).  

Proof of Proposition 2: Note that Y*(U, t, q)  arg-
maxY {W(U, t, q, Y): Y  Y} implies that  

W(U, t’, q’, Y*(U, t’, q’))  

 W(U, t’, q’, Y*(U, t, q)).         (A8) 

It follows that 

W(U, t, q, YL) = W(U, t, q, YS),        (A9) 

and 

W(U, t’, q’, YL) ≥ W(U, t’, q’, YS),     (A10) 

where YS  Y*(U, t, q), YL  Y*(U, t’, q’). Subtracting 
(A9) from (A10) gives the first inequality in (13). 

To prove the second inequality in (13), note that Equa- 
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tion (8) implies 

W(U, t’ q’, YL) – W(U, t, q, YL)  

 *(U, t, q, YL)T [q’ – q] + tT [mA
*(U, t’, q’, YL) 

– mA
*(U, t, q, YL)], 

and 

*(U, t’, q’, YS)T [q’ – q] + t’T [mA
*(U, t’, q’, YS)  

– mA
*(U, t, q, YS)]  

 W(U, t’ q’, YS) – W(U, t, q, YS).  

Adding these two expressions gives the desired result.  
Proof of Proposition 3: Under differentiability, the 

inequality in (14) follows directly from the first inequal-
ity in (13) when t’  t and q’  q. To prove the equal-
ity in (14), let Dmt(U, t, q, Y) and Dmq(U, t, q, Y) de-
note the derivative of mA

*(U, t, q, Y) with respect to t 
and q, respectively, evaluated at (U, t, q, Y). Applying 
the mean value theorem to mA

*(U, t, q, Y) yields: mA
*(U, 

t’, q’, Y) – mA
*(U, t, q, Y) = Dmt(U,  t + (1 – ) t’,  q 

+ (1 – ) q’, Y) [t’ – t] + Dmq(U,  t + (1 – ) t’,  q + (1 

– ) q’, Y) [q’ – q], for some   [0, 1]. Substituting this 
result into equation (8) and using the definition of a de-
rivative give 

ly that  

W(U, t, q, Y)/t = tT [mA
*(U, t, q, Y)/t],  (A11) 

when t’  t and q’ = q, and 

W(U, t, q, Y)/q = *(U, t, q, Y)T  

+ tT [mA
*(U, t, q, Y)/q],         (A12) 

when t’ = t and q’  q. Equations (A11) and (A12) are 
“envelope-type” results applying locally in the 
neighborhood of (t, q). They imp

dW(U, t, q, Y)  

= tT [mA
*(U, t, q, Y)/t] dt  

+ [*(U, t, q, Y)T + tT (mA
*(U, t, q, Y)/q)] dq, 

= *(U, t, q, Y)T dq + tT dmA
*(U, t, q, Y),    (A13) 

where dmA
*(U, t, q, Y) = [mA

*(U, t, q, Y)/t] dt + 
[mA

*(U, t, q, Y)/q] dq. Using (A13) gives the equality 
in Equation (14). 

 


