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ABSTRACT 

Uncertainty theory is a new branch of axiomatic mathematics for studying the subjective uncertainty. In uncertain the-
ory, uncertain variable is a fundamental concept, which is used to represent imprecise quantities (unknown constants 
and unsharp concepts). Entropy of uncertain variable is an important concept in calculating uncertainty associated with 
imprecise quantities. This paper introduces the single parameter entropy of uncertain variable, and proves its several 
important theorems. In the framework of the single parameter entropy of uncertain variable, we can obtain the supre-
mum of uncertainty of uncertain variable by choosing a proper . The single parameter entropy of uncertain variable 

makes the computing of uncertainty of uncertain variable more general and flexible. 
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1. Introduction 

The concept of entropy was founded by Shannon [1] in 
1949, which is a measurement of the degree of uncer-
tainty of random variables. In 1972, De Luca and Ter-
mini [2] introduced the definition of fuzzy entropy by 
using Shannon function. Inspired by the Shannon entropy 
and fuzzy entropy, Liu [3] in 2009 proposed the concept 
of entropy of uncertain variable, where the entropy char-
acterizes the uncertainty of uncertain variable resulting 
from information deficiency. 

Tsallis Entropy initiated by Tsallis [4-6] in 1988, this 
is based on the following single parameter generalization 
of the Shannon entropy: 
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where  is a conventional positive constant, which is 
usually set equal to 1,  is the total number of micro-
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Henceforth, many scholars conduct to research the 
tsallis entropy, such as S. Abe [7], S. Abe and Y. Oka-
moto [8], R. J. V. dos Santos [9] and so on. 

Uncertainty theory was founded by Liu [10] in 2007 
and refined by Liu [11] in 2010, which is a branch of 
mathematics based on normality, monotonicity, self- 
duality, countable subadditivity, and product measure 
axioms. It is a effectively mathematical tool disposing of 
imprecise quantities in human systems. In recent years, 
Uncertainty theory was widely developed in many disci-
plines, such as uncertain process [12], uncertain calculus 
[3], uncertain differential equation [3], uncertain logic 
[13], uncertain inference [14], uncertain risk analysis 
[15], and uncertain statistics [11]. Meanwhile, Liu [16] 
proposed a spectrum of uncertain programming and ap-
plied it into system reliability design, facility location 
problems, vehicle routing problems, project scheduling 
problems and so on. 

In order to provide a quantitative measurement of the 
degree of uncertainty in relation to an uncertain variable, 
Liu [3] proposed the definition of uncertain entropy re-
sulting from information deficiency. Dai and Chen [17] 
investigated the properties of entropy of function of un-
certain variables. The principle of maximum entropy for 
uncertain variables are introduced by Chen and Dai [18]. 
Besides, there are many literature concerning the defini-
tion of entropy of uncertain variables, such as Chen [19], 
Dai [20], etc. 

11 1q
qS n q   , where q  is a monotonic 

increasing function of n ,  is a real number. It is 
clearly that in the limit ,  recovers the Shan-
non entropy formula: 
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Inspired by the tsallis entropy, this paper introduces a 
new type of entropy, single parameter entropy in the 
framework of uncertain theory and discusses its proper-
ties. Consequently, we generalize the entropy of uncer-
tain variable. The rest of the paper is organized as fol-
lows. In Section 2, we recall some basic concepts and 
theorems of uncertain theory. In Section 3, the definition 
of single parameter entropy of uncertain variables is 
proposed. In addition, some examples of the single pa-
rameter entropy are illustrated. In Section 4, several 
properties of single parameter entropy are proved. In 
Section 5, gives some discussions of single parameter 
entropy. In Section 6, some examples of single parameter 
entropy are given. At last, a brief summary is drawn. 

2. Preliminaries 

In this section, we will recall several basic concepts and 
theorems in the uncertain theory. 

Let  be a nonempty set, and  a    -algebra over 
. Each element  is called an event. Uncertain 

measure  was introduced as a set function satisfying 
the following five axioms ([10]): 

 


Axiom 1. (Normality Axiom)  for the uni-
versal set . 
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Axiom 3. (Self-Duality Axiom) 
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  1c      
for any event . 

Axiom 4. (Countable Subadditivity Axiom) For every 
countable sequence of events  i , we have 
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Axiom 5. (Product Measure Axiom) Let k  be non-
empty sets on which k  are uncertain measures 

, respectively. Then the product uncertain 
measure  is an uncertain measure on the product 
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We will introduce the definitions of uncertain variable 

and uncertainty distribution as follows. 
Definition 2.1 (Liu [10]) Let  be a nonempty set, 

and  be a 


  -algebra over , and  an uncer-
tain measure. Then the triplet  is called an 
uncertainty space. 





 , ,  



Definition 2.2 (Liu [10]) An uncertain variable is a 
measurable function from an uncertainty space  

 to the set of real numbers.  , ,  
Definition 2.3 (Liu [10]) The uncertainty distribution 
 of an uncertain variable    is defined by 

   x x   . 

Theorem 2.1 (Sufficient and Necessary Condition for 
Uncertainty distribution [21]) A function  is an un-
certainty distribution if and only if it is an increasing 
function except 



  0x   and .   1x 
Example 2.1 An uncertain variable   is called nor-

mal if it has a normal uncertainty distribution 
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denoted by  ,e   where  and e   are real num-
bers with 0  . 

Then we will recall the definition of inverse uncer-
tainty distribution as follows. 

Definition 2.4 (Liu [11]) An uncertainty distribution 
  is said to be regular if its inverse function 1  ex-
ists and is unique for each .  0,1 

Definition 2.5 (Liu [11]) Let  be an uncertain vari-
able with uncertainty distribution . Then inverse func-
tion 


1  is called the inverse uncertainty distribution of 

 . 
Example 2.2 The inverse uncertainty distribution of 

normal uncertain variable  ,e   is 
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Definition 2.6 (Independence of uncertain variable Liu 
[10]) The uncertain variables 1 2, , , m    are said to be 
independent if 
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for any Borel sets  of real numbers. 1 2

Example 2.3 Let 
, , , mB B B
  and   be independent normal 

uncertain variables  11 1,e   and 2 2 2,e  , re-
spectively. Then the sum a b   is also normal uncer-
tain variable  2ae1 2 , a b1be     for any real num-
ber  and . a b

Finally we will recall their theorems about the opera-
tional law of independent uncertain variables. 

Theorem 2.2 (Liu [11]) Let 1 2, , , n     be inde-
pendent uncertain variables with uncertainty distribution 

1 2, , , n   , respectively. If f  be a strictly increas-
ing with respect to 1 2, , , mx x 

1 2, , ,m m

x

n

 and strictly decreasing 
with respect to x x   x . Then  

 ,1 2 n, ,f      is an uncertain variable with inverse 
uncertain distribution 

          1 1 1 1 1
1 1, , , ,m m nf       

        . 

Example 2.4 Let 1  and 2  be independent and 
positive uncertain variables with uncertainty distribution 

1  and 2 , respectively. Then the inverse uncertainty 
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distribution of the quotient 1 2   is 
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3. Single Parameter Entropy 

In this section, we will introduce the definition and theo-
rem of single parameter entropy of uncertain variable. 
For the purpose, we recall the entropy of uncertain vari-
able proposed by Liu [3]. 

Definition 3.1 (Liu [3]) Suppose that   is an uncer-
tain variable with uncertainty distribution . Then its 
entropy is defined by 



    dH S x



  x            (1) 

where 

            ln 1 ln 1S x x x x x       . 

We set  throughout this paper. Figure 1 il-
lustrates Definition 3.1. 

0 ln 0 0

Through observing Definition 3.1 and Figure 1, we 
find that the selection of function  is very 
important. For an uncertain event 

 S x 
A , if its incredible 

degree is 0 or 1, then the incident is no uncertainty. Con-
versely, when this event confidence level is 0.5, the un-
certainty of the event is maximums. Therefore, the func-
tion  S x   must increases on  0,0.5  and de-
creases on  0.5,1 . By the enlightenment of Tsallis en-
tropy, we try to define the single parameter entropy of 
uncertain variable as follows. 

Definition 3.2 Suppose that   is an uncertain vari-
able with uncertainty distribution  . Then its single 
parameter entropy is defined by 

    dq qH S x



  x          (2) 
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q=1

 

Figure 1. The entropy value of uncertain variable if and 
only if q = 1. 

where 
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q q

qS x x x q q      1 . 

q  is a positive real number. For , it is immedi-
ately verified 
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This means that  1H   is entropy of uncertain vari-
able. For 2q  , we have 
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It’s clear that  2H   is the quadratic entropy of un-
certain variable [20]. Figure 2 illustrates Definition 3.2. 

Remark 3.1 From the plot of  qS x   for  x  
and typical values of , we notice that q  xq  is a 
monotonic function of . From Definition 3.2 and the 
Figure 2, we can see the difference between entropy of 
uncertain variable and single parameter entropy, because 
the single parameter entropy introduces a adjustable pa-
rameter , which makes the computing of uncertainty 
of uncertain variable more general and flexible. 

S
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Example 3.1 Let   be an uncertain variable with 
uncertain distribution 

 
0 if

1 if

x a
x

x a


   

 

Essentially,   is constant. It follows from the defini-
tion of single parameter entropy that 
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Figure 2. The different entropy value of uncertain variable 
with parameter q1 = 0.5, q2 = 2, and q3 = 4. 
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This means that a constant has no uncertainty. 
Example 3.2 Suppose   be a linear uncertain vari-

able  with uncertain distribution  ,a b 
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Then its single parameter entropy is 
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especially,        1 22, 6H b a H b a     . 
Example 3.3 Suppose   be a zigzag uncertain vari-

able  with uncertain distribution  , ,a b c 
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Then its single parameter entropy is 
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especially,        1 22, 6H c a H c a     . 

4. Properties of Single Parameter Entropy 

Assuming the uncertain variable with regular distribution, 
we obtain some theorems of single parameter entropy as 
follows. 

Theorem 4.1 Let   is an uncertain variable. Then 
the single parameter entropy 

  0qH                     (3) 

where the equality holds if   is a constant. 
Proof: From Figure 2, the theorem is clear. As an un-

certain variable tends to a constant, the single parameter 
entropy tends to the minimum 0. 

Theorem 4.2 Let   be an uncertain variable, and 
$c$ a real number. Then 

  qH c H q               (4) 

that is, the single parameter entropy is invariant under 
arbitrary translations. 

Proof: Write the uncertainty distribution of   as  , 
then 

   x x    

From this equation, we get the uncertainty distribution 
of uncertain variable as follow: 
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Using the definition of the single parameter entropy, 
we find 
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The theorem is proved. 
Theorem 4.3 Let   be an uncertain variable, and let 
 be a real number, then k

   qH k k Hq              (5) 

Proof: Denote the uncertain distribution function of 
  by  . If 0k  , then the uncertain variable k  
has an uncertain distribution function  x k . It fol-
lows from the definition of single parameter entropy that 
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when 0k  , we have     0q qH k k H   . 
Theorem 4.4 Let   be an uncertain variable with 

uncertain distribution  , then 

     1 1

0
dqH Sq                 (6) 
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especially, 
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      1 2ln 1 , 1 2S S          

Proof: It is obvious that  qS   is a derivable func-
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and noting that the uncertain variable   has a regular 
uncertain distribution , we have 
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By Fubini theorem, we have 
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S x S x

a S
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  

 





 

 

 

  





 
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  

   

   



a

a



  

The theorem is proved. 
Theorem 4.5 Let   and   be independent uncer-

tain variables, then for any real numbers  and b , we 
have 

a

     q qH a b a H b Hq             (7) 

Proof: Suppose that   and   have uncertainty dis-
tribution  and , respectively, and inverse uncer-
tainty distribution  and , respectively. Note 
that the inverse uncertainty distribution of 

 
 1 1

   is 

     1 1 1         

From Theorem 4.4, we have 

        1 1 1

0
dq qH S a            

Since, Theorem 4.3, we obtain 

     q qH a b a H b Hq       

The theorem is proved. 
Theorem 4.6 (Alternating Monotone function) Let 

1 2, , , n  

1 2, , , m

 be independent uncertain variables with 
uncertainty distribution 1 2 , respectively. If 
the function $f$ is a strictly increasing with respect to 

, , , n  

x x x
1 2, ,m m

 and strictly decreasing with respect to 
, nx x   x , then  , n1 2, ,f      has a single 

parameter entropy 

     1 1

0
dqH Sq                  (8) 

where 

 
        

1

1 1 1 1
1 1, , , 1 , 1 .m m nf



  



   




        
 

Proof: Let   be the uncertainty distribution func-
tion of  f  , then it follows from Theorem 2.2 that 

 
        

1

1 1 1 1
1 1, , , 1 , 1m m nf



  



   




        
 

Since, Theorem 4.4, we have 

     1 1

0
dq qH S        

The theorem is proved. 
Example 4.1 Let 1  and 2  be independent uncer-

tain variables with regular uncertainty distribution 1  
and 2 , respectively. Since the function 
 1 2 1 2,f x x x x   is strictly increasing with respect to 

1x  and strictly decreasing with respect to 2x . From the 
Theorem 2.2, the inverse uncertainty distribution of the 
function 1 2   is as follow 

    1 1 1
1 2 1           

therefore, its single parameter entropy is 

     

      

1 1

0

1 1 1
1 20

d

1 d

q q

q

H S

S

   

.  



 

  

    



 
 

5. Discussions of Single Parameter Entropy 

Theorem 5.1 Let   be a uncertain variable with un-
certain distribution  x , then 

   
11 2

d
1

q

qH x
q q











            (9) 

where the equality holds if uncertain distribution 
     1

q q
x x   . 

Proof: Let   be a uncertain variable with uncertain 
distribution      ,x x   0,1 , then 

           21 2 1
q

q q
x x x      x  

where the equality holds if      1
q q

x x   , that 
is   1 2x  . Then 

   
1 q1 2

d
1q x

q q












H  

We complete the proof. 
In according to Theorem 5.1, we obtain three situa-
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tions as follows. 
Situation 5.1 If uncertain variable   is a constant , 

that is 
c

c  , then 

  0qH                  (10) 

from Theorem 4.1, we get  since the con-
stant is no uncertainty. 

  0qH  

Situation 5.2 Let uncertain variable  ,a b  , then 

    
11 2

1

q

q H b a
q q







            (11) 

According to the fact, we can find the appropriate  
to describe the uncertainty of uncertain variable. Espe-
cially, when 

q

  11, 2q H b a    , as  
   22, 4q H b a   . That is, the single parameter 

entropy measures the uncertainty of uncertain variable 
more flexible than the entropy of uncertain variable. 

Situation 5.3 Suppose uncertain variable   is an 
impossible event. If we choose , we have q 

  0qH                  (12) 

from Theorem 4.1, we get   0qH   . 
It is consistent with the reality, which the impossible 

event can be interpreted that it has no uncertainty. 

6. Example of Single Parameter Entropy 

Example 6.1 Let uncertain variable  , ,a b   , then 

     
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q q
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


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


 



 

By the expert’s experimental data or people’s subjec-
tive judgment, we can choose a appropriate  to judge 

the relation of 

q

 
1qH   and  

2qH  . Furthermore, we 

can obtain the relation of   and  . For instance, if 

two persons’ age  , 20,30

q

  

2
1.25qH 

 and they are about 25 

years old, Suppose we obtain , then 

, . It is clear that 
1 20.5, 3 q 

1
16.56qH    is more 

close to 25 years old than  . 

For some case, the entropy of uncertain variable is in-
valid. However, the single parameter entropy of uncer-
tain variable works well. The follow example shows the 
point. 

Example 6.2 Assume that the uncertain variable   
has uncertain distribution as follow 

 
1

1 if

0 if

x
x x

x

    
 

we get the entropy of uncertain variable as follow: 

           
1

1

ln 1 ln 1 d

1 1
ln d

qH x x x x

x
x x






     

 

x

 



  

It is clear that entropy of uncertain variable is infinite. 
So we consider the single parameter entropy of uncer-

tain variable. 

     
1 1 11

2
1

1 2 1 2
d

1 1

q q

qH x
q q q q


     
 

 
 

   

The example illustrate that we can obtain the supre-
mum of uncertainty of uncertain variable by choosing a 
proper . So the application of single parameter entropy 
is more extensive. 

q

7. Conclusion 

In this paper, we recalled the entropy of uncertain vari-
able and its properties. On the basis of the entropy of 
uncertain variable, and inspired by the tsallis entropy, we 
introduce the single parameter entropy of uncertain vari-
able and explored its several important properties. We 
have generalized entropy of uncertain variable because of 
the singe parameter entropy of uncertain variable, which 
makes the calculating of uncertainty of uncertain variable 
more general and flexible by choosing an appropriate . q
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