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ABSTRACT 

In this paper, the equations of motion for spatial restricted circular three body problem will be established using the 
cylindrical coordinates. Initial value procedure that can be used to compute both the cylindrical and Cartesian coordi-
nates and velocities is also developed. 
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1. Introduction 

Depending on the application, a certain coordinate sys-
tem may be simpler to use than the Cartesian coordinate 
system. As an example, a physical problem with spheri-
cal symmetry defined in R3 (e.g., motion in the field of a 
point mass), is usually easier to solve in spherical polar 
coordinates than in Cartesian coordinates. Also, for in-
stance, in the galactic rotation, cylindrical coordinates are 
usually adopted, while the spherical coordinates are 
suitable for the dynamics of globular clusters. In fact, the 
change of the dependent and/or independent variables for 
the differential equations of motion becomes of the focal 
point of researches in space dynamics. Some authors 
proposed successful methods to change of the dependent 
and/or independent variables so as to regularize the dif-
ferential equations of motion. Of these, the method es-
tablished by Stiefel and Scheifele, in 1971 [1]. Many 
studies on the applications of these devices for some or-
bital systems were done for the perturbed two body 
problem (e.g. [2-5]). 

The great success of the these devices in regularizing 
the equations of motion for the perturbed two body prob-
lem ,and on the other hand, the importance of the three 
body problem in space dynamics (e.g [6]) and in stellar 
dynamics (e.g [7]), tempted us to develop the corre-
sponding deceives for the three body problem. 

The present paper represents the first phase of our 
studies towards establishing new differential equations 
for the different forms of the three body problem using 
some important coordinate systems. 

The objective of the present paper, is to establish the 
equations of motion for spatial restricted circular three 

body problem in cylindrical coordinates system together 
with initial value procedure that can be used to compute 
both the cylindrical and Cartesian coordinates and ve-
locities. 

2. The Circular Restricted Three-Body 
Problem 

If two of the bodies, say 1  and 2m  in the three-body 
problem move in circular, coplanar orbits about their 
common center of mass and the mass of the third body is 
too small to affect the motion of the other bodies, the 
problem of the motion of the third body is called the cir-
cular ,restricted ,three body problem. The two revolving 
bodies are called the primaries, their masses are arbitrary 
but have such internal mass distributions that they may 
be considered point masses. The equations of motion of 
the third body in a dimensionless synodic rotating coor-
dinate 

m

 , ,x y z  system with the mean motion 1n  , 
are [8]  

2x y V x     ,               (1) 

2y x V y     ,               (2) 

z V z   ,                   (3) 

where  , ,V V x y z  is given as 

 2 2

1 2

1 1

2
V x y

r r

 
    ,         (4) 

  denotes the mass of the smaller primary when the 
total mass of the primaries has been normalized to unity. 

 22
1 ,r x y z   2 2              (5) 
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 22
2 1r x y z    2 2 .            (6) 

3. The Equations of Motion in Cylindrical 
Coordinate System 

In what follows we shall establish ,the differential equa-
tions for the spatial circular restricted three body pro- 
blem in the cylindrical coordinate system  
together with a list of the direct and the, inverse formulae 
of the transformation. 

 1 2 3, ,u u u

3.1. Coordinate and Velocity Transformations 

1 2cosx u u ; ;        (7) 1 2siny u u 3z u

1 2 2 1cos sin ;2x u u u u u     

1 2 2 1 2sin cos ;y u u u u u                   (8) 

3z u  , 

where 

10 u   , , . 2π πu   3u   

3.2. Inverse Transformations 

From Equation (7) we have 

 1 22 2
1u x y  ; 1

2 tan
y

u
x

    
 

; .     (9) 3u  z

From Equation (8) we get 

 
1

1

xx yy
u

u




 
 ; 

 
2 2

1

xy yx
u

u




 
 ; .      (10) 3u  z

where 1  is given in terms of u x  and y by the first of 
Equation (9). 

3.3. The Equations of Motion 

The kinetic energy of a particle of unit mass in the cylin-
drical coordinate system is 

 2 2 2 2
1 1 2 3

1
 

2
T u u u u                 (11) 

By using the transformation equations (Equation (7)), 
the gravitational potential V could be expressed in term 
of .  1 2 3, ,u u u

Using Lagrange’s dynamical equations, we have  

1 1

d
,

d

T T V

t u u u

   
      1

 

2 2

d

d

T T

t u u u

   
      2

V
, 

3 3

d

d

T T

t u u u

   
     

Consequently, we deduce for the equations of motion 
in the cylindrical coordinate the forms 

2
1 1 2

1

V
u u u

u


 


  ,                (12.1) 

2
1 2 1 1 2

2

2
V

u u u u u
u


  


   ,           (12.2) 

3
3

V
u

u





 .                     (12.3) 

where 
j

V

u




 are given as 

; 1,2,3,
j j j j

V V x V y V z
j

u x u y u z u

      
   

      
  (13) 

,   and  ; 1,2,3j j jx u y u z u j        can be com-
puted from Equation (7), while ,V x V y     and 

V z   can be computed from Equation (4), and we get 

 
   

    

3 2 2
3 1 2 1 23/2

1 2 3

3 2 2 3 2
2 1 2 2 3 1

1
1 cos sin

1 cos sin ,

V
Q Q u u u

u Q Q

Q Q u u Q u



 


  



   

 

 
 

   

3/2
1 2 2 1 1 23 2

2 2 3

3 2
3 1 1 2

1
sin cos 1

1 cos ,

V
u u Q Q u u

u Q Q

Q Q u u






  



  

 

3 2 3 2
3 2 3

1V

u Q Q

   
    

. 

where 

1 1 2

2 2 2 2
2 1 1 2 3

3 1 2

cos ,

sin ,

1 2 .

Q u u

Q Q u u u

Q Q Q

 

  

  

 

4. Computational Developments 

4.1. Initial Value Procedure 

In what follows, we shall establish a procedure that can 
be used to compute 0 ft t t    (say) both: 

1) the cylindrical coordinates and velocities  
 1 2 3 1 2 3, , , , ,u u u u u u   , and 

2) the Cartesian coordinates and velocities  
 , , , , ,x y z x y z   . 

So, such procedure is a double usefulness computa-
tional algorithm, for which a differential solver can be 
used for the cylindrical six order system to obtain 
 1 2 3 1 2 3, , , , ,u u u u u u   . While the Cartesian coordinates and 
velocities  , ,, , ,x y z x y z    are obtained by the substitu-
tion in the direct transformation formulae (Equations (7) 
and (8)), rather than solving the six order system of 3

V
. 
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Equations (1), (2) and (3). By this way, great time can be 
saved. 

This initial value procedure using sidereal cylindrical 
coordinate system will be described through its basic 
points, input, output and computational steps.

 
Input: 1) 0 0 0 0 0 0, , , , ,x y z x y z    at , 0t t
2) the final time ft t , 

3)  1 , ,
V

F x y z
x





,  2 , ,

V
F x y z

y





,  

 3 , ,
V

F x y z
z





. 

Output: 1)  from  to ; ; 1, 2,3j ju u j 
 0t ft . 

2) , , ; , ,x y z x y z   t from  to 0 ft . 

Computational Steps 
1) Using the inverse transformation Equations (9) and 

(10) to find the initial values  using 
the given values 

0  ; 1, 2,3, 4,5,6ju j 
0 0 0, ,0 0 0, , ,x y z x y z   0t t at . 

2) Using the partial derivatives 
1 2

; ;
3u u u  

3

V V V  
 (func- 

tions of ) to construct the analytical forms 
of Equation (12) as first order system in the form: 

; 1,2,ju j 

1 4

2 5

3 6

2
4 1 5

1

4 5
5 2

1 21

6
3

2 1

u u

u u

u u

V
u u u

u

u u V
u

u uu

V
u

u







 


 

 
















 

3) Using the initial conditions 0  
from step 1 to solve numerically the above differential 
system for  from t  to 

; 1,2,3,4,5,6ju j 

0; 1, 2, ,ju j   6 ft , (note that 
). 4 1 5u u u  2 6 3, ,u u u  

; ; 1, 2,u u j 4) Using
  

 from step 3 and the direct 

transformations Equations (7) and (8) to compute nu-
merically

3j j

, ,x y z  and , ,x y z     to 0t ft .  
5) End. 

5. Conclusion 

In this paper, the equations of motion for spatial re-
stricted circular three body problem was established in 
cylindrical coordinates system. Initial value procedure 
that can be used to compute both the cylindrical and 
Cartesian coordinates and velocities is also developed. 
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