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ABSTRACT 

We consider the harmonic analysis associated with the Dunkl operators on . We study the Dunkl mean-periodic 

functions on the space  (the space of  -functions). We characterize also the continuous linear mappings- 

from  into itself which commute with the Dunkl operators.   d

d C d
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1. Introduction    

   
, : , ;

and .

t
k k

d d

V T g T V g

T g



   

tV

 d

The Dunkl operators j 1, ,j d;   d

P d

, on , are dif- 
ferential-difference operators associated with a positive 
root system   and a non negative multiplicity func- 
tion k, introduced by Dunkl in [1]. These operators ex- 
tend the usual partial derivatives and lead to a generali- 
zations of various analytic structure, like the exponential 
function, the Fourier transform, the translation operators 
and the convolution product [2-4]. Dunkl proved in [2] 
that there exists a unique isomorphism kV  from the 
space of homogeneous polynomials n  on  of de- 
gree n onto itself satisfying the transmutation relations:  



 1 1, ;k j k k
j

V V V
x

1, 2, , .j d  




 d C d

      d ;

, ,

k x

d d

V f x f y y 


 

This operator is called the Dunkl intertwining operator. 
It has been extended to a topological automorphism of 

 (the space of -functions on ) (see [5]). 
The operator Vk has the integral representation (see [6]):  

 
d

f x 


 


       (1) 

where x  is a probability measure on , such that  d

   : .d
xsupp y x   

tV k

  

y  

The dual intertwining operator k  of V  defined on 
 (the dual space of d 

 

We use the Dunkl intertwining operator kV  and its 
dual k  to study the harmonic analysis associated with 
the Dunkl operators (Dunkl translation operators, Dunkl 
convolution, Dunkl transform, Paley-Wiener theorem, 
etc.). As applications of this theory we study the mean- 
periodic functions on the space   in the Dunkl 
setting. We characterize also the continuous linear map- 
pings from  d

V V

 into itself which commute with the 
Dunkl operators. 

The contents of this paper are as follows. In the second 
section we recall some results about the Dunkl operators. 
In particular, we give some properties of the operators 

k  and t
k . Next, we define the Dunkl translation op- 

erators x ,  and the Dunkl convolution product dx
k  by  

        

 

1: d d ,

, ,

d dx k x y

d d

f y V f z t z t

f y

    

 

  

 
 

and  

   

   
: , ,

, .

k y x

d d

T f x T f y

T f

  

   

 d


 

d ), by  In Section 3, we study the mean-periodic functions as- 
sociated to the Dunkl operators on . We prove 
that every continuous linear mapping  from 
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into itself such that j j  

 kT f x 

, , has the 
form  

1, ,j d 

 , .dT   



d

 f x

d

 

In the one-dimensional case (d = 1), the Dunkl convo- 
lution operators and the Dunkl mean-periodic functions 
are studied in [7-9], on the space of entire functions on 

. 

2. The Dunkl Harmonic Analysis on  

We consider  with the Euclidean inner product .,.  
and norm : ,y y y

 \ 0
. 

For , let d    be the reflection in the 
hyperplane  orthogonal to d H  : 

2

2 ,
: .

y
y y 


 

 \ 0d 

 

A finite set  is called a root system, if 
. ,      and     for all   . We 

assume that it is normalized by 
2

2  for all   . 
For a root system , the reflections   ,    

generate a finite group  dG O

\d

, the reflection group 
associated with . All reflections in G, correspond to 
suitable pairs of roots. For a given 


H

   , 
we fix the positive subsystem:  

 : : , 0 .       

Then for each    either    or   


. 
Let  be a multiplicity function on :k   (i.e. 

a function which is constant on the orbits under the 
action of G). For abbreviation, we introduce the index: 

   : .k k


  


    

Moreover, let  denotes the weight function: kw

   
, ,dy


 

2

2
: ,

k

kw y y





  

which is G-invariant and homogeneous of degree  . 
The Dunkl operators j ; , on  asso- 

ciated with the finite reflection group G and multiplicity 
function k are given for a function f of class  on , 
by  

1, ,j d d

1C d

         
: .

,j j
j

f y f y

y y





dy


f y f y k


 



 
   

For , the initial problem  
;  .,u y   ,j jx y u x y 1, ,j d  , with  0, 1u y   

admits a unique analytic solution on , which will be 
denoted by  and called Dunkl kernel [2,3]. 
This kernel has the Laplace-type representation [6]:  

d
 ,kE x y

   ,, dd

where 
1i

 and , :
d

i iy z y z x
d

 is the measure on 
 given by (1).  

We denote by d 

d
 the space of C -functions on 

, and by  d  d the space of distributions on  
of compact support.  

Theorem 1. (See [5], Theorem 6.3). The Dunkl inter- 
twining operator Vk defined by  

      

 
d ;

, ,

dk x

d d

V f x f y y

f x

 

 


 

 d

  

 

is a topological isomorphism from  onto itself, 
and satisfies:  

 

;

and 1, , ,

j k k
j

d

V f V f
x

; , ,y z d dz  k xE x z e y x     (2) 

f j d

 
    

  





          (3) 

    0 0 .kV f f

kV

kV

 

From Theorem 1, we deduce also the following re- 
sults.  

Theorem 2. The dual intertwining operator t  of 
 defined on  d   by  

   

   
, : , ;

and ,

t
k k

d d

V T g T V g

T g



   

 d
  1t

kV

         (4) 

is a topological isomorphism from  onto itself. 
Its inverse operator 


 is given by  

     

   

1 1, , ;

and .

t
k k

d d

V T g T V g

T g

 

   
      (5) 

We denote by dH 
d

 the space of entire functions 
on  which are rapidly increasing and of exponential 
type. We have  

   
0

,d d
a

a

H H


   

where dH 
d

a  is the space of entire functions f on 
 satisfying  

    Im, 1 ,sup
d

N aN f e 


 

 



    


  

where  

 2 2
1 1, , , .d

d d           

k

 

 d   by  We define the Dunkl transform  on 

     
 

: , ,. ;

and .

k k

d d

T T E i

T

 



 

  





0

       (6) 

We notice that  agrees with the Fourier transform 
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 that is given by  

  

 T









,.: , ;

and .

i

d d

T T e 





  

 d 

 , .t dT T  

           (7) 

Proposition 1.  admits on   the following 
decomposition:  

k

   k kT V        (8) 

Proof. In (4), we take ,.ig e   and applying rela- 
tion (2) we obtain  

     ,. ; .t dT  


k

,., ,i
k kV T e T E i     

Then the result follows from (6) and (7).   
Theorem 3. (Paley-Wiener theorem).  is a topo- 

logical isomorphism from  d   onto .  dH 




Proof. The result follows from (8), Theorem 2 and 
Paley-Wiener theorem for the Fourier transform  
(see [10]).   

Definition 1. The Dunkl translation operators (see [4]) 
are the operators x , , defined on , by  dx  d

    : , ,dy y  1
, ,x k x k y kf y V V V f x      (9) 

which can be written as:  

        d d .x yz t 

f , dx y

1
d dx kf y V f z t    

 

We next collect some properties of Dunkl translation 
operators (see [4]). 

Proposition 2. Let  and . Then  d 
1) 0 f f  ,    x yf y f x   and  

x y y xf f     .  

2)    j x x j , 1, ,f f j d  



   . 

3) Product formula:  

      , y d,.x k kE y     , kE x E , . 

4) The Dunkl translation operators x , , are 
continuous from  onto itself. 

dx
 d

T   df  


The 4) of Proposition 2 used to investigate the 

following definition.  
Definition 2. Let  and . The 

Dunkl convolution product of T and f, is the function 
 in  defined by  

 d 

kT  f  d

   : , , .d
k y xT f x T f y x   

0

 

     (10) 

We notice that  agrees with the convolution * that 
is given by  

 

 
T f x

T f

 

  
: , ;

, .

y

d d

T f x y

   

T   df  

       
1t

k k k kV T V f V T f


         (11) 

Theorem 4. Let  and . Then  d 

1)   . 

     1 1t
k k k kV T V f V T f    .  2) 

 dT    df   and . Proof. Let 
1) From (10) and (5), we have  

      

       

   

1

1

1
,

,

, .

t
k k k

t
k x ky

y k y x k

V T V f x

V T V f y

T V V f y













   

   

 

But from (9), we obtain  

      1
, , .k y x k k xV V f y V f x y       

Thus  

      
    

  

1

, ,, ,

.

t
k k k

y k x k x y

k

V T V f x

T V f x y V T f x y

V T f x




   

 

 

2) From (11) and (4), we have  

     

      

   

1

1

1
,

,

, .

t
k k

t
k ky

y k y k

V T V f x

V T V f x y

T V V f x y









 

   

 

But from (9), we obtain  

      1 1
, , .k y k k x xV V f x y V f y        

Thus  

     
    

  

1

1 1
, ,

1

, ,

.

t
k k

y k x x k x y x

k k

V T V f x

T V f y V T f y

V T f x

 



 





   

 


 dT  

 

Which completes the proof of the theorem.   
Proposition 3. Let . The mapping  

kT f   d is continuous from  onto itself.  f
 n

f
  is a sequence in Proof. Assume that d  

such that nf f g and k nT f  n , as , where 
f, g being in  d

dx x n x

. According to Proposition 2 4), for 
every , f f n  as , in  d . 
Hence    T f x T f x   n 

dx
k

k n k , as , for every 
. By using the closed graph theorem we conclude 

that the mapping f T f   is continuous from 
 d

 , dT S  
kT S

 into itself.    
The Proposition 3 used to investigate the following 

definition.  
Definition 3. Let . The Dunkl convolu- 

tion product of T and S, is the distribution   in 
 d   defined by  

Copyright © 2012 SciRes.                                                                                 APM 



M. SIFI, F. SOLTANI 277

 , : , ,k x y xT S f T S f y  , ,kT S f 

S  d 

  (12) 

where  is the distribution in  given by  

 , ,dS f f  

 , .dx x

0

, ,S f  

with  

  f x f   

We notice that  agrees with the convolution * that 
is given by  

   , .dS  , : , , ;x yT S f T S f x y T    

Proposition 4. Let  , dT S  
k

. Then 
1)  and T Tk kT S S T    

 
. 

2)    kT S
   tT V S

k S

k k kT S   . 
3) .   t t

k kV T S  k k

Proof. 1) follows from (12). 
V

2) From Proposition 3, the distribution T   be- 
longs to , and by (6), we have   d 

   , ,E i  , d
k k k kT S T S x     .  

Thus, by (7) and Proposition 2 3), we obtain  

     
  
, ,k k x y

k k

T S T S  





    
,.

.

x kE i y

T S



 



   

 

3) From 2) and (8) we obtain  

    .t t
k kT V St

k kV T S V    

Then we deduce the result from the injectivity of the 
Fourier transform  on   d  .   

3. Commutators and Mean-Periodic 
Functions 

In this section, we use Theorem 4 to study the Dunkl 
mean-periodic functions on  d


 d

, and to give a char- 
acterization of the continuous linear mappings  from 

 into itself which commute with the Dunkl op- 
erators j ; .  1, ,j d 

3.1. Mean-Periodic Functions 

Definition 4. A function f in   is said mean-   d
d 0Tperiodic, if there exists T  and    , such 

that  

  0, fkT f x  or all .dx  

For example, let  0 \ 0x 
 d

 0 0,x f x 

 
0

,x k

d . The function f in 
 satisfying  

  

is mean-periodic, because we have 

 0x f x f x     

0x  being the Dirac measure at 0x . 
We now characterize the Dunkl mean-periodic func- 

tions on  d

 1
k f

.  
Theorem 5. A function f is mean-periodic function if 

and only if the function V  is a classical mean- 
periodic function.  

Proof. Let f be a mean-periodic function, then there 
exists  dT   0T and  , such that  

0.kT f   

1
kVApplying   to this equation, then Theorem 4 2) 

implies that  

   1 0.t
k kV T V f   

From Theorem 2,  0tV T   1
kV f

k , thus  is a clas- 
sical mean-periodic function. 

Conversely, if 1 f

 dT   0

 1 0.kT V f

kV  is a classical mean-periodic 
function, there exists  and T , such that  

 

kV

   
1

0.t
k kV T f


 

   
1

0t
kV T





d d 

 

 

Applying  to this equation, then Theorem 4 1) 
implies that  

 

From Theorem 2, , thus f is a mean- 
periodic function.  

Remark 1. Let  and . From [11] the 
functions  

,
, , ,i x dF x i x e x 

   

 

 

are classical mean-periodic functions. Then from Theo- 
rem 5, the functions  

    , , , , , ,d
k k kE x i V F x D E i x x 
          

  d

 

are mean-periodic functions. 

3.2. Commutator of Dunkl Operators 

In this section, we give a characterization of the con- 
tenuous linear mappings  from  into itself 
which commute with the Dunkl operators j 1, ,j d;  


.  

Lemma 1. Let  be a continuous linear mapping  

 d  into itself, such that from 
j jx x

 


 
 

1, ,j d

,  

 d , then  has the form  , on  

     0 0, .df x T f x T     

x

 

 Proof. For a fixed f , the map  f x  is a 
continuous form on  d . So there exists  d

xT   , 
such that  

  , , .d
xf x T f x   
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Using the fact 
j jx x 
 

 
 j d, , on 1, ,   d , 

we deduce  

      x j x
j

T i T
x

 
 


  , 1, , .j d    

Then  

     
    

0

0 .

T

T

 

 

,i x
x

x

T e 

   

0 ,x xT T





 
 

Thus,  

   

and  

   
   

0 ,

, .

T f t y

f x



 




 d

0

0 0

, ,x xf x T f

T f x y T

   

 


 

  

Lemma 2. Every continuous linear mapping  from 

 into itself, such that j
jx


   1, ,j d


,   , 

has the form  

    k kf x T V f x   , .dT  

1
k


 

Proof. Applying V  to the relation j
jx





  , 

, and using the fact that 



1,j d , 1 1
k j k

j

V
x

 V







1,j d

, 

, we obtain the deduce  ,

1 1
k k

j j

V V
x x

  
 

  , 1, , .j d  

1
k


 

By applying Lemma 1, we deduce that V  

  

  
 

0

,

k k

k k k

, 
and Theorem 4 1) yields  

   

   
 

1

0
t

k k

f x V f x

V T

T V f



 

 

 

 

1t 

V T f x

V f x

x



   T V T 


 d

 

where .  0k

We now establish the main result of this paragraph.  
Theorem 6. Every the continuous linear mapping  

from  into itself, such that j j  
1, ,j d 

 , .dT  

 ,  
, has the form  

   kf x T f x   

Proof. Using the relation j k k
j

V V
x


 1, ,j d


,   ,  

and the fact that j j   , , we obtain  1, ,j   d

, 1, , .j k j k k
j

V V V j d
x


  


   

kV

 

By applying Lemma 2, we deduce that   , and 
hence  

     1 .k kf x V f x T f x   


 

 

  
Remark 2. Let  be continuous linear mapping  

from  d  into itself, such that j j  
1, ,j d

,  
 . 

By virtue of Theorem 6, we can find d T  
such that  

       , , .d
k y xf x T f x T f y f      

dx

 

In particular (by Proposition 2 3)), for every , 
we have  

     
   

., , .,

, , , .

k y x k

k y k

E z x T E z y

E x z T E y z

 

 


 

   : , ,y kz T E y z  We put , we obtain  

      ., , , .d
k kE z x E x z z z  

dz

 

Hence, for every   .,E z


, k  is an eigenfunc- 
tion of  associated with the eigenvalue  z .  
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