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ABSTRACT 

In this paper, we presented an asymptotic fitted approach to solve singularly perturbed delay differential equations of 
second order with left and right boundary. In this approach, the singularly perturbed delay differential equations is 
modified by approximating the term containing negative shift using Taylor series expansion. After approximating the 
coefficient of the second derivative of the new equation, we introduced a fitting parameter and determined its value us-
ing the theory of singular Perturbation; O’Malley [1]. The three term recurrence relation obtained is solved using Tho-
mas algorithm. The applicability of the method is tested by considering five linear problems (two problems on left layer 
and one problem on right layer) and two nonlinear problems. 
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1. Introduction 

The problems in which the highest order derivative term 
is multiplied by a small parameter are known to be per-
turbed problems and the parameter is known as the per-
turbation parameter. A singularly perturbed differential- 
difference equation is an ordinary differential equation in 
which the highest derivative is multiplied by a small pa-
rameter and involving at least one delay or advance term. 
Recently by constructing a special type of mesh, so that the 
term containing delay lies on nodal points after discretiza-
tion R. N. Rao, P. P. Chakravarthy [2], presented a fourth 
order finite difference method for solving singularly per-
turbed differential difference equations. H. S. Prasad and Y. 
N. Reddy [3] considered Differential Quadrature Method 
for finding the numerical solution of boundary-value 
problems for a singularly perturbed differential-difference 
equation of mixed type. In recent papers [4-8] the terms 
negative or left shift and positive or right shift have been 
used for delay and advance respectively. 

The differential-difference equation plays an important 
role in the mathematical modeling of various practical 
phenomena in the biosciences and control theory. Any 
system involving a feedback control will almost always 
involve time delays. These arise because a finite time is 
required to sense information and then react to it. For a 
detailed discussion on differential-difference equation 
one may refer to the books and high level monographs: 

Bellen [9], Driver [10], Bellman and Cooke [11]. 
In [12], similar boundary value problems with solu-

tions that exhibit rapid oscillations are studied. Based on 
finite difference scheme, fitted mess and B-spline tech-
nique, piecewise uniform mess an extensive numerical 
work had been initiated by M. K. Kadalbajoo and K. K. 
Sharma in their papers [4-8] for solving singularly per-
turbed delay differential equations. 

It is well known that the classical methods fail to pro-
vide reliable numerical results for such problems (in the 
sense that the parameter and the mess size cannot vary 
independently). Lange and Miura [13-15] gave asymptotic 
approaches in the study of class of boundary value prob-
lems for linear second order differential difference equa-
tions in which the highest order derivative is multiplied by 
small parameter. The effect of small shifts on the oscilla-
tory solution of the problem has been discussed in [14]. 

The aim of this paper is to provide an asymptotic-fitted 
method to solve singularly perturbed delay differential 
equations of second order with left and right boundary. 
In this technique, by approximating the term containing 
negative shift by Taylor series, we modify the singularly 
perturbed delay differential equations. We introduce a 
fitting parameter on the highest order derivative term of 
the new equation. The fitting parameter is to be deter-
mined from the upwind scheme using the theory of sin-
gular Perturbation; O’Malley [1]. Finally, we obtain a 
three term recurrence relation that can be solved using 
Thomas algorithm. The applicability of the method is *Corresponding author. 
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tested by considering five problems which have been 
widely discussed in literature (two linear problems on 
left layer, one linear problem on right layer and two 
nonlinear problems). 

2. The Asymptotic-Fitted Scheme 

To describe the method, we first consider a linear singu-
larly perturbed delay differential two-point boundary 
value problem of the form:  

           
0 1

y x a x y x b x y x f x

x

     

 
   (1) 

with 

 0 ;  y      0x             (2a) 

and 

 1y  ;                  (2b) 

where  is a small positive parameter , 
 are bounded functions in  and 

 0 1 
1 ,   ,b x f x 0,    

are known constants. Furthermore, we assume that 
 throughout the interval [0,1], where M is 

a positive constant. Under these assumptions, (1) has a 
unique solution y(x) which in general, displays a bound-
ary layer of width O() at . 

 a x M  0

0x 
Approximating y x    by the Taylor expansion, 

we have 

     y x y x y     x           (3) 

Substituting Equation (3) in to Equation (1), we get 

              a x y x a x y x b x y x f x        (4a) 

           y x a x y x b x y x f x           (4b) 

For appropriate choices of   such that 
0 1      , where , from the the-

ory of singular perturbations it is known that the solution 
of (4) and (2) is of the form [O’ Malley [1]; pp. 22-26]. 
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where  0y x  is the solution of 

         
 

0 0

0

,

1 .

a x y x b x y x f x

y 

  


 

By taking the Taylor’s series expansion for a(x) and 
b(x) about the point “0” and restricting to their first terms, 
(5) becomes, 

      
   

   
0 0

0
0 0 0

a b
x

ay x y x y e O 
 

   
       (6) 

Now we divide the interval [0, 1] into N equal parts 

with constant mesh length h. Let  be 
the mesh points. Then we have 

0 10 , , , Nx x x 
;  0,1, ,i

1
x ih i N   . 

From (6) we have  
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where 
h


 . 

The special second order scheme corresponding to 
Equation (4b) [one can see [2]] is: 

   1/2
1 1 12

1 1
1/2 1/2
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Now, we introduce a fitting factor     in the above 
scheme (9)  
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      (10) 

with y(0) =  and y(1) = . 
The fitting factor () is to be determined in such a 

way that the solution of (10) converges uniformly to the 
solution of (1)-(2). 

Multiplying (10) by h and taking the limit as h  0; 
we get  

     

      
0

lim 2

2 0

h
y ih h y ih y ih h

a ih y ih h y ih





   


   

     (11) 

By substituting (7) in (11) and simplifying, we get the 
constant fitting factor 
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   (12) 

The equivalent three term recurrence relation of Equa-
tion (10) is given by: 

1 1i i i i i i iE y F y G y H    ;   (13) 0,1,2,3, , 1i N 
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where, 

1/2 1/2 1/2
2 2

1/2 1/2
1/22

62
;

8
3

; .
8

i i
i i

i i
i i

b a
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;
8
i

i

b 

 

This gives us the tri diagonal system which can be 
solved easily by Thomas Algorithm. 

Thomas Algorithm 
A brief discussion on solving the three term recurrence 

relation using Thomas algorithm which also called Dis-
crete Invariant Imbedding (Angel & Bellman [17]) is 
presented as follows: 

Consider the scheme given in (13): 

1 1 ;

0,1, 2,3, , 1.
i i i i i i iE y F y G y H

i N
   

 
 

subject to the boundary conditions 

 0 0y y   ; and  1Ny y           (13a) 

We set 

1i i iy W y T  i

i i

1i

 for    (13b) 1, 2, 2,1.i N N   

where  and  which are to be 
determined. 

 iW W x  iT T x

From (13b), we have 

1 1i i iy W y T              (13c) 

By substituting (13c) in (13), we get  

 1 1 1
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By comparing (13d) and (13b), we get the recurrence 
relations 

1
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To solve these recurrence relations for 
0,1,2,3, , 1i  

W 0T
, we need the initial conditions for 

0  and . For this we take 0 00 1y W y  
T

. We 
choose 0  so that the value of 00W   . With these 
initial values, we compute i  and iT  for  

 from (13e)-(13f) in forward process, 
and then obtain  in the backward process from (13b) 
and (13a). 

W
0,1,2,3, , 1i  

iy
N 

i

The conditions for the discrete invariant embedding 
algorithm to be stable are (see [16] & [17]): 

0iE  , , 0iF  i iF E G   and iE G

In this method, if the assumptions    0, 0a x b x   
and    0a x    hold, one can easily show that the 
conditions given in (13g) hold and thus the invariant 
imbedding algorithm is stable. 

3. Right-End Boundary Layer 

We now assume that   0a x M   throughout the in-
terval [0, 1], where M is some negative constant. This 
assumption merely implies that the boundary layer for 
Equation (1)-(2) will be in the neighborhood of x = 1. 
From the theory of singular perturbations it is known that 
the solution of (4b) and (2) is of the form [cf. O’ Malley 
[1]; pp. 22-26] 
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where  0y x  is the solution of  

        0 0a x y x b x y x f x     0 0y,  . 

For appropriate choices of   such that 
0 1      , where 

0 1x 
. By taking 

first terms of the Taylor’s series expansion for a(x) and 
b(x) about the point “1”, (14) becomes, 

 max a x 
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where, 
h


 . 

For the right layer, the special second order scheme 
corresponding to Equation (4b) [one can see [16]] is: 
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with y(0) =  and y(1) = . 
We introduce a fitting factor     in the upwind 

scheme corresponding to Equation (17)  
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Multiplying (18) by h and taking the limit as h  0; 
we get the value of the fitting factor: i    (13g) 
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non-linear problems). We presented the absolute maxi-
mum error compared to the exact solution of the prob-
lems. For the examples not having the exact solution, the 
absolute maximum error is calculated using the double 
mesh principle. 

Example 1: Consider a singularly perturbed delay dif-
ferential equation with left layer: 

The equivalent three term recurrence relation of Equa-
tion (10) is given by: 
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with 0 1  and  1 1
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 This gives us the tri diagonal system which can be 

solved easily by Thomas Algorithm 

The absolute maximum errors are given in Tables 1(a), 
(b) for  = 0.1* and  = 0.5* respectively. 

4. Numerical Examples 

To demonstrate the applicability of the method, we con-
sidered five numerical experiments (two problems with 
left-end, one with right-end boundary layer and two  

Example 2: Now we consider an example of variable 
coefficient singularly perturbed delay differential equa-
tion with left layer: 

 
Table 1. (a) Absolute maximum error for Example 1 with δ = 0.1*ε; (b) Absolute maximum error for Example 1 with δ = 
0.5*ε. 

(a) 

  N 
ε 

8 16 32 64 128 256 

2–1 0.06590116 0.06659734 0.06635201 0.06622773 0.06618261 0.06614488 

2–2 0.04331625 0.04302216 0.04270446 0.04252678 0.04243886 0.04239243 

2–3 0.02354121 0.02422798 0.02374059 0.02367991 0.02359021 0.02355647 

2–4 0.01304051 0.01228201 0.01266778 0.01248485 0.01242727 0.01240349 

2–5 0.00861776 0.00715244 0.00625837 0.00647265 0.00640351 0.00637484 

2–6 0.00454307 0.00466040 0.00369185 0.00315714 0.00327134 0.00326121 

2–7 0.00680059 0.00245079 0.00240186 0.00187191 0.00158358 0.00163895 

(b) 

  N 
ε 

8 16 32 64 128 256 

2–1 0.04706228 0.04620373 0.04613781 0.04602182 0.04593331 0.04589027 

2–2 0.02590531 0.02654833 0.02620518 0.02596778 0.02592456 0.02589089 

2–3 0.01385903 0.01353049 0.01390761 0.01380384 0.01372480 0.01369333 

2–4 0.00930083 0.00749877 0.00689793 0.00711274 0.00707847 0.00709528 

2–5 0.00506100 0.00505769 0.00386468 0.00349572 0.00359631 0.00359327 

2–6 0.00652197 0.00272188 0.00260663 0.00195849 0.00176162 0.00180280 

2–7 0.00792134 0.00337869 0.00140399 0.00131953 0.00098503 0.00088504 
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0.5 0; 0 1

with 0 1 and 1 1

xy x e y x y x  x ,

y y

      

 
 

The absolute maximum errors are given in Tables 2(a), 
(b) for  = 0.1* and  = 0.5* respectively. 

Example 3: Now we consider an example of variable 
coefficient singularly perturbed delay differential equa-
tion with right layer: 

     
   

0; [0 1]   

with 0 1  and  1 1

xy x e y x xy x x ,

y y

      

 
 

The absolute maximum errors are given in Tables 3(a), 
(b) for  = 0.1* and  = 0.5* respectively. 

5. Nonlinear Examples 

Here, the solution of the nonlinear singular perturbed 
delay differential problem is approximated by using the 
corresponding linear problem which is obtained by quasi- 
linearization method. 

Example 4: Consider the nonlinear problem  

        0y x y x y x y x       

   1, 0, 1 1y x x y      

The linear form is: 

      0y x y x y x      ; 

  1, 0, 1 1y x x y       

The absolute maximum errors are given in Tables 4(a), 
(b) for  = 0.1* and  = 0.5* respectively.  

Example 5: Consider the nonlinear problem  

      2 expy x y x y x   0     

  0, 0, 1 0y x x y       

The linear form is: 

     2 1y x y x y x       ; 

  0, 0, 1 0y x x y       

The absolute maximum errors are given in Table 5(a) 
for  = 0.1*. 

6. Discussion and Conclusions 

We presented an asymptotic-fitted approach to solve 
singularly perturbed delay differential equations of sec-
ond order with left and right boundary. In this approach, 
the singularly perturbed delay differential equations is  

 
Table 2. (a) Absolute maximum error for Example 2 with δ = 0.1*ε; (b) Absolute maximum error for Example 2 with δ = 
0.5*ε. 

(a) 

  N 
ε 

4 8 16 32 64 128 256 

2–1 0.00932044 0.00587344 0.00307536 0.00156194 0.00078273 0.00039548 0.00030148 

2–2 0.01102924 0.00774032 0.00422818 0.00219631 0.00110936 0.00058156 0.00021470 

2–3 0.01196343 0.01017565 0.00597358 0.00317931 0.00163180 0.00081933 0.00042850 

2–4 0.01252180 0.01028168 0.00688961 0.00388223 0.00204694 0.00104323 0.00052026 

2–5 0.02101487 0.00625777 0.00601512 0.00390074 0.00218076 0.00114474 0.00057709 

2–6 0.02405462 0.01024660 0.00355530 0.00324515 0.00207686 0.00115591 0.00060490 

2–7 0.02422509 0.01186317 0.00497991 0.00190765 0.00169265 0.00107640 0.00060233 

(b) 

  N 
ε 

4 8 16 32 64 128 256 

2–1 0.00995100 0.00651252 0.00346804 0.00177801 0.00089538 0.00043845 0.00024468 

2–2 0.01178050 0.00882894 0.00498253 0.00260353 0.00133693 0.00065511 0.00037187 

2–3 0.01109564 0.01078498 0.00654841 0.00355518 0.00184363 0.00091839 0.00050619 

2–4 0.01648593 0.00893948 0.00674072 0.00397611 0.00213653 0.00110710 0.00056958 

2–5 0.02305564 0.00778854 0.00511229 0.00370225 0.00216618 0.00115684 0.00060311 

2–6 0.02420318 0.01133943 0.00369865 0.00274074 0.00195089 0.00113574 0.00061220 

2–7 0.02422568 0.01194015 0.00554314 0.00178897 0.00142339 0.00100395 0.00058430 
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Table 3. (a) Absolute maximum error for Example 3 with δ = 0.1*ε; (b) Absolute maximum error for Example 3 with δ = 
0.5*ε. 

(a) 

  N 
ε 

8 16 32 64 128 256 

2–1 0.00222600 0.00117987 0.00060213 0.00028747 0.00016636 0.00011468 

2–2 0.00310129 0.00165153 0.00084174 0.00043643 0.00018781 0.00009602 

2–3 0.00418574 0.00246245 0.00129366 0.00066006 0.00033802 0.00018007 

2–4 0.00373936 0.00275040 0.00157744 0.00083441 0.00043422 0.00020647 

2–5 0.00156945 0.00216299 0.00151300 0.00086087 0.00045437 0.00023597 

2–6 0.00101274 0.00099093 0.00114608 0.00078410 0.00044215 0.00024968 

2–7 0.00085384 0.00062519 0.00054669 0.00058919 0.00039625 0.00023258 

(b) 

  N 
ε 

8 16 32 64 128 256 

2–1 0.00214487 0.00116605 0.00060678 0.00031441 0.00018507 0.00013155 

2–2 0.00245768 0.00132048 0.00068003 0.00034201 0.00010890 0.00011069 

2–3 0.00354105 0.00196123 0.00101763 0.00051522 0.00026250 0.00012809 

2–4 0.00408721 0.00262952 0.00143415 0.00074011 0.00038415 0.00017154 

2–5 0.00277966 0.00255597 0.00157464 0.00085860 0.00044066 0.00021058 

2–6 0.00062406 0.00164264 0.00137365 0.00083697 0.00045025 0.00025016 

2–7 0.00084519 0.00047833 0.00087947 0.00070649 0.00043297 0.00024223 

 
Table 4. (a) Absolute maximum error for Example 4 with δ = 0.1*ε; (b) Absolute maximum error for Example 4 with δ = 
0.5*ε. 

(a) 

  N 
ε 

8 16 32 64 128 256 

2–1 0.00213301 0.00112891 0.00057518 0.00029039 0.00015420 0.00007296 

2–2 0.00377291 0.00214630 0.00111610 0.00056797 0.00028920 0.00013453 

2–3 0.00510615 0.00317276 0.00172204 0.00089252 0.00045049 0.00019926 

2–4 0.00429779 0.00339449 0.00203383 0.00109428 0.00055456 0.00022316 

2–5 0.00633597 0.00253260 0.00191137 0.00113708 0.00060311 0.00026855 

2–6 0.00890699 0.00323787 0.00135115 0.00100583 0.00057116 0.00031507 

2–7 0.00924397 0.00459987 0.00163841 0.00069958 0.00051922 0.00028366 

(b) 

  N 
ε 

8 16 32 64 128 256 

2–1 0.00352603 0.00197142 0.00102031 0.00051808 0.00026095 0.00012422 

2–2 0.00504059 0.00304705 0.00163776 0.00084680 0.00043195 0.00019729 

2–3 0.00457019 0.00341815 0.00201106 0.00107420 0.00054097 0.00021869 

2–4 0.00569892 0.00273028 0.00195971 0.00115097 0.00054717 0.00030881 

2–5 0.00871894 0.00290266 0.00146690 0.00103468 0.00059775 0.00029600 

2–6 0.00923803 0.00450021 0.00146616 0.00075421 0.00054109 0.00028309 

2–7 0.00924811 0.00477573 0.00228718 0.00073534 0.00038132 0.00026801 
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Table 5. Absolute maximum error for Example 5 with δ = 0.1*ε. 

  N 
ε 

8 16 32 64 128 256 

2–1 0.00198783 0.00111622 0.00058109 0.00029604 0.00014888 0.00007491 

2–2 0.00397655 0.00256884 0.00142694 0.00074568 0.00038224 0.00020197 

2–3 0.00339308 0.00297231 0.00186834 0.00102803 0.00052768 0.00022215 

2–4 0.00308001 0.00217193 0.00181127 0.00110716 0.00059539 0.00026590 

2–5 0.00500339 0.00144827 0.00124371 0.00099105 0.00060833 0.00029230 

2–6 0.00518721 0.00246394 0.00070095 0.00066656 0.00050962 0.00031346 

2–7 0.00518870 0.00256175 0.00122374 0.00034362 0.00033247 0.00029516 

 
modified by approximating the term containing negative 
shift using Taylor series expansion. After approximating 
the coefficient of the second derivative of the new equa-
tion, we introduced a fitting parameter and determined its 
value using the theory of singular Perturbation; O’Malley 
[1]. The delay parameter   was chosen so that the co-
efficient of the second derivative of the modified prob-
lem gets smaller. The final three term recurrence relation 
obtained is solved using Thomas algorithm. 

Five problems were considered ((three linear problems; 
two on left layer and one on right layer) and (two 
nonlinear problems)) to test the applicability of the new 
method by taking different values of the delay parameter 
 , the perturbation parameter   with the relation 

0.1*   and 0.5* 

12  to h 

 and different mesh size h. It 
is observed that the method produces good approxima-
tion for relatively large mesh size and as mesh size de-
crease from  the absolute maximum 
error decreases. It is observed that this method is not 
producing good results for very small step mesh (h). 

72h 
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