Applied Mathematics, 2012, 3, 895-902

o5 Scientific
http://dx.doi.org/10.4236/am.2012.38132 Published Online August 2012 (http://www.SciRP.org/journal/am)

#3% Research

An Asymptotic-Fitted Method for Solving Singularly
Perturbed Delay Differential Equations

Awoke Andargie®”, Yanala Narsimha Reddy?
'Bahir Dar University, Bahir Dar, Ethiopia
“National Institute of Technology, Warangal, India
Email: *awoke248@yahoo.com, ynreddy@nitw.ac.in

Received June 9, 2012; revised July 11, 2012; accepted July 18, 2012

ABSTRACT

In this paper, we presented an asymptotic fitted approach to solve singularly perturbed delay differential equations of
second order with left and right boundary. In this approach, the singularly perturbed delay differential equations is
modified by approximating the term containing negative shift using Taylor series expansion. After approximating the
coefficient of the second derivative of the new equation, we introduced a fitting parameter and determined its value us-
ing the theory of singular Perturbation; O’Malley [1]. The three term recurrence relation obtained is solved using Tho-
mas algorithm. The applicability of the method is tested by considering five linear problems (two problems on left layer
and one problem on right layer) and two nonlinear problems.
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1. Introduction

The problems in which the highest order derivative term
is multiplied by a small parameter are known to be per-
turbed problems and the parameter is known as the per-
turbation parameter. A singularly perturbed differential-
difference equation is an ordinary differential equation in
which the highest derivative is multiplied by a small pa-
rameter and involving at least one delay or advance term.
Recently by constructing a special type of mesh, so that the
term containing delay lies on nodal points after discretiza-
tion R. N. Rao, P. P. Chakravarthy [2], presented a fourth
order finite difference method for solving singularly per-
turbed differential difference equations. H. S. Prasad and Y.
N. Reddy [3] considered Differential Quadrature Method
for finding the numerical solution of boundary-value
problems for a singularly perturbed differential-difference
equation of mixed type. In recent papers [4-8] the terms
negative or left shift and positive or right shift have been
used for delay and advance respectively.

The differential-difference equation plays an important
role in the mathematical modeling of various practical
phenomena in the biosciences and control theory. Any
system involving a feedback control will almost always
involve time delays. These arise because a finite time is
required to sense information and then react to it. For a
detailed discussion on differential-difference equation
one may refer to the books and high level monographs:
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Bellen [9], Driver [10], Bellman and Cooke [11].

In [12], similar boundary value problems with solu-
tions that exhibit rapid oscillations are studied. Based on
finite difference scheme, fitted mess and B-spline tech-
nique, piecewise uniform mess an extensive numerical
work had been initiated by M. K. Kadalbajoo and K. K.
Sharma in their papers [4-8] for solving singularly per-
turbed delay differential equations.

It is well known that the classical methods fail to pro-
vide reliable numerical results for such problems (in the
sense that the parameter and the mess size cannot vary
independently). Lange and Miura [13-15] gave asymptotic
approaches in the study of class of boundary value prob-
lems for linear second order differential difference equa-
tions in which the highest order derivative is multiplied by
small parameter. The effect of small shifts on the oscilla-
tory solution of the problem has been discussed in [14].

The aim of this paper is to provide an asymptotic-fitted
method to solve singularly perturbed delay differential
equations of second order with left and right boundary.
In this technique, by approximating the term containing
negative shift by Taylor series, we modify the singularly
perturbed delay differential equations. We introduce a
fitting parameter on the highest order derivative term of
the new equation. The fitting parameter is to be deter-
mined from the upwind scheme using the theory of sin-
gular Perturbation; O’Malley [1]. Finally, we obtain a
three term recurrence relation that can be solved using
Thomas algorithm. The applicability of the method is
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tested by considering five problems which have been
widely discussed in literature (two linear problems on
left layer, one linear problem on right layer and two
nonlinear problems).

2. The Asymptotic-Fitted Scheme

To describe the method, we first consider a linear singu-
larly perturbed delay differential two-point boundary
value problem of the form:

ey'(x)+a(x)y (x=8)+b(x)y(x)= f(x) )
0<x<1
with
y(O):a; -0<x<0 (2a)
and
y(1)=2; (2b)

where ¢ is a small positive parameter (0<e&<1),
b(x), f(x) are bounded functions in (0,1) and «,p
are known constants. Furthermore, we assume that
a(x)>=M >0 throughout the interval [0,1], where M is
a positive constant. Under these assumptions, (1) has a
unique solution y(x) which in general, displays a bound-
ary layer of width O(¢) at x=0.

Approximating y'(x—&) by the Taylor expansion,
we have

Y (x=0)=y'(x)=6y"(x) (3)

Substituting Equation (3) in to Equation (1), we get
(8 -da (x))y"(x) + a(x)y’(x)+b(x)y(x) = f(x) (4a)
)/y"(x)-i-a(x)y'(x)+b(x)y(x):f(x) (4b)

For appropriate choices of & such that
0<y=¢-6, <1, where §=£nina(x), from the the-

<x<1
ory of singular perturbations it is known that the solution
of (4) and (2) is of the form [O’ Malley [1]; pp. 22-26].
bt a(x) b(x)
al(0 -f “lx dx
y(x) =y, (x)+ ( )(a—yo(O))e °( 7ol )] +0(¢) (5)
a(x)
where y,(x) is the solution of
a(x) yo (x)+b(x) o (x) =/ (%),
Yo (1) =p.
By taking the Taylor’s series expansion for a(x) and

b(x) about the point “0” and restricting to their first terms,
(5) becomes,

a(0)_b(0))

y(x)= o (x)+(a =, (0))e ) +0(s) (6)
Now we divide the interval [0, 1] into N equal parts

Copyright © 2012 SciRes.

with constant mesh length h. Let 0=x,,x,---,x, =1 be
the mesh points. Then we have x, =ih; i=0,1,---,N.
From (6) we have

[(az(o)—gb(o))]ih
y(ih) =X (Zh) +(a ~Yo (O))e

7a(0) @
and
,[a2<o>—,vh(o)}.p
!Ii_r)rgy(ih)zyo(O)—i-(a—yo (O))e «©) (8)
where p= b .
Y

The special second order scheme corresponding to
Equation (4b) [one can see [2]] is:

a.+
hlg(J’m -2y, + yi—l) + lhl_/z (Yi+1 _y[)
3y 6y, =y, .
+bi+1/2( : 8 : in+1/2' (9)

0<i<N-1

Now, we introduce a fitting factor o (p) in the above
scheme (9)
i+1/2

a
%(J’m -2y, + yi—l) +T()’i+1 _yi)
3y.,+6y. -y,
+b11, (%j = fw2s (10)
0<i<N-1
with y(0) = e and y(1) = S.

The fitting factor o) is to be determined in such a
way that the solution of (10) converges uniformly to the
solution of (1)-(2).

Multiplying (10) by 4 and taking the limit as 2 — 0;
we get

Ligg{%(y(ih+h)—2y(ih)+y(ih—h)) i~
+a(ih/2)(y(ih+h)-y(ih))]=0

By substituting (7) in (11) and simplifying, we get the
constant fitting factor

G (12)

4 2 2
- a”(0)-yb(0)
]

The equivalent three term recurrence relation of Equa-
tion (10) is given by:

Ey,-Fy,+Gy,=H;; i=0123-- N-1 (13)
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where,
E, :;l_‘z/_biarsl/z F = 2}‘;}/ n ai;ll/Z _ ebgyz ;
oY | G 3b
Gt :h_z % 81/2 Hl _fH-l/Z

This gives us the tri diagonal system which can be
solved easily by Thomas Algorithm.

Thomas Algorithm

A brief discussion on solving the three term recurrence
relation using Thomas algorithm which also called Dis-
crete Invariant Imbedding (Angel & Bellman [17]) is
presented as follows:

Consider the scheme given in (13):

Ey  —Fy+Gy.,=H;
i=0123,--,N-1.

subject to the boundary conditions

¥o=y(0)=a; and y, =y(1)=4 (13a)
We set
v, =Wy +T for i=N-1,N-2,---21.  (13b)

where W, =W (x,) and
determined.

From (13b), we have

T,=T(x;) which are to be

1

Yia =Wy +T 4 (13c)
By substituting (13c) in (13), we get
E, (VV[—lyi + ];-1) -Fy+Gy,=H,.
. Gi EiTz"—l _Hi (13d)
SV = Yin T

F—EW,, F—EW,,

i

By comparing (13d) and (13b), we get the recurrence
relations

(13e)

(13f)

To solve these recurrence relations for
i=0,12,3---,N-1, we need the initial conditions for
W, and Tj. For this we take y,=a=Wyy» +T,. We
choose W, =0 so that the value of T, = . With these
initial values, we compute W, and 7, for
i=0,12,3,---,N-1 from (13e)-(13f) in forward process,
and then obtain y, in the backward process from (13b)
and (13a).

The conditions for the discrete invariant embedding
algorithm to be stable are (see [16] & [17]):

E >0, F,>0, F,2E+G, and |E|<|G| (13g)
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In this method, if the assumptions a(x)>0,b(x)<0
and (£-3Ja(x))>0 hold, one can easily show that the
conditions given in (13g) hold and thus the invariant
imbedding algorithm is stable.

3. Right-End Boundary Layer

We now assume that a(x)<M <0 throughout the in-
terval [0, 1], where M is some negative constant. This
assumption merely implies that the boundary layer for
Equation (1)-(2) will be in the neighborhood of x = 1.
From the theory of singular perturbations it is known that
the solution of (4b) and (2) is of the form [cf. O’ Malley
[1]; pp. 22-26]

y(X)=yo(X)+§(1) (B-» (1))’ ”(‘)]d"4+0(5)(14)

where y, (x) is the solution of
a(x)35 (4)+b(x)35 (1) = (+). 35(0)=ar.

For appropriate choices of ¢ such that
0<y=e-dw<1, where w=maxa(x). By taking
first terms of the Taylor’s series &Xpansion for a(x) and

b(x) about the point “1”, (14) becomes,
a(1) b(1)

y(x) =20 (x)+(B=¥, (1))6( ' "(”]H)W(E) (15)

From (15) we have

)

(.
limy (ih) = ,(0)+( 8- ¥, (1))e[ (16)
h

h—0

where, p=—.
e
For the right layer, the special second order scheme
corresponding to Equation (4b) [one can see [16]] is:

%(J’m -2y, + yi—l) +%(J’i _yifl)

-y..,+6y, +3y,
+bi_1/2( yz+l 8yz yz—lj (17)
=f n0<i<N-1

with y(0) = eand y(1) = 6.
We introduce a fitting factor o(p) in the upwind
scheme corresponding to Equation (17)

o- .
(}l;)}/ (yi+1 -2y, +yz>1)+ a:;/z (y,' _J’H)
(18)
+b, 4, (Wj = f 1 0<i<N-1

Multiplying (18) by 4 and taking the limit as # — 0;
we get the value of the fitting factor:
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o Pal0) (19

" e

The equivalent three term recurrence relation of Equa-
tion (10) is given by:

Ey,—Fy+Gy,=H;; i=123-- N-1

i

(20)
where,

Oy Giap n 3Dy, F = 20y = 60,45 .

Ei_ 2 i
h h 8
by, .
i :%_ITM!Hi = fian
This gives us the tri diagonal system which can be
solved easily by Thomas Algorithm

4. Numerical Examples

To demonstrate the applicability of the method, we con-
sidered five numerical experiments (two problems with
left-end, one with right-end boundary layer and two
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non-linear problems). \WWe presented the absolute maxi-
mum error compared to the exact solution of the prob-
lems. For the examples not having the exact solution, the
absolute maximum error is calculated using the double
mesh principle.

Example 1: Consider a singularly perturbed delay dif-
ferential equation with left layer:

ey"(x)+)' (x=6)-y(x)=0;
with y(0)=1 and y(1)=1

xe [O,l]

The exact solution is given by:
(l_ emz )emlx + (eml _1) emz)‘

y(x)= o
where,
(- \ra(e-0)) 5 (e \ra(e-0))
" e D TP

The absolute maximum errors are given in Tables 1(a),
(b) for §=0.1*sand 6= 0.5*¢ respectively.

Example 2: Now we consider an example of variable
coefficient singularly perturbed delay differential equa-
tion with left layer:

Table 1. (a) Absolute maximum error for Example 1 with = 0.1*¢; (b) Absolute maximum error for Example 1 with 6 =

0.5%¢.
(®)
Y 8 16 32 64 128 256
21 0.06590116 0.06659734 0.06635201 0.06622773 0.06618261 0.06614488
22 0.04331625 0.04302216 0.04270446 0.04252678 0.04243886 0.04239243
2% 0.02354121 0.02422798 0.02374059 0.02367991 0.02359021 0.02355647
2 0.01304051 0.01228201 0.01266778 0.01248485 0.01242727 0.01240349
2% 0.00861776 0.00715244 0.00625837 0.00647265 0.00640351 0.00637484
2 0.00454307 0.00466040 0.00369185 0.00315714 0.00327134 0.00326121
27 0.00680059 0.00245079 0.00240186 0.00187191 0.00158358 0.00163895
(b)
N 8 16 32 64 128 256
21 0.04706228 0.04620373 0.04613781 0.04602182 0.04593331 0.04589027
22 0.02590531 0.02654833 0.02620518 0.02596778 0.02592456 0.02589089
2% 0.01385903 0.01353049 0.01390761 0.01380384 0.01372480 0.01369333
2 0.00930083 0.00749877 0.00689793 0.00711274 0.00707847 0.00709528
2 0.00506100 0.00505769 0.00386468 0.00349572 0.00359631 0.00359327
2 0.00652197 0.00272188 0.00260663 0.00195849 0.00176162 0.00180280
27 0.00792134 0.00337869 0.00140399 0.00131953 0.00098503 0.00088504

Copyright © 2012 SciRes.

AM



A. ANDARGIE, Y. N. REDDY 899

ey"(x)+e )y (x=8)-y(x)=0; xe [0.1]
with y(0)=1and y(1)=1
The absolute maximum errors are given in Tables 2(a),
(b) for 6=0.1*cand 6= 0.5*¢respectively.
Example 3: Now we consider an example of variable

coefficient singularly perturbed delay differential equa-
tion with right layer:

ey'(x)—e'y' (x=6)—xy(x)=0;xe[0,1]
with y(0)=1 and y(1)=1
The absolute maximum errors are given in Tables 3(a),
(b) for 6=0.1*cand 6= 0.5*¢respectively.
5. Nonlinear Examples

Here, the solution of the nonlinear singular perturbed
delay differential problem is approximated by using the
corresponding linear problem which is obtained by quasi-
linearization method.

Example 4: Consider the nonlinear problem

8y”(x)+y(x)y'(x—§)—y(x) =0

y(x)zl,—ﬁSxSO,y(l)zl

The linear form is:
ey'(x)+) (x=6)-y(x)=0;
y(x)zl,—dﬁxs O,y(l)zl

The absolute maximum errors are given in Tables 4(a),
(b) for 6=0.1*cand 6= 0.5*¢respectively.
Example 5: Consider the nonlinear problem

y"(x)+2y' (x—5)+exp(y(x))=0
y(x)=0,-6<x<0,y(1)=0
The linear form is:
ey'(x)+2y'(x=8)+y(x)=-1;
y(x)=0,-6<x<0,y(1)=0

The absolute maximum errors are given in Table 5(a)
for 6=0.1*¢

6. Discussion and Conclusions

We presented an asymptotic-fitted approach to solve
singularly perturbed delay differential equations of sec-
ond order with left and right boundary. In this approach,
the singularly perturbed delay differential equations is

Table 2. (a) Absolute maximum error for Example 2 with é = 0.1*¢; (b) Absolute maximum error for Example 2 with ¢ =

0.5%¢.
@
N
. 4 8 16 32 64 128 256
2t 0.00932044 0.00587344 0.00307536 0.00156194 0.00078273 0.00039548 0.00030148
2 0.01102924 0.00774032 0.00422818 0.00219631 0.00110936 0.00058156 0.00021470
2 0.01196343 0.01017565 0.00597358 0.00317931 0.00163180 0.00081933 0.00042850
2 0.01252180 0.01028168 0.00688961 0.00388223 0.00204694 0.00104323 0.00052026
2° 0.02101487 0.00625777 0.00601512 0.00390074 0.00218076 0.00114474 0.00057709
2°® 0.02405462 0.01024660 0.00355530 0.00324515 0.00207686 0.00115591 0.00060490
27 0.02422509 0.01186317 0.00497991 0.00190765 0.00169265 0.00107640 0.00060233
(b)
N
. 4 8 16 32 64 128 256

2t 0.00995100 0.00651252 0.00346804 0.00177801 0.00089538 0.00043845 0.00024468
2 0.01178050 0.00882894 0.00498253 0.00260353 0.00133693 0.00065511 0.00037187
2 0.01109564 0.01078498 0.00654841 0.00355518 0.00184363 0.00091839 0.00050619
2 0.01648593 0.00893948 0.00674072 0.00397611 0.00213653 0.00110710 0.00056958
2° 0.02305564 0.00778854 0.00511229 0.00370225 0.00216618 0.00115684 0.00060311
2°® 0.02420318 0.01133943 0.00369865 0.00274074 0.00195089 0.00113574 0.00061220
27 0.02422568 0.01194015 0.00554314 0.00178897 0.00142339 0.00100395 0.00058430

Copyright © 2012 SciRes.
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Table 3. (a) Absolute maximum
0.5%¢.

A. ANDARGIE, Y. N. REDDY

error for Example 3 with § = 0.1*¢; (b) Absolute maximum error for Example 3 with ¢ =

(@
U 8 16 32 64 128 256
21 0.00222600 0.00117987 0.00060213 0.00028747 0.00016636 0.00011468
27 0.00310129 0.00165153 0.00084174 0.00043643 0.00018781 0.00009602
27 0.00418574 0.00246245 0.00129366 0.00066006 0.00033802 0.00018007
2 0.00373936 0.00275040 0.00157744 0.00083441 0.00043422 0.00020647
25 0.00156945 0.00216299 0.00151300 0.00086087 0.00045437 0.00023597
2 0.00101274 0.00099093 0.00114608 0.00078410 0.00044215 0.00024968
27 0.00085384 0.00062519 0.00054669 0.00058919 0.00039625 0.00023258
(b)
) N 8 16 32 64 128 256
21 0.00214487 0.00116605 0.00060678 0.00031441 0.00018507 0.00013155
27 0.00245768 0.00132048 0.00068003 0.00034201 0.00010890 0.00011069
27 0.00354105 0.00196123 0.00101763 0.00051522 0.00026250 0.00012809
2 0.00408721 0.00262952 0.00143415 0.00074011 0.00038415 0.00017154
2 0.00277966 0.00255597 0.00157464 0.00085860 0.00044066 0.00021058
2 0.00062406 0.00164264 0.00137365 0.00083697 0.00045025 0.00025016
2 0.00084519 0.00047833 0.00087947 0.00070649 0.00043297 0.00024223

Table 4. (a) Absolute maximum
0.5%¢.

error for Example 4 with ¢ = 0.1*¢; (b) Absolute maximum error for Example 4 with ¢ =

()
) N 8 16 2 64 128 256
21 0.00213301 0.00112891 0.00057518 0.00029039 0.00015420 0.00007296
27 0.00377291 0.00214630 0.00111610 0.00056797 0.00028920 0.00013453
2% 0.00510615 0.00317276 0.00172204 0.00089252 0.00045049 0.00019926
2 0.00429779 0.00339449 0.00203383 0.00109428 0.00055456 0.00022316
2% 0.00633597 0.00253260 0.00191137 0.00113708 0.00060311 0.00026855
2 0.00890699 0.00323787 0.00135115 0.00100583 0.00057116 0.00031507
27 0.00924397 0.00459987 0.00163841 0.00069958 0.00051922 0.00028366
(b)
) N 8 16 32 64 128 256
21 0.00352603 0.00197142 0.00102031 0.00051808 0.00026095 0.00012422
27 0.00504059 0.00304705 0.00163776 0.00084680 0.00043195 0.00019729
2 0.00457019 0.00341815 0.00201106 0.00107420 0.00054097 0.00021869
2 0.00569892 0.00273028 0.00195971 0.00115097 0.00054717 0.00030881
25 0.00871894 0.00290266 0.00146690 0.00103468 0.00059775 0.00029600
2 0.00923803 0.00450021 0.00146616 0.00075421 0.00054109 0.00028309
27 0.00924811 0.00477573 0.00228718 0.00073534 0.00038132 0.00026801

Copyright © 2012 SciRes.
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Table 5. Absolute maximum error for Example 5 with = 0.1*¢.

901

R 8 16 32 64 128 256
2t 0.00198783 0.00111622 0.00058109 0.00029604 0.00014888 0.00007491
2 0.00397655 0.00256884 0.00142694 0.00074568 0.00038224 0.00020197
2 0.00339308 0.00297231 0.00186834 0.00102803 0.00052768 0.00022215
2 0.00308001 0.00217193 0.00181127 0.00110716 0.00059539 0.00026590
2° 0.00500339 0.00144827 0.00124371 0.00099105 0.00060833 0.00029230
2° 0.00518721 0.00246394 0.00070095 0.00066656 0.00050962 0.00031346
27 0.00518870 0.00256175 0.00122374 0.00034362 0.00033247 0.00029516

modified by approximating the term containing negative
shift using Taylor series expansion. After approximating
the coefficient of the second derivative of the new equa-
tion, we introduced a fitting parameter and determined its
value using the theory of singular Perturbation; O’Malley
[1]. The delay parameter &6 was chosen so that the co-
efficient of the second derivative of the modified prob-
lem gets smaller. The final three term recurrence relation
obtained is solved using Thomas algorithm.

Five problems were considered ((three linear problems;
two on left layer and one on right layer) and (two
nonlinear problems)) to test the applicability of the new
method by taking different values of the delay parameter
6 , the perturbation parameter & with the relation
0=01*¢ and 6=0.5*¢ and different mesh size 4. It
is observed that the method produces good approxima-
tion for relatively large mesh size and as mesh size de-
crease from h=2"toh=2" the absolute maximum
error decreases. It is observed that this method is not
producing good results for very small step mesh (%).
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