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ABSTRACT 

Crampes and Moreaux [1] provide a two period model of competition between a hydrostation and a thermal station for 
the generation of electricity. We modify this model to make it more directly comparable with an infinite horizon model. 
The closed loop equilibrium is characterized. 
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1. Introduction 

Crampes and Moreaux [1] (CM) provide a two period 
model of competition between a thermal station and a 
hydrostation for the production of electricity. CM’s 
analysis is both broad and illuminating. However, their 
model contains implicit assumptions which make it di- 
fficult to compare with an infinite horizon model. In this 
paper, we modify CM’s model to facilitate such com- 
parisons, and solve for the closed loop equilibrium. 

An appropriately written finite horizon model is es- 
sential to the understanding of infinite horizon models. 
Robles [2] analyzes an infinite horizon model and shows 
that one can characterize Markov Perfect Equilibria by 
finding the appropriate closed loop equilibrium to a one 
year finite horizon model. 

A thermal station acts much like any firm. The hy- 
drostation produces energy with (essentially) no variable 
cost. However, it’s output is constrained by the quantity 
of water in it’s reservoir. It can mitigate this constraint by 
passing water through time, but this ability as well is 
subject to constraint. 

Our model has two main departures from CM’s: we 
allow for an over abundance of water as well as scarcity, 
and we allow water inflows in all periods rather than just 
the first. The second departure requires a third; our 
scarcity constraints are per period rather than global. We 
observe that in an infinite horizon model: no reservoir is 
large enough to prevent a firm from forcing it to over- 
flow eventually, and water inflows must occur in more 
than one period. Consequently, an infinite horizon model 
must have all the constraints that we have added to the 

model. For the comparisons carried out in Robles (2009) 
to be meaningful, a finite horizon model must have these 
constraints as well. In addition, our departures from 
CM’s model: clarify the role of the various constraints, 
and allow the possibility of multiple equilibria.  

2. Model 

The model runs over two periods labelled . There 
is no discounting between periods. In each period, the 
thermal station produces t  and the hydrostation pro- 
duces t  electricity. The per period (inverse) demand is 
denoted 

1,2t 

q
h

 P q h
( )tc

t t t . The per period cost function for the 
thermal plant, denoted  , is increasing and convex: 

( ) > 0, ( ) 0t t t tc q c q . 

S
t

1h h S

 

The thermal plant’s installed capacity is large enough 
that no constraint is imposed. 

The hydrostation has no variable costs, but faces a 
number of constraints. Let t  denote the stock of water 
available at the beginning of period . CM impose the 
resource constraint 1 2 

0S 

0W 

2 1 1.S S W h

. 
Like CM, we assume that 1  is set exogenously. 

However, we allow for an additional exogenous inflow 
of water between periods which we denote by . 
Hence, 

   

Consequently, we need a resource constraint for each 
period. We also include a constraint on the hydrostation’s 
storage; the hydrostation must end the period with no 
more than S  water. We assume that S  is sufficiently 
large that if 1S S , then the second period resource 
constraint can not bind in equilibrium. Further, we re- *Thanks to Paul Calcott, and Vladimir Petkov. 
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quire that water is either used or passed to the future; 
there is no “spilling”. This implies the per period hydro- 
constraints 1 and 2:  

t th S                   (1) 

.t th S S 

( )P

              (2) 

Finally, we include a non-negativity constraint. For 
comparison CM: have no overflow constraints, and use a 
single resource constraint.  

3. Equilibrium 

We solve for the closed loop or subgame perfect equi- 
librium. In each period, firms set output. Demand, t  , 
is downward sloping and such that each firm’s per period 
revenue function is concave in that firm’s own output. 
We denote the period  revenue function for the hydro- 
station (resp. thermal station) by  (resp. 

.) 

t
 ,t t tR q h

,T
t tR q

   ,t t t t tq c q
t

H

 th
In each period the thermal plant acts to maximize 

profits within that period, . In each 
period , he satisfies  

TR h

= 0.T
t tc  

T

T
t

t

R

q




 

Here t  is the multiplier on the thermal station’s period 
 non-negativity constraint and the relevant complimen- 

tary slackness condition holds. Let t t  denote the 
thermal station’s period  reaction function. 

t
 Q h

S
 ,

t
Because of his constraints, the hydrostation’s optimal 

choice depends upon the stock of water t . Let 

t t tH q S  denote the hydrostation’s optimal choice. 
In the second period, the hydrostation’s problem is 

non-dynamic as well. However, he faces no variable 
costs, but must satisfy the hydro-constraints. The result- 
ing first order condition is  

2

2

HR

h


 

 2 2 2 0H           (3) 

where t , t , and H
t  are (respectively) the multi- 

pliers on the period  resource, overflow, and non- 
negativity constraints. 

t

 *
t tLet H q  denote the solution to  

0
H

Ht
t

t

R

h
 



S
 *


 

If neither hydro-constraint binds in period 2, then 2  
has no impact on output and 2 2 2 2 2 ,H S q H q . That 
is, the two firms behave like standard Cournot Duopo- 
lists. 

In period 1, the hydrostation faces a dynamic problem, 
and acts to maximize 1 2

H HR  hR . Of course 1  enters 
directly into 1

HR . However, it might also determine 2
HR

 setting ce, the hydro n acts to satisfy the 
 

following first order condition:1 

by 2S . Hen statio

1
1 1 1

1

2 2 2 2
2
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


  



    
         

     (4) 

The LHSs of the hydrostation’s two first order con- 
di

is

is case

sta

now to a characterization of the various 
po

tions are analogous. However, the RHS of the period 1 
first order condition might not be zero. Instead, it reflects 
the value of water in period 2. The first term on the RHS 
is the second period marginal revenue, holding 2q  con- 
stant. The second piece is the strategic effect. It  never 
negative. It is strictly positive if 2 > 0q  and a second 
period hydro-constraint binds. In th , an increase in 

2S  leads to a decrease in 2q . In response, the hydro- 
tion will tend to move water from the first period to 

the second. 
We turn 
ssible cases. First assume neither hydro-constraint 

binds in either period. Clearly the hydrostation sets 2h   

at   * * *
2 2 2 2h H Q h . Since this output does not depe  nd

upon 2S , we have 2

2

0
S

H



 making the strategic term  

in Equation (4) zero. In addition, since the second period 

Henc
output is determined by *

2 ( )H  , the remaining terms on 
the RHS sum to zero. e first period output is 

  * * *
1 1 2 1h H Q h . That is, if neither hydro-constraint 

eriod, then we have period by period 
static Cournot competition. Our assumption that 
binds in either p

S  is 
large can now be formally stated as * *

1 2S h h  . 
The preceding paragraph implies that the second 

period non-negativity constraint binds in equilibrium if 
and only if *

2 0h  . This is as it should be, because the 
only other re hat a non-negativity constraint should 
bind is because of a desire to pass water to the future. 
However, in CM this constraint might bind because of a 
desire to use more than the entire resource of water in the 
first period. That is, CM’s second period non-negativity 
constraint might need to do the work that should be done 
by a first period resource constraint. 

We consider next the possibility o

ason t

f a hydro-constraint 
binding in the first period. If this happens, and  

*
2 2W S h  , then the hydro station’s problem b

is, in each period t he acts as if to maximize 
period t profits. However, if 

ecomes 
static. That 

*
2>W S h , then the re- 

source constraint might bind in eriod, but with 
*

1 1>h h . That is, the hydrostation would like to pass 
ackwards in time even though marginal revenue 

 the first p

water b

1We are assuming for the moment, as CM do, that 2

2

H
HR


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 and 2

2

Q

h




exist. They may not. 
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w consider the case in which a hydro-constraint 
bi

is negative in the first period. Of course, this requires that 
marginal revenue is even more negative in the second 
period. 

We no
nds in period 2, but no hydro-constraint binds in period 

1. If the overflow constraint binds, then *
2 2 2h S S h    

and 1 2 1=h h S W S   . If the resource  
then 1 2 1=h h S W  . In both cases, 
the tw  are red ly determine the 
value of 1 2h h . However, if either of the hydro-con- 

straints b en 

 co

undant, and on

nstraint binds

ind

*
2 2 2h  and 

ations
=h S

o equ
 

Figure 1. Example hydro outputs 
 

s strictly, th 2 = 1
H

 and Equation (4) is over abundant. The left hand box of Figure 1 graphs 
the transition from scarce to abundant; we set W  
and increase 1  up from zero. From zero to the first 
dotted line, the second period resource constraint binds, 

2S
 

nails down the u 1h  and 2h . 
f n s then 

= 0
Sexact val es of 

We already established that i either bind

2 = 0
H

. The possibility remains of a weakly b
2S




inding 

second period hydro-constraint remains, in which case 

and Equation (4) holds with 

2

2

H

S
In equilibrium, the overflow constraint can’t bind 

w

2h  an 
dec profits

co

Multiple equilibria a possible because whether the 
ov

ple which illustrates 

strates the e r the hydr


 is undefined. 

eakly in the second period. Assume otherwise. If 
*

1 1<h h , then one can increase 1h  without decreasing 
d increase profits. If *

1 1h h , then one can 
rease 1h , which increases  by making the 

overflow nstraint bind in the second period. On the 
other hand, the second period resource constraint can 
bind weakly. In this case, Equation (4) is not useful. 
However, when the resource constraint binds weakly, the 
equilibrium is easy to calculate; *

2 2=h h , and 
*

1 1 2=h S W h  . 
re 

erflow constraint binds, or not, is determined endo- 
genously by first period output. Since the two firms set 
output in each period simultaneously, there are cir- 
cumstances where the hydrostation wants to force the 
overflow constraint to bind for some choices or 1q , but 
not for others. That is, for some values of 1S  and W , 
there are multiple equilibria. 
  We conclude with an exam how 
the water resource determines the equilibrium. Set 

t t t tP a q h   , a1 = 5, a2 = 8 and ( ) =t t tc q q . Figure 1 
quilibrium outputs fo ostation as 

a function of the water supply. There are three general 
situations: water is scarce, water is abundant, and water 

illu

2

2

= 1
H

S




*=h h
*

1 1= h
*

2 2=h h

. From the first 

to the second dotted line, the second period resource 
constraint binds weakly and 2 2 . To the right of the 
second dotted line: no constraints bind, h  and 

. 
The right hand box in Figure 1 graphs the transition 

from abundant to over abundant. We set 1 , and 
increase  from 0. To the first dotted line, the only 
equilibrium has 1 1  and 2 2h . At the first dotted 
line, there is sufficient water to support an equilibrium in 
which overflow constraint binds in the second period. 
Between the first two dotted lines, both these equilibria 
exist. At the second dotted line, the reward from forcing 
the overflow constraint to bind in the second period 
becomes too great, and the first equilibrium disappears. 
At the third dotted line, 2 , which removes the 
strategic benefit from increasing 2 . At the fourth dotted 
line, the marginal revenues are equal across the two 
periods, and so additional water is spread between them 
evenly. 

=S S
W

*=h h *= h

0q 
h

REFERENCES 
[1] C. Crampes and M. Moreaux, “Water Resource and 

Power Generation,” International Journal of Industrial 
Organization, Vol. 19, No. 6, 2001, pp. 975-997. 
doi:10.1016/S0167-7187(99)00052-1 

[2] J. Robles, “Infinite Horizon Hydro Power Games,” Un-
published Manuscript, Victoria University, Wellington, 
2009. 

 

http://dx.doi.org/10.1016/S0167-7187(99)00052-1

