Applied Mathematics, 2012, 3, 819-832

http://dx.doi.org/10.4236/am.2012.38123 Published Online August 2012 (http://www.SciRP.org/journal/am)

o5 Scientific
(> )
+* Research

The Mathematical Modelling for Studying the Influence of
the Initial Stresses and Relaxation Times on Reflection and
Refraction Waves in Piezothermoelastic Half-Space

Fatimah A. Alshaikh
Department of Mathematics, Science College, Jazan University, Jazan, KSA
Email: dr.math999@hotmail.com

Received June 4, 2012; revised July 4, 2012; accepted July 11, 2012

ABSTRACT

The present paper concentrates on the study of reflection and refraction phenomena of waves in pyroelectric and piezo-
electric media under initial stresses and two relaxation times influence by apply suitable conditions. The generalized
theories of linear piezo-thermoelasticity have been employed to investigate the problem. In two-dimensional model of
transversely isotropic piezothermoelastic medium, there are four types of plane waves quasi-longitudinal (gP), quasi-
transverse (¢SV), thermal wave (7-mode), and potential electric waves (p-mode) The amplitude ratios of reflection and
refraction waves have been obtained. Finally, the results in each case are presented graphically.

Keywords: Piezo-Thermoelasticity; Quasi Plane Longitudinal Waves; Reflection and Refraction Coefficients; Initial
Stresses; Green and Lindsay Theory; Relaxation Time

1. Introduction

Piezoelectricity is the phenomenon of electricity pro-
duced by the squeezing or stretching of certain materials.
The propagation of waves in piezoelectric materials is
one of the richest fields for scientists because it has many
applications in piezoelectric: filters, resonators, transduc-
ers, sensors and other devices. This kind of devices rep-
resent a great challenge in the industry, and as a result it
has been an object of different investigations in the last
decades, because these devices are to operate under
various piezoelectric-thermo-mechanical conditions over
a broad spectrum, in view of its importance to industry
applications. The theory of thermo-piezoelectricity was
first proposed by Mindlin [1]. The physical laws for the
thermo-piezoelectric materials have been explored by
Nowacki [2,3]. Chandrasekharaiah [4] developed the
generalized theory of thermo-piezoelectricity by taking
in account the finite speed of propagation of thermal dis-
turbances. Sharma and Kumar [5] studied plane har-
monic waves in piezothermoelastic materials. The pro-
pagation of Rayleigh waves in generalized piezother-
moelastic half space is investigated by Sharma and Walia
[6].

Deresiewicz [7] studied the reflection of plane waves
from a plane stress free boundary in coupled theory of
thermoelasticity and investigated the effect of boundaries
on the waves. Generalized theories of thermoelasticity
were introduced in order to eliminate the shortcomings of
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the classical dynamic thermoelasticity. A flux rate term
into Fourier law of heat conduction is incorporated by
Lord and Shulman [8], which includes a hyperbolic heat
transport equation admitting finite speed, though large
for thermal signals. Green and Lindsay [9], by including
temperature-rate among the constitutive variables, de-
veloped a temperature-rate-dependent thermo-elasticity
that does not violate the classical Fourier law of heat
conduction for bodies having center of symmetry. Many
authors concentrate in studying the reflection and refrac-
tion waves in thermoelastic media, like Sinha and Sinha
[10], Sharma [11], Sinha and Elsibai [12,13], Abd-Alla
and Al-Dawy [14], Sharma et al. [15]. The reflection of
piezothermoelastic waves from the stress free, thermally
insulated or isothermal, open circuit boundary of trans-
versely isotropic piezothermo-elastic half space under the
influence of thermal relaxation have been discussed by
Sharma et al. [16], they proved that the amplitude coeffi-
cients of waves are related to the positions on the inter-
face. Kuang and Yuan [17] studied the reflection and
transmission theories of homogeneous and inhomogene-
ous waves in pyroelectric and piezoelectric medium.
Abd-alla et al. [18,19] studied the reflection and refrac-
tion phenomena in piezoelectric media under initial
stresses. In this paper, the reflection and refraction prob-
lem from the interface of the piezothermoelastic materi-
als under initial stresses influence in the context of Green
and Lindsay theory are studied in details and numerical
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results are given. In two dimensional reflection and re-
fraction problem there is only one incident quasi-Longi-
tudinal wave, so there are four modes of thermo elastic
and potential waves.

2. Governing Equations of Generalized
Piezothermoelastic of Hexagonal Type

Consider a homogeneous, anisotropic, generalized pie-
zothermoelastic medium of hexagonal type. The origin is
taken on the thermoelasticity and stress-free plane sur-
face and z-axis is directed normally into the half-space
which is represented by z>0. Let the wave motion in
this medium be characterized by: the displacement vector
i(u,0,w), the electric potential function ¢, all these
quantities being dependent only on the variables x, z, ¢
(see Figure 1).

The governing field equations of generalized hexago-
nal piezothermoelastic for two dimensional motion in the
x—z plane are [5]:

e The coupled constitutive relations can be written in
the forms:
0, =Cny—eyE —7; (T+t0T),

i

6]
D, =

i tjk

&y +6E, ~d,(T+1,T)

e The strain-displacement relation and the electric field
according to the quasi-static approximation have the
forms as:

g ={(u,.,j +u,,)[2,E, :—(/;,.}i,jzl,z,s. )

e The equations of motion under initial stress, Gauss’s
divergence equation, and heat conduction can be
written as (3).

where i,j,k,0=123; u,, @, and T are the me-

chanical displacement, electric potential and absolute

temperature, respectively; ¢, , o, and y, are the
strain, stress and thermal elastic coupling tensors, respec-
tively; E,, D, are the electric field and electric dis-
placement, respectively; C,,, is the elastic parameters

i
tensor; e, , ¢ and d, arethe piezoelectric, dielectric,

pyroelectric moduli, respectively; ¢ is the relaxation
time; o, and p are the initial stress tensor and mass
density, respectively; X,,7,,6,,C, are the heat con-
duction tensor, reference temperature, Kronecker delta,
specific heat at constant strain, respectively. The consti-
tutive relations (1) of the hexagonal (6 mm) crystals
symmetry given by

o,=Cue, +Cpe, +Cpe. —eyE —y, (T+tlT),

0, =Cué, +Cye, +C6.. —eyE. -7, (T +t1T),

0, =Cé, +Cu8,, +Cy6.. ek, — 74 (T + tlT)’

Oy = 2C44gzy —esE, — 75 (T+t1T),

0., =2Cue, —exE —y, (T + tlT) ,} @
o, = (C, - Clz)gxy -7 (T + tlT)

D, =2e¢., +ByE, +d, (T +47T),

D, =2eye., +PyE, +d, (T +4T), (5)

D.=2 (eglgn +eyE,, +enE,, ) +B,E. +d, (T +1,T )

Substituting Equations (4)-(5) into Equation (3), we
get (6).

3. Solution of the Problem for Incident
qP-Wave

We will consider a transversely isotropic piezoelectric
half space (see Figure 1). The lower medium and upper
medium occupy the spaces z<0 and z>0 respec-
tively. The x-axis is taken along the interface and the
z-axis is directed vertically downwards. For the oblique
incidence of the lower plane quasi-longitudinal (¢P)
wave from the piezothermoelastic medium at the inter-
face z = 0, all kinds of scattered waves are depicted in
Figure 1. The reflection and refraction wave fields con-
sist of the reflected quasi-longitudinal (¢P), quasi-trans-
verse (¢SV) waves and refracted (¢P) and (¢SV) waves,
electric potential (¢ ), and heat (7) waves. For the pre-

o\
O'ijyj-i-(uika,g.)j—pul, ., =0,

KTy =T, 7, (i, +1,8,0i, ) —d

0~ ik

(elS + eSl)u,xz + elSW,XX + 63314},_72

KlTxx + K3T:zz

(©)
(041,68 ,)+ pC(T +1,6,T)
(Cu _U)?x)u,xx +(C44 +G:z)u,zz +(Coa+Cop ). +(es +e5) 0 _71<T+t1T)'X = pi,
(C44 + C3l)u,xz +(C44 + O-Zx)m/,xx +(C33 + o-;z)w,zz TesP TP, ~ 73 (T +t1T),z = pw, ©)
— 1@, —Fup.. +d; (T+tlT)’z =0
—pC (T +6,T) =T, (0, +2,8 ) |+ 75 (. +1,0%. ) ~d, (. +2,60.. )
AM
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Cadmium Selenide

PZT-5A ceramic

(0)
qP 0,

gSV @
Figure 1. Incidence, reflected and refracted ¢P waves.

sent hexagonal crystals (transversely isotropic materials),
we will consider the motion in the plane (x—z plane).
According to Achenbach [20] the solution of Equations
(6) written as

u = 4,00 exp[&,], 0" = B, exp[&,],
" =C, exp[&,]
where n=0,1,2,3,4,r=13
& =ik, (xsing, +zcosg, —C, t),
& =ik (xsing, —zcosg, - C,t),
&, =ik, (xsin@, —zcos6, — C,t),
& =iky(xsin6; +zcos 6, - C, 1),

Y]

&, =ik, (xsing, +zcos6, —Cp,t),
Cpo=0lky,Cpy=0fk,,Cyp, = afk,,

Cpy =0k, Cpy = afk,

Ql” =sing,, QY =cosg,, QY =sing,

Qf =—cosf, 0 =cosa,, QP =sing,,

l? =sing,, QY =cosa,, " = —cos,,Q =sing,

where n = 0 represent the incidence of ¢P wave, n = 1, 2,
represent the reflected waves, n = 3, 4 represent the re-
fracted waves.

4. Continuous Conditions on the Interface of
Piezothermoelastic Materials

Consider the problem of two bounded semi-infinite pie--
zothermoelastic materials with the interface z = 0 sub-
jected to a harmonic incident wave of frequency o with
an incident angle 6, as shown in Figure 1. The con-
tinuous conditions on the interface are:
1) The free mechanical boundary conditions:
69160 16?60 451,
P = 1O P P ®)

o o 4ol =0 ol

zx
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2) The electrical condition:
09 + o 4 o2 = +¢<4)} )
3) The thermal condition:

TO+70 470 =70 4 7 (10)

Substituting Equations (2), (4), and (7) into Equations
(8)-(10), we obtain the following set of equations:

iko (bol + boZ )eXp [‘fo ] + ikl (bn - blZ )exp [51]
+ikz (b21 - bzz ) EXp [52 ] - iks (b31 + b32 )exp [53] (11)
—ik, (b41 +by, )exp [54] =0

k,bs, €xp[ &, | — kb, €XP[ & |- ik,bs; exp[ &, ]

—iksbs, €Xp [53] +ik,bgs €Xp [54] =0 4
B, exp[§0]+Bl eXp[fl]"'Bz eXp[é] (13)
= B,exp[&,]+ B, exp[&,]
C, exp[§0]+CleXp[<§1]+Cz EXp[‘JZZ] (14)
=G exp[&,]+C,exp[£,]

where

b, =4, (C13sin260 +CyyC08°6), )

b,, = eyB,c0s0, —C,7, I:(]/iko ) -4C,, ] )
byy = 4 (Ciasin?6; + Cpgc05°6; ),

b, = e33B,086, + 7y [(]/ikl ) - tICL1:|’
by, = A4, (Cy3 — Cy3)sin6,c0806,,

by, = €3B,C080, + C,y3[ (Vik, )~ 1,C,, |,
by = A, (CL,sin*6; + C,c05°0,),

by, = €43B,c080; — Cyy3 | (Yiky)—1,C 5 |,
by = 4,(Cy — Cl3)siné,cos6,,

by, = e;B,c0s0, —C,y, [(]/ik4 ) -4,Cyy ] )
by =C,ySin20, 4, +esin6 B,
b, =C,,8in26, 4, —e, SinG,B,,
by, =C,, €0s20,4, —e,; Sin6,B,,
by, = Cy,SiN 26,4, + €/ Sin 6, B;,
by =C,, 0520, 4, — e/ Sin6,B,.

Equations (11)-(14) must be valid for all values of ¢
and x, hence

50 251252 :é:s ZGZA
k,sin@, = k;sing, = k,sinb, = k,sing, = k,sing, (15)
k,Cpr, =kCp =k,Cry =kyCry =k, Cry =@
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From the above relations, we get
k,=k.0,=6,C,=Cy,
21 =k2/ko,r2 =k3/kov'[3 =k4/ka’
sing, =sind, /7, ,sin6, =sind, /7,
sing, =sind, /z,,

(16)

Furthermore, we should now use the equations of mo-
tion of the media, i.e., Equation (6), which will give us
additional relations between amplitudes.

(Cll +oy, )”(:x) + (C44 +o. )u(z"z) + (Cla +Cyy ) W,(.:)

n n r(n w(n i (17)
+(e13 +e15)¢)’(xz) —}/1(T( ) +t1T( ))’x = pu( )

where n=0,1,2,3,4.

So, substituting from Equation (7) (when z = 0) into
Equation (17) for the incident (¢P) wave, the reflected
and refracted waves, we get

Zvo +MaBo +:u0Co = 0’
X4 +M B + i, C =0,
XoA4, + M,B, + 11,C, =0, (18)
X3y + M3By + 11,Cy =0,
XaAy + M, B, +11,C, =0
where
7, =-sin@, [pCLZU -(Gu+oy,)sin’,
—(C13 +2C,, + o-;’z)coszen} :
M, =(e;+eg)sing,cosb,,
#, =[ir (1=ik,t,C,, )sing, | [k, ,
=Ko My =M, 1y =~
X, = €080, [Pcﬁz _(Cn —C=Cy + O';X)Sinzez
~(Cy +ajz)c03262],
M, =(e; +ey;)sin6,c086,,
1y ==Ly, (1=ikpt,Cy, )SinG, | &y,
s =SiN6,[p'Cly -(Cly + 7, )sin’0),
_(C‘;“ + 0'22)005293 _(C1'3 + CZM)COSzgs]
M, =—(el; +e]5)sinBd;cos6;,
s = —[iy (A= ik, C,5)sin G, | [k,
X4 =C0s0, [(Cl'l ~Cl,—Cy + o-;’_x)sin264
+(Chy + 02 ) 005’6, —p'CTZJ
M, =—(e/, +¢s)sing,cos6,,
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py == ir; (1=ik,,Cp, )sinG, | [k,
By using Equation (7) into Equation (6), , we get
LA, +G,B,+S,C, =0,
LA +GB +8S5C =0,
L,4,+G,B,+8S,C, =0, (19)
LA, +GyB, + S,C; =0,
L,4,+G,B,+S5,C,=0
where

L, =~ (e +2¢,5)sin*6,c0s6, + e5,c05°6, |,

G, = P,Sin°6, + P,,c0s°0),,
S, =[id, (1-ik,4C,,)cosd, | [k, ,
L=-L,G=G,5=-S,
L,= [(e13 +ey5 — ey, )SiNB,c05%6, — e,5in°6), ]
G, = P,Sin°6, + P,,c0s°0,,
S, = [ idy (1~ iky,Cy, ) c086, | [k, ,
L,= —[(e1'3 +ej; )sin’d,cos 6, + e§3cos3493],
G, = B.sin’0, + P;,c0s°6,
Sy =[id; (1-ikst,C,5 ) c08 0, | [k,
L, = [(el'3 +ejs — e}y )sing,cos’6), — el’ssin3¢94],
G, = B\sin®0, + P;,c0s°0,,
S, =[ ids (1-ik,,C,, ) c0s6, |/, .
By using Equation (7) into Equation (6), , we get
E A +DB +FC =0,
E, A +DB,+FC, =0,
E,A,+D,B, +F,C, =0, (20)
E,A,+D,B, +F,C, =0,
E,A,+D,B,+F,C,=0
where
E, =T, (1-ikt,5C,, )(7sin*6, + 7,056, ),
D, =-T,d,(1-ik,,6C,,)cosb,,
F, =[(Ksin*0, + K,c05°0,) /C,, |- pC'(1-ik,1,C.,),
E =-E, D =D, F,=-F,
E, =T, (1—ikyt,6Cy, ) (7, — 73)5In6,C086,,
D, =-T,d, (1-ik,t,6C;,)c0sb,,
F, = | (K;in’6, + K,c05°6, ) [Cy, | - pC' (1=ikyt,Cry ),
Ey =T (1-ikyt,6C,; ) 75in°6, + 7305’6, ),
D, =T)d; (1—ikyt,6C,4)c0s6;,
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F,= —[(Kl'sinze3 + K cos6, )/CLJ - p'C'(1-ikyt,C,3),
E, =-T(1-ik,t,6C;, ) (ys - 7/)sing,cos6,,
D, =Td,(1-ik,t,6C,, )cosé,,
F, =~ (Kisin®6, + Kicos°0, ) [Cr, |- p'C' (1= ikyt,Cry).
From Equations (11)-(14), it is easy to see that
(aydy +ap Ay + ag Ay +a, 4,) [ A, =
(a A +ayd, +a,,A4,+a,A4

(21)

.)/4,
(a A +apA, +apd;+a, A ) A, =mj,
(a41A +apd, +ads+a,A )

/A =m,
where

ay =la, = 11/‘]17“13:_']12/']11
J13/J1,a21=l,a22= 21/sza23: zz/sz
Uy = =Ty 0y =Lay =-ay ], a3 = a5/,

:ﬂZ/ﬂo 1043 = _ﬂ3/ﬂo '

Lm, =1my=Lm, =-1,

Ay =~

a3y = a4/ao vay =Lay,
gy ==P,/ B, .m =
Jiy =7, [ (Ci3 — Cy3)sinB,c0s0,
~ye55, €080, — 7, ((Vik, ) ~1,C, ) 3, J ,
Jip =7, CLisin®6, + C4,c05°6),
+03€3,C080; — 13 ((]/iks ) —4Cp, )ﬂs]x
i3 = 75| (Cly — Ciy )SiN6,C080, + 44,056,
~7s ((]/ik4)—thT4)ﬁ4:|,
J, = (C8in’8, + C4,c08%6,)
+a,5,C080, — 7, ((]/zk )—t,
21 =71 (C44€0520, — 58I 6, ),

Ty =7, (CaSiN20, + aeeSinG; ),

La)ﬁo

<~

J s = 73(C;,C0826, — aelsiné, ),
J, =(Cusin26, + a,e8in0,),
a, =(E,u, = F,z,)/(F,M,-D,u,),
oy = (B~ F ) /(FM, — D),
o, =(Eypt, = Fo 0, ) [(FM, = Doy ),
o = (Eatty = oty )| (FsM5 = Doy )
ay = (Eypty - 414)/(F4M4_D4ﬂ4)'
B, =(M E,~D,2,)/(D,u,~F,M,),
B, =(M,E ~Dyz,) /(D - FM,),
:(ME -D,7,)/(Dypt, — F,M,),
s = (MsE; =Dy, ) [(Dysts = F,My),

Copyright © 2012 SciRes.

By = (M4E4 -D,x, )/(D4,u4 _F4M4)

Solving Equation (21), we can determine the reflec-
tion and refraction coefficients as:

Ai/Ao: l/Do’AZ/Ao:DZ/Do’ (22)
A3/Ao :D3/D0’A4/Ao :DA/DO'
where
Ay G Gz Gy mo d, 43 Gy

a a a a m a a a
21 22 23 24 2 22 23 24
D= D, =

3 Q3 Qg3 Ay My Az gy Ay
Ay Qg gz Ay my Ay dyz Ay
ay M G ay Ay G Mmoo 4y
D, = Ay My Gy Ay D, = Ay Gy My Ay ,
a3 M3 Qg3 dgy A3 Az My Ay
Agn My Quz Ay g Qg My Gy

Ap Qg Q3 My
By using Equations (18)-(20) we get:
BB, =—A]A B,/B, =a,4,/at, A
B,/B, =a,4;/a,A,,B, /B, —a4A/
Cl/Co = Al/ o ’CZ/CO = ﬂzAz/ﬂvo ’
C3/Co = ﬂ3C3/ﬁoCo ,C4/C0 = :B4C4/ﬁvo :

ol (23)

5. Numerical Results and Discussion

The material chosen for the purpose of numerical cal-
culations is (6 mm class) Cadmium Selenide (CdSe) for
upper medium and Lead Zirconate Titanate ceramics
(PZT-5A) for lower medium, which are transversely
isotropic materials. The physical data for a single crystal
of CdSe material and PZT-5A ceramics are given as
[6,21]:

Cl, =7.41x10" Nm™,(/, = 4.52x10" Nm™

Cl, =3.93x10" Nm™,C}, =8.36x10" Nm™

C,, =1.32x10" Nm™?, T/ = 298 K,

p'=5504 K-gm™ ¢/, =-0.160 Cm >

e}, =0.347Cm7? ¢/, =-0.138Cm™?
=0.621x10° NK™-m™,y; =0.551x10° NK™*-m™

d} =-2.94x10"° CK™-m?, Kl’l =K}, =9Wm™- K™,

=8.26x10™" C*°N'-m7?,¢, =9.03x10 ™ C*N™*-m™

:260J-Kg’1K o' = 2.14><1013 -

C, =13.9x10" Nm™?,C,, = 7.78x10" Nm~

AM
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Cp5 = 7.54x10"° Nm™?,C,, =11.3x10" Nm™,

C,, =2.56x10" Nm™,T, =298 K,

p=T7750 Kgm™,e, =-6.98Cm7?,

e; =13.8Cm7, ¢, =13.4Cm7?,

7, =1.52x10° NK™* m™,y, =1.53x10° NK™*-m~,

d, =-452x10° CK™-m™ K, =K, =1L.5Wm™ - K™,
6, =60.0x107"° C* N™*-m~?,

€3 =54.7x10"° C* N™*-m~?,

C,=420)-Kg'K™*, 0=214x10"s"

Here the thermal relaxation time ¢, is estimated its

value about ¢ =10 =1pico—sec. and # is taken

proportional to ¢, . The variations of phase velocities
computed from

¢y = €1 =/ Cyy + Cyy SIN @ + Cy cOS? a+vl/\/5,

crz=\/C44+Cllsin2a+C33cosza—v1/\/2>,

= \/C£4 +C/,sin® B+ Cy, cos® S+, /\/Z_p'

Crq =\/C‘;4 +C} sin® B+ Cj, cos” f—v, /\/T
where v, = v, +Vy,,V, =Vy +Vy,

v, = [(C11 —C,)sin® a+(C,, — Cy3)c0S? an

Vip = (C13 +C,, )2 sin? 2a,v22 = (le3 +C;4 )2 sin? 25
. , )
Va = [(Clll —C,, )sin® B+(C,, — Cyy ) COS? ﬁ] :

The real and imaginary values of the amplitude ratios
4,/4,,C./C, B,/B,(i=12,34) corresponds to ¢P,
qSV, T, ¢ -mode for incident ¢P wave are computed for
various angle of incidence (in degrees) under various

of initial stresses (o7 =(5,6,7,8)x10"), in the context
of Green and Lindsay theory (G-L) of generalized ther-
moelasticity [9] where

§=0,0, =10 1, = nt,, (n=12,3,4),6% =5x10".

The reflection and refraction coefficients have been
presented on curves in Figures 2-21 which have the fol-
lowing observations:

e Figure 2 represents the relation between the imagi-
nary and real parts of reflection coefficient 4,/4,
and angle of incidence 6,, we also observe that the
relaxation time ¢ effect appears only in the range
(6, =70—90").

e Figure 3 represents the relation between the imagi-
nary and real part of the reflection coefficient 4,/4,
with the angle of incidence @, , as well as the relaxa-
tion time ¢ effect.

e Figure 4 represents the relation between the imagi-
nary and real of refraction coefficient 4,/4, with
the angle of incidence @ , as well as the relaxation
time 7 effect, in those Figures we noted the 4,/4,
values decreases with &, increase gradually until it
reaches the minimum value when 6, =90°, also the
relaxation time ¢ related by inverse relation with ,
and the positive relation with Im(4;/4,).

e Figure 5 represents the relation between the imagi-
nary and real of refraction coefficient A4,/4, with
6, , as well as the relaxation time ¢ effect, in those
figures we noted Im(4,/4,) increases with the value
of & increase gradually until it reaches the maxi-
mum value when (6, =35°), and then decreasing Its
value in the following period, while decreasing Its
value in Re(4,/A,), with increasing 6, until it
reaches the minimum value when 8, =90° It is clear

0.04T 15
|m(A1/Ap) -o.‘RE(A1/Au) /w
0.03T ///—- e
e
0.02T
0.5
0.01T /
//' -
yd P
VA : : : | . . , . .
0 20 40 60 80 6, 100 ¢ 20 40 60 80 6, 100

Figure 2. Imaginary and real parts of reflection coefficient 4,/4, as a function of incidence angle 8, for different values of the

relaxation times for (G-L) model.
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T
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0.08T
Re(4,/4,)
k ]

0.067
0.041
0.021

: |

80 6, 100 0

825

] ]
80 0, 100

Figure 3. Imaginary and real parts of reflection coefficient 4,/4, as a function of incidence angle 8, for different values of the

relaxation times for (G-L) model.

0.04T

-

-4

~0.027
—0.04T
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-0.08~
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-8
-10

Re(4,/4,)
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Figure 4. Imaginary and real parts of refraction coefficient 4s/4, as a function of incidence angle 8, for different values of the

relaxation times for (G-L) model.
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Figure 5. Imaginary and real parts of refraction coefficient 4,/4, as a function of incidence angle 8, for different values of the

relaxation times for (G-L) model.
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from the figures that the effect caused by the relaxation
time 7, on 4,/A4, isvery slight.

Figures 6-8 represent the relation between the elec-
tric potential coefficients B,/B,, (i=12,34) with
the angle of incidence &, as well as the relaxation
time ¢ effect.

Figures 9-11 represent the relation between the ther-
mal coefficients C,/C,, (i=1,2,3,4) with the an-
gle of incidence &, , as well as the relaxation time ¢
effect.

Figures 12-21 show the initial stress effect

(o-jz =(5, 6,7,8)><101? on relative reflection and re-
fraction, thermal, and electric potential coefficients

0.02T Re(B,/B,)

when ¢, =104, =3¢ , In the period that shows the
initial stress effect, we note that inverse relationship
between the initial stress and reflection coefficients
(4,/4, and 4,/A4,) and the opposite what happens
with the relative refraction coefficients (4,/4, and
4,/4,).

Equations (22)-(23) show the existence proportional-
ity relations between the reflection coefficients of the
quasi-longitudinal wave falling and reflection coeffi-
cients at the fall of the other two types of waves
(T-mode), (@ -mode). The constants of proportion-
ality for these relations are functions of angle of inci-
dence, relaxation times, and piezoelectric.

n=1
Im(B,/8,) 0.3
m
0.015T 0.05-
0.27
0.0171
0.157
0.005T
0.17
0,
: : : : | 005 : : : : :
0 20 40 60 80 100 0 20 40 60 80 100

Figure 6. Imaginary and real parts of reflection coefficient B,/B, as a function of incidence angle 6, for different values of the
relaxation times for (G-L) model.
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02T
6, -50-
0 80 100
Ve, Re(B,/B,)
~
-0.2+ -55--

Figure 7. Imaginary and real parts of refraction coefficient Bs/B, as a function of incidence angle 8, for different values of the
relaxation times for (G-L) model.
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Im(B,/B,) .s Re(B,/B,)
0.03T 13
0.02T 1o
0.01T L1
60
: : : : | 1 : ] : : |
0 20 40 60 80 100 0 20 40 60 80 100

Figure 8. Imaginary and real parts of refraction coefficient B,/Bo as a function of incidence angle 8, for different values of the
relaxation times for (G-L) model.
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Figure 9. Imaginary and real parts of reflection coefficient C,/C, as a function of incidence angle 8, for different values of the
relaxation times for (G-L) model.
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Figure 10. Imaginary and real parts of refraction coefficient Cs/C, as a function of incidence angle 8, for different values of
the relaxation times for (G-L) model.
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Figure 11. Imaginary and real parts of refraction coefficient C,/C, as a function of incidence angle 8, for different values of
the relaxation times for (G-L) model.
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Figure 12. Imaginary and real parts of reflection coefficient 4,/4, as a function of incidence angle @, under influence of dif-
ferent values of the initial stress for (G-L) model.
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Figure 13. Imaginary and real parts of reflection coefficient 4,/A4, as a function of incidence angle 6, under influence of dif-
ferent values of the initial stress for (G-L) model.
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Figure 14. Imaginary and real parts of refraction coefficient A4s/4, as a function of incidence angle 8, under influence of dif-
ferent values of the initial stress for (G-L) model.
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Figure 15. Imaginary and real parts of refraction coefficient A4,/4, as a function of incidence angle 8, under influence of dif-
ferent values of the initial stress for (G-L) model.
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Figure 16. Imaginary and real parts of reflection coefficient B,/B, as a function of incidence angle 6, under influence of dif-
ferent values of the initial stress for (G-L) model.
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Figure 17. Imaginary and real parts of refraction coefficient Bs/B, as a function of incidence angle 8, under influence of dif-
ferent values of the initial stress for (G-L) model.
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Figure 18. Imaginary and real parts of refraction coefficient B,/B, as a function of incidence angle 6, under influence of dif-
ferent values of the initial stress for (G-L) model.
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Figure 19. Imaginary and real parts of reflection coefficient C,/C, as a function of incidence angle 8, under influence of dif-
ferent values of the initial stress for (G-L) model.
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Figure 20. Imaginary and real parts of refraction coefficient Cs/C, as a function of incidence angle 8, under influence of dif-
ferent values of the initial stress for (G-L) model.
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Figure 21. Imaginary and real parts of refraction coefficient C,/C, as a function of incidence angle 8, under influence of dif-
ferent values of the initial stress for (G-L) model.
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It can get some previous studies as a special case
through neglect the thermal effects and the relaxation
times as [18].
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