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ABSTRACT 

In this chapter we have developed a deterministic model of growth of abnormal cell concentration in a human subject at 
different positions. The diffusion-reaction Equation has been applied to satisfy growth dynamics. The whole tumor re-
gion is divided into layers which, with the growth of tumor form necrotic, quiescent and region of proliferating of tumor 
cells. Finite element method for one dimension has been employed for solving the Equations. Here we have taken into 
account the cellular motility along with proliferative growth ,which is particularly required in case of some of the brain 
tumors, where motility of gliomas cells differ widely in gray and white matter. 
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1. Introduction 

The investigations have shown that the brain cancer cells 
spread preferentially, along the paths of elevated water 
diffusion; such as along nerve fiber bundles and this can 
be measured by magnetic resonance (MR)-diffusion- 
weighted imaging (DWI) (see [1]). The migration of can- 
cer cells away from the primary tumor can be predicted 
using computational models that incorporate DWI in- 
formation. The invention, therefore applies DWI and 
models of cell migration to develop appropriate non- 
symmetric margins for radiation treatment of malignant 
brain tumors. We investigate here the case of Gliomas, 
which consist of highly motile cells that can proliferate 
as well as migrate with different diffusivity in different 
directions [2-4]. These factors make its growth pattern 
elusive to be captured by any advanced techniques 
available so far. Its invasiveness makes it almost impos-
sible to define the growth rate as a classical volume- 
doubling time. Diffusive nature of these tumors inhibits 
the apparent boundary between cancerous and healthy 
regions, therefore the conventional therapy, like surgical 
resection and radiotherapy become ineffective. The cur-
rent imaging techniques are able to see only a part of the 
total tumor. We have tried to capture growth pattern 
based on two parameters i.e. growth rate and coefficient 
of diffusivity, by taking different values of them. We 
have tried to apply the concentration level of oxygen at 
different part of brain to assess the actual number of tu-
mor cells in the second part of this paper. 

2. Mathematical Modeling 

Growth of an infiltrating glioma was provided by Murray 
[5]. He formulated the problem as a conservation Equa-
tion. 

The rate of change of tumor cell population = the dif-
fusion motility of tumor cells + the net proliferation of 
tumor cells. 

Then the growth of cell can be captured in single one 
partial differential Equation that is, diffusion-reaction 
Equation. Where 

  p
D x p p

t


   


         (1) 

p = Relative density of proliferating cell at a given time t. 
α = Net growth rate of proliferating cells which depends 
on the concentration of nutrient. x   Distance from the 
beginning position of tumor. 

D  = Diffusion coefficient of the cells in the intersti-
tial fluid.  D p   describes the invasion of tumor 
cells by means of a Brownian motion, which is charac-
terized by the diffusion coefficient  . The second term 
in the Equation, 

D
p  describes the rate of growth the 

proliferation of tumor cells. 
Boundary-Conditions. 

0 1 at 0.p p x                  (2) 

 0 at 0 at 1p x x x     .         (3) 

3. Finite Element Discretization 

Comparing the Equation (1) with Euler-Lagrange differ-
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ential Equation given as 

d
0

d

f f

y x y

  
    

                (4) 

Here, y = 
y

x




. 

The corresponding variation functional of PDE (1) is 
obtained as  
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0

d  
p

I D
x t


               
 p x


        (5) 

Equation (1) is equivalent to (5) for optimum value of 
I (see [5]). Now to apply finite element one dimensional 
approach, the tumor region is divided into three linear 
parts as shown in Figure 1. This approximates the solu-
tion in each element. The higher degree shape functions 
have not been taken due to micro-level dimensions. 

Descretization of tumor region in three linear parts is 
as follows 

   for 1, 2,3i ip A x B i              (6) 

Assumptions are made as given in Table 1. Here p0 
and p3 are determined, while nodal values of p1 and p2 are 
to be determined parameters A and B are determined with 
the help of above assumptions for each part in R, the 
shape functions for each linear element are given below 
in Table 2. 

Element wise variational integrals are as following 
In the region 0 x a   

2
2

1
0

d
a p

I D
x t


                 
 p x         (7) 

In the region  a x b 
2

2
2 d

b

a

p
I D

x t


                 
 p x         (8) 

 
3p p x c   

2p p x b   

1p p x a   

0 0p p x    
Figure 1. Linearly descretized region of tumor. 

 
Table 1. Cell populations at nodes. 

Distance from center Cell population 

0x   0 P  

x a  1P  

x b  2P  

x c  3P  

Table 2. Elements-wise shape functions. 

Descretised Region x  Shape Function 

1R  0 x a   
 1 0

0

p p
x p

a


  

2R  a x b   
 
 

 
 

2 1 1 2p p p b p
x

b a b a

 


 
a

 

3R  b x c   
 
 

 
 

3 2 2 3p p p c p
x

c b c b

 


 
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In the region b x c   

2
3 d

c

b

p
I D

x t
 p x

                
        (9) 

Substituting for p, from Table 1 and Table 2 in Equa-
tions (7), (8) and (9) respectively. On adding, Equations 
(7), (8) and (9), we get 

1 2  3I I I I                       (10) 
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      (11) 

Integrating Equation (11) with respect to x, we get  
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  (12) 

For optimization, differentiating I, with respect to 1  
and 2  and equating the result to zero, we obtain fol-
lowing Equations, 

p
p

1 1 1 2 2 32

d d

d d 0A N p A N p N p
t t

         
   

    (13) 

1 1 2 2 31 2

d d

d d
L M p L M p M

t t
         
   

3p    (14) 
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where 1 2 1 2 3 1 2 1 2  3, , , ,, , , , ,L L M MA N N MA N  are given in 
Appendix-1. 

Above first order linear Equations are solved by nor-
mal differential Equation solution. 

Solutions are of the form 

   1 2
3212

x t x tp c e c e k k   4          (15) 

where  

 2
2 2 1 3

1
1

4

2

k k k k
x

k

    
 


           (16) 

 2
2 2 1 3

2
1

4

2

k k k k
x

k

    
 


           (17) 

Here 1  and 2  are constants of integration, which 
are determined by the following conditions 

c c

1)  2 a 00 tp t 

2)         (18) 22 is finite as , implies 0p t c 

Finally we get 

  14

3
2 1x tk

p e
k


  

   
              (19) 

By solving Equation (13) or (14) for 1  after substi-
tuting  from Equations (19) in Equation (13) or (14), 
we get 
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Therefore 

11p 2                   (20) 

Finally, substituting 1  and 2  from Equations (19) 
and (20) respectively into shape functions of the respec-
tive elements. We obtain the Equations governing cell 
densities at each descretized linear region. These Equa-
tions are as follow, 

p p

Cell density in the region 0 < x < a 

 1 2 0 0  
x

p p
a

    p           (21) 

Cell density in the region a < x < b 

     1 12 2 2

1
 

x
bp

b a b a
p      

 2ap


 

Cell density in the region b < x < c 

   
2 23 3p p p c p b

p x
c b c b

  
    

              (23) 

4. Parameter Values 

The diffusion coefficient of oxygen in the brain is known 
to be 5 2

0 10 cm secD  . Oxygen consumption rate 
constant of cancer cells has been experimentally deter-
mined to be = 6.25 × 10–17 mole/cell/sec (see [6]). 

We have assumed the threshold concentration, 
5

   

where 35.175 10 
    mole/gm of tissue (see [6]). 

The parameter values given above are only approxi-
mate, and much manipulation of the existing data is re-
quired to derive these estimates.  

5. Discussion 

5.1. Cell Densities Patterns at Different Distance 
Away from Center of Tumor 

Our findings are shown in Figures 2-7. We assumed a 
single tumor cell at the 0x  , directly from there, we 
have applied diffusion model as diffusion is random walk, 
inherent even in a single cell. We try to analyze the pat-
tern of density of tumor cells at point  
then from 0.1 to 0.2 and 0.2 to 0.3 mm positions and 
tried to understand the elusive nature of pattern of growth, 
as is shown in Figure 3. 

0.0 to 0.1 mmx 

We have investigated growth pattern at each of the 
three regions, mentioned above with variable growth rate 
and diffusive coefficient. Growth rate α is measured in 
cell/day and coefficient of diffusivity D is in mm2/sec. 

Figure 2 shows the growth pattern near the origin of 
 

 

Figure 2. Analysis of growth of tumor with the variation in 
diffusivity coefficient of cells and growth rate in 0 < x < 0.1 
mm region in first tumor with growth rate = 0.058, D = 
0.0018 and 2nd tumor with growth rate = 0.058, D = 0.0024. 

Copyright © 2012 SciRes.                                                                                  AM 



S. NEMA, V. P. SAXENA 938 

 

Figure 3. Growth patterns of four tumors at (1) growth rate 
= 0.058, D = 0.0018 (2) growth rate = 0.058, D = 0.0024 (3) 
growth rate = 0.040, D = 0.0018 (4) growth rate = 0.040, D = 
0.0012. 
 

 

Figure 4. Analysis at growth rate 0.045, comparison of 
growth patterns of two tumors (1) diffusivity coefficient D = 
0.0012 and (2) diffusivity coefficient D = 0.0018. 
 
tumor in the region . Here growth pattern 
of three tumors 

0 0.x  1
A , ,  have been compared to 

judge the interplay of diffusivity with growth rate. 
B C

1) Tumor ,  0.040 and 0.0018A D   ; 
2) Tumor ,  0.058 and 0.0024B D   ; 
3) Tumor  ,  0.058 and 0.0018C D   . 
By comparing the growth pattern of  and A B  tumors, 

where  tumor falls below in cell concentration not 
only the cell concentrations of  but, that of 

B
C A  also, 

whose growth rate is far below at  than that of B, 
we get insight, as to how, the represented density of cells 
may play a flaw. 

0.040

In the same Figure 2 the tumors A  and C , having  

 

Figure 5. At growth rate 0.055, comparison of growth pat-
terns of two tumors (1) diffusivity coefficient D = 0.0012, 
and (2) diffusivity coefficient D = 0.0018. 
 

 

Figure 6. At growth rate 0.045, comparison of growth pat-
terns of two tumors (1) diffusivity coefficient D = 0.0012, 
and (2) diffusivity coefficient D = 0.0018.  
 
same diffusivity but different growth rates have been 
compared for their cell growth patterns. Here results are 
commensurate with the obvious fact that the tumor, with 
higher growth rate, progresses faster. 

The growth patterns of tumors A ,  are found to 
be same. The point to be marked here, is that, both tu-
mors differ only marginally in their ratios of α/D (growth 
rate to coefficient of diffusivity) with tumor  

B

D
at A

/   22.2 and tumor  at /D  = 24B   (appox). Figure 
3 emphasizes this point more resoundingly, where growth  
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Figure 7. Comparison of growth patterns at x = 0.1 and x = 
0.2 mm distance from center of tumor with growth rate = 
0.045 and diffusivity coefficient = 0.0076. 
 
patterns of four tumors have been evaluated. 

Tumor ,  0.040 and 0.012,  32.

Tumor ,  0.040 and 0.018,  22.

Tumor ,  0.058 and 0.018,  32.

Tumor ,  0.058 and 0.024,  24.

A D

B D

C D

D D

D

D

D

D

 




 
 
 
 












 

Growth pattern of A and C show resemblance while 
same can be observed for B and D tumors. Obviously, 
parameter α/D prove to be a deciding factor. We further 
analyze the growth pattern of same tumors in Figure 4. 
at  distance from center of tumor 
and here, we find a large difference in their cell concen-
trations at the corresponding positions. The tumor ob-
served are (1) with growth rate at  and at 

 and (2) with growth rate  with 
. The slower growth is registered at the later 

stage of growth (invariable in all tumors) as compared to 
that, in the beginning phase of tumor growth. 

0.1 0.2 mmx 

0.0024
0.0012

0.058
0.04D

D
0

Although actual tumor with higher growth rate is more 
lethal then that at lower progressing one but any CT scan 
may pick up just otherwise as is obvious from Figure 4. 

5.2. Comparison of Growth at a Little Higher 
Growth Rate 

In Figure 5 peak concentrations of cells of two tumors at 
growth rate a equal to 0.055 and with diffusivity coeffi-
cients,  are shown, while 
Figure 6 shows peak concentrations of tumors with 

 with the same diffusive coefficients as above. 
We conclude by comparing these two figures that the 

peak concentration values do not differ that much at 
higher growth rate, as is the case at lower growth rate. 

0.0012 and 0.0018D D 

0.045a 

Figure 7 shows the contrast of variation of in growth 
of proliferating cell at pos . There is 
tremendous growth observed at lower position around 
0.1 positions, in contrast to the growth at around 0.2 po-
sitions. In fact, tumor exhibits a decaying or dormant 
pattern near 0.2 mm, as if saturation in cell concentration 
is reached, but to our exasperation, that is never the ac-
tual case. Ratio of growth rate to diffusion coefficient 
here is taken to be 59. A close and comparative study 
shows that diffusivity factor plays prominently when 
growth rate is at extreme, either very low or very high. 

 0.1 and 0.2x x 

6. Conclusions 

Some of tumors, like tumors of brain where diffusive 
coefficient are higher and varied, they despite being po-
tent, may not be diagnosed properly and their malignancy 
may not be assessed even by any advanced image scan. 
(see [3]). Exact metastasized extend can only be estimated 
when number of diffused cells are known correctly, which 
attempts to clarify the pattern of highly malignant tumor 
growth, vis-à-vis concentration of nutrient. 

This model can be used as the basis for finding the 
growth in the tumor when anisotropic nature of tumor is 
also taken into account, as it is an established fact that 
diffusivity of cell in white matter is five times more than 
that in gray matter (see [7,8]). It can be used to explore 
further to find out exactly the direction of growth of tu-
mor for clinical treatment. However, we have not taken 
the death rate of cells into account as cell death rate is 
small as compared to proliferating rate, during initial 
state of tumor growth. 

This model may be of clinical help as model can be 
adapted to patient-specific cases and could be used for 
quantification of apparent growth by extracting invasion 
speed and a better therapy planning by suggesting irra-
diation regions adapted to growth dynamics or optimal 
dose/temporal planning of chemotherapy can be done . 
Here we have modeled the process of growth only mac-
roscopically without considering the microscopic details 
like brain geometry, tissue in homogeneity and fiber 
structures, the estimated speeds in the white and in the 
gray matter. 

7. Current Status of the Application and 
Latest Progress in the Current Problem 

Gliomas are diffuse and highly invasive brain tumors, 
accounting for about 50% of all primary brain tumors see 
([7,8]). The prognosis for patients with gliomas depends 
on many factors, including the histological type and 
grade of malignancy, the patient’s age and level of neu-
rological functioning [9]. But most unfortunate aspect  
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Table 3. According to a 2003 study, glioblastoma multiforme prognosis can be divided into three subgroups dependent on 
KPS, the age of the patient, and treatment SRN = surgical removal with good neurologic function, SRNP = surgical removal 
with poor neurologic function NSR = no surgical removal. 

RPA Class Definition 
Historical Median  
Survival Time 

Historical 1-Year  
Survival 

Historical 3-Year  
Survival 

Historical 5-Year  
Survival 

III Age < 50, KPS ≥ 90 17.1 months 70% 20% 14% 

Age < 50, KPS < 90 
IV 

*SRN Age > 50, KPS ≥ 70 
11.2 months 46% 7% 4% 

Age ≥ 50, KPS ≥ 70, **SRNP 

Age ≥ 50, KPS ≥ 70, ***NSR V + VI 

Age ≥ 50, KPS < 70 

7.5 months 28% 1% 0% 

 
of its malignancy is that it is never defined or measured 
accurately because of high and variable motility of ma-
lignant cells in the various parts of brain. 

Another challenge faced during its diagnosis as well in 
therapy is that the boundary between tumor and normal 
tissue is not sharp and the number of cells in the “normal 
tissue” is not determinable. However a major break-
through in the practical application of the model (1) was 
the availability of the brain web atlas [10]. This allowed 
the model to be applied to anatomically correct brains 
[12,13]. Among other things it made it possible to refine 
the gross anatomic boundaries and to vary the degree of 
motility of glioma cells in grey or white matter: 

The brain was considered to be homogeneous matter 
bounded by the ventricles and skull in initial models (see 
[11-13]). Even with such a simple anatomical model the 
predictions of the analysis were broadly in line with pa-
tient observation of both low and high grade brain tu-
mors. 

The limitations of current imaging techniques were 
clear. The model was then used to mimic various ac- 
cepted medical treatments, specifically radiation, surgical 
resection (see [14-16]) and chemotherapy. A three di- 
mensional model was proposed and studied by Burgess 
et al. [17], (see also [18]), who were the first to demon-
strate that cancer cell diffusion, mainly ignored up to that 
time, is a major component of glioma growth. They 
showed that only those tumors with a low diffusion rate 
could benefit from wide surgical resection although 
eventually there will be multifocal recurrence. 

However surgery is still the first stage of treatment of 
glioblastoma. An average GBM tumor contains  
cells, which is on average reduced to  cells after 
surgery (a reduction of ) [18-21]. It is used to take 
a section for a pathological diagnosis, to remove some of 
the symptoms of a large mass pressing against the brain, 
to remove disease before secondary resistance to radio-
therapy and chemotherapy, and to prolong survival. The 
greater the extent of tumor removal, the better. Removal 

of  or more of the tumor has been associated with 
a significantly longer healthier time than if less than 

 of the tumor is removed The chances of near- 
complete initial removal of the tumor can be greatly in-
creased if the resection area is assessed by a mathemati-
cal model along with area presented apparently by scans. 
GBM cells are widely infiltrative through the brain at 
diagnosis, and so despite a “total resection” of all obvi-
ous tumor, most people with GBM later develop recur-
rent tumors either near the original site or at more distant 
“satellite lesions” within the brain. Particularly keeping 
its fatality factor in view as shown by data in Table 3, an 
assessment of the exact spread of tumor cells through 
mathematical model becomes a critical need. 

1110
910

99%

98%

98%

We have also extended investigation in our next pape 
where by reduction in the concentration of oxygen in the 
region gives the corresponding increases in the tumor 
cells. By the same logic correspondence between the 
actual numbers of cells to the numbers represented by 
any advanced scan can be established. 

Applying mathematical model for virtual growth of 
brain tumor cell is the latest development (see [22]) in 
this area. 
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