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ABSTRACT 

In Advances in Pure Mathematics (www.scirp.org/journal/apm), Vol. 1, No. 4 (July 2011), pp. 136-154, the mathe- 
matical structure of the much discussed problem of probability known as the Monty Hall problem was mapped in detail. 
It is styled here as Monty Hall 1.0. The proposed analysis was then generalized to related cases involving any number 
of doors (d), cars (c), and opened doors (o) (Monty Hall 2.0) and 1 specific case involving more than 1 picked door (p) 
(Monty Hall 3.0). In cognitive terms, this analysis was interpreted in function of the presumed digital nature of rational 
thought and language. In the present paper, Monty Hall 1.0 and 2.0 are briefly reviewed (§§2-3). Additional generaliza- 
tions of the problem are then presented in §§4-7. They concern expansions of the problem to the following items: (1) to 
any number of picked doors, with p denoting the number of doors initially picked and q the number of doors picked 
when switching doors after doors have been opened to reveal goats (Monty Hall 3.0; see §4); (3) to the precise condi- 
tions under which one’s chances increase or decrease in instances of Monty Hall 3.0 (Monty Hall 3.2; see §6); and (4) 
to any number of switches of doors (s) (Monty Hall 4.0; see §7). The afore-mentioned article in APM, Vol. 1, No. 4 
may serve as a useful introduction to the analysis of the higher variations of the Monty Hall problem offered in the pre- 
sent article. The body of the article is by Leo Depuydt. An appendix by Richard D. Gill (see §8) provides additional 
context by building a bridge to modern probability theory in its conventional notation and by pointing to the benefits of 
certain interesting and relevant tools of computation now available on the Internet. The cognitive component of the ear-
lier investigation is extended in §9 by reflections on the foundations of mathematics. It will be proposed, in the foot-
steps of George Boole, that the phenomenon of mathematics needs to be defined in empirical terms as something that 
happens to the brain or something that the brain does. It is generally assumed that mathematics is a property of nature or 
reality or whatever one may call it. There is not the slightest intention in this paper to falsify this assumption because it 
cannot be falsified, just as it cannot be empirically or positively proven. But there is no way that this assumption can be 
a factual observation. It can be no more than an altogether reasonable, yet fully secondary, inference derived mainly 
from the fact that mathematics appears to work, even if some may deem the fact of this match to constitute proof. On 
the deepest empirical level, mathematics can only be directly observed and therefore directly analyzed as an activity of 
the brain. The study of mathematics therefore becomes an essential part of the study of cognition and human intelli-
gence. The reflections on mathematics as a phenomenon offered in the present article will serve as a prelude to planned 
articles on how to redefine the foundations of probability as one type of mathematics in cognitive fashion and on how 
exactly Boole’s theory of probability subsumes, supersedes, and completes classical probability theory. §§2-7 combined, 
on the one hand, and §9, on the other hand, are both self-sufficient units and can be read independently from one an-
other. The ultimate design of the larger project of which this paper is part remains the increase of digitalization of the 
analysis of rational thought and language, that is, of (rational, not emotional) human intelligence. To reach out to other 
disciplines, an effort is made to describe the mathematics more explicitly than is usual.   
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1. Introduction 

In Advances in Pure Mathematics, 2011, Vol. 1, No. 4, 
pp. 136-154, the mathematical structure of the well- 
known problem of probability known as the Monty Hall 
problem (see §2 below) was mapped in detail [1-4]. This 
mathematical structure includes two components that 
complement one another seamlessly. One component is 
digital or non-quantitative. The other is quantitative. The 
focus of that earlier paper was mainly on the neglected 
digital component. The digital component was analyzed 
in the spirit and the algebra of George Boole’s Investiga- 
tion of the Laws of Thought (1854), the Magna Charta of 
the digital age. Much of what has been said in the earlier 
paper is presupposed in what follows.  

In said article, the analysis of the Monty Hall problem 
was extended in two directions. First, on the cognitive 
side, the digital analysis was interpreted as an organic 
reflection of the presumed digital nature of human cogni- 
tion as expressed by rational thought and language and as 
evidenced empirically by facts of language. Probing the 
nature of rational thought and language was in a sense 
the ulterior motive of analyzing the Monty Hall problem. 
Second, on the mathematical side, the Monty Hall prob- 
lem was generalized to related cases in accordance with 
the axioms of probability theory (Monty Hall 2.0). The 
aim was to demonstrate the reliability and productivity of 
the proposed digital approach. This first generalization is 
briefly reviewed in §3 below.   

The analysis of the Monty Hall problem is extended 
again, both mathematically and cognitively, in the pre- 
sent paper. First, in mathematical terms, the validity of 
the proposed digital approach is bolstered by additional 
generalizations of the Monty Hall problem in §4, §5, §6, 
and §7 (Monty Hall 3.0 and 4.0). This process could 
presumably be carried on ad infinitum, at some point 
entering the domain of calculus.  

Second, in cognitive terms, an attempt is made to ren- 
der the presumed deep organic link between the digital 
component of probability theory and the digital nature of 
rational thought and language more probable by defining 
what mathematics is (see §9 below). In terms of the 
search for the deepest foundations of mathematics, it is 
proposed that mathematics is best defined first and fore- 
most as something that the brain does as it engages real- 
ity outside itself through the senses.  

§§2-7 combined, on the one hand, and §9, on the other 
hand, are self-sufficient and can be read independently 
from one another. In other words, it is not necessary to 
read §§2-7 in order to read §9.  

An appendix by Richard D. Gill (see §8) provides ad- 
ditional context by building a bridge to modern probabil- 
ity theory in its conventional notation and by pointing to 
the benefits of certain interesting and relevant tools of 

computation now available on the Internet.  
It is hoped that the reflections presented in §9 on the 

nature and definition of mathematics will serve as a 
prelude to forthcoming papers on the foundations of 
probability theory as one type of mathematics entitled 
“How Boole’s Theory of Probability Subsumes, Super- 
sedes, and Completes Classical Probability Theory: A 
Digital, Quantitative, and Cognitive Analysis,” in which 
an attempt will be made to describe how exactly Boole’s 
theory of probability, which has been almost entirely 
neglected for one and a half centuries, makes the classi- 
cal theory of probability complete. It is imperative that a 
mathematical theory consider all possible cases. Classical 
probability theory does not.  

H.H. Goldstine writes about Boole that “our debt to 
this simple, quiet man... is extraordinarily great and 
probably not adequately repaid” [5]. Goldstine is refer- 
ring to the enormous significance of Boole’s digital 
mathematics in modern computer science. It is suggested 
in §9 that the extent of the debt may far exceed computer 
science and reach deeply into the analysis of rational 
thought and language or human intelligence.  

2. Monty Hall 1.0: The Original Monty Hall 
Problem, Featuring 1 Car (c), 3 Doors (d), 
1 Opened Door (o), 1 Door Initially Picked 
(p), and 1 Door Picked by Switching (q) 

Behind 3 closed doors, 2 goats and 1 car are hiding. One 
picks 1 door with the aim of getting the 1 car. The 1 door 
that one picks remains closed, however. Next, someone 
who knows what is hiding behind all the doors opens 1 of 
the 2 doors that were not picked, more specifically 1 door 
hiding a goat. 2 doors remain closed and available for 
picking, including the one initially picked. The Monty 
Hall problem involves the following question: Should 
one switch from the unopened door that one initially 
picked to the other door that remains unopened to im- 
prove one’s chances of getting the car? The answer is: 
One should, because one doubles one’s chances of get- 
ting the car—namely from 1 in 3 to 2 in 3—by switching 
doors once 1 door has been opened to reveal 1 goat. 

3. Monty Hall 2.0: Generalization to Any 
Number of Doors (d), Cars (c), and 
Opened Doors (o) 

The present generalization is treated in detail in the arti- 
cle mentioned in §1 above. What follows is a brief sum- 
mary of this treatment. 

The Monty Hall problem involves 1 car (c), 2 goats (g), 
3 doors (d), 1 opened door (o), and 1 picked door (p). 
There are 5 variables. But in extending and generalizing 
the Monty Hall problem, only 4 variables need to be 
considered. That is because, of the 3 variables c, g, and d, 
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each can be derived from the two others. From the fact 
that  

c g d  , 

it follows that  

c d g   and g d c 

 
 

. 

Only 2 of the variables c, g, and d therefore need to be 
considered. In what follows, c (cars) and d (doors) are 
chosen. 

As a general rule, in Monty Hall 2.0, one always im- 
proves one’s chances of getting a car by switching doors 
when doors are opened to reveal goats. This will no 
longer be the case from Monty Hall 3.0 onward (see 
§4.12 and §6). The question remains: By how much? If 
the Monty Hall problem is generalized to any number of 
cars (c), doors (d), and opened doors (o), and only 1 door 
is picked, the chance of getting the car (C) by switching 
(s) doors (Cs) is   

1

1

c d

d d o


 

,               (1) 

and the factor by which one improves one’s chances of 
getting the car by switching is 

1

1

d

d o


 

 


.                (2) 

The number 1 in these expressions represents the 
number of picked doors (p), which is fixed at 1.   

For example, let there be 123,456,789 (or more than 
123 million) doors (d), of which 12,345,678 (or more 
than 12.3 million) hide cars (c). Also assume that 
1,234,567 (or more than 1.23 million) doors are opened 
(o) to reveal goats. The chances of getting a car (C) by 
switching (s) doors (Cs) is, according to expression (1),   


12,345,678 123,456,7

123,456,789 123,456,789 1

about 0.101or 10.0%.

89 1

1, 234,567


   

The factor by which one increases one’s chances of 
getting a car by switching doors is, according to expres- 
sion (2),   

123, 456,789 1

123,456,789 1 1, 234,567




 
about 1.010.  

If this factor were 1, one would not increase one’s 
chances because multiplying any number by 1 does not 
increase that number. But because the factor is about 
1.010, one increases one’s chances by about 0.01 or 
about 1%.  

One’s chances of getting a car when initially picking 1 
door is the fraction of which the number of cars (c) is the 
numerator and the number of doors (d) the denominator, 
namely c/d, which in this case is  

12,345,678

123, 456,789

1

 = about 0.0999999927 or just about 10%.  

Increasing one’s chances from about 10% to about 10.1% 
indeed involves an increase of 1%, since 1% of 10 is 
about 0.1. 

Since there are 123,456,789 doors (d) and 12,345,678 
cars (c), there are 111,111,111 goats (g). According to 
the rules of the extended Monty Hall problem, up to 
g   doors can be opened to reveal goats, that is, 
111,111,110 doors can be opened (o). If one opens the 
maximum number of doors that one is allowed to open, 
then according to expression (2) one increases one’s 
chances of getting a car by switching by a factor of  

123, 456,789 1
12,345,678.

123,456,789 1 111,111,110


 

 

Since a factor of 1 corresponds to a 0% increase, a 
factor of 2 to a 100% increase, a factor of 3 to a 200% in- 
crease, and so on, a factor of 12,345,678 corresponds to 
an increase of 1,234,567,700%. In other words, one im- 
proves one’s chances of getting a car by more than 1.23 
billion percent by switching.  

As regards the basic treatment of the Monty Hall 
problem in the afore-mentioned article, an additional 
note on notation is in order. Boole never ceased to im- 
press upon his readers that probability is a field of 
mathematics that straddles the digital-mathematical and 
the quantitative-mathematical. The digital-mathematical 
and the quantitative-mathematical coexist in the single 
phenomenon of probability. To use a metaphor, it is a bit 
like Christianity’s Trinity, three divine entities coexisting 
as one, although in this case not a trinity but a Duality is 
concerned. In probability as a field of mathematics, the 
digital-mathematical and the quantitative-mathematical 
are two facets of what is ultimately a single thing. Natu- 
rally, the human brain cannot quite think about the two 
facets at the very same time. But that is just a limitation 
of our mental capacities.  

In Boole’s notation, this coexistence of two facets in a 
single phenomenon is evoked felicitously by the single 
symbol × admitting of two interpretations. Consider the 
following two equivalent expressions found in the afore- 
mentioned article [6]:   

:
1i s

c g o
C C

d d o


 

 
.  

Both expressions describe the probability of initially 
picking a car and then picking a goat or non-car by 
switching.  

The expression to the left of the colon is digital- 
mathematical. In this expression, the quantitative aspect 
is irrelevant. Accordingly, the symbols Ci and sC  are 
not quantitative. Likewise, if one divides the universe in 
strictly digital terms into four digital combination classes 
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involving the two classes “black” (b) and “cat” (c), then 
the universe (1) equals bc bc bc bc   , that is, black 
cats, non-black cats, black things that are not cats, and 
things that are neither black nor cats. The sets bc “black 
cats” and bc  “non-black cats” will in all probability 
differ in quantity, assuming that it is possible to count all 
black and non-black cats. However, the difference in 
quantity is irrelevant in the digital-mathematical expres- 
sion of the universe.   

The expression to the right of the colon is quantita- 
tive-mathematical. Indeed, the symbols c, g, d, and o are 
quantitative. They stand for numbers of cars, goats, doors, 
and opened doors. It follows that the symbol × admits of 
both a digital and a quantitative interpretation. The two 
interpretations may denoted by d  and . Accord- 
ingly, the following equation applies:  

q

 

 quantitative .

digital

1

i d s

q

C C

c g o

d d o




 

 

 

Multiplication is commutative. That means that a × b 
= b × a. However, it may be tempting to assume that d  
is not commutative. It is a fact that the event sC , not 
getting a car by switching doors, follows the event Ci, 
initially getting a car, in time. And yet, in contemplating 
the combination of Ci and sC , nothing prevents one 
from contemplating sC  first. The order in which one 
contemplates the two does not matter mathematically, 
even if it may come more naturally to think first of what 
comes first in time. Likewise, on the quantitative- 
mathematical level, the following equation applies: 

1 1q q

g o c

d o d




 
c g o

d d o


 

 
. 

4. Monty Hall 3.0: Additional Generalization 
to Any Number of Doors Picked Initially 
(p) or of Doors Picked by Switching (q) 

4.1. The Special Case of Getting at Least 1 Car 
When Switching Doors 

In Monty Hall 1.0 and 2.0, just 1 door is picked both be- 
fore and after switching. The most natural expansion of  
1.0 and 2.0 would seem to be the generalization in which 
any number of doors are picked both before and after 
switching. The number of doors picked will be denoted 
by p; the number of doors picked by switching, by q. The 
present generalization is styled here as Monty Hall 3.0. 

One can imagine many desired outcomes of picking 1 
or more doors. For example, the desired outcome might 
be to get cars with every door pick both before and after 
switching. Or the desired outcome might be to obtain 1 
car in the 1st and the 3rd of 3 initial picks as compared to 
picking 1 car in the 1st of 2 picks by switching. And so 

on. Treating all desired outcomes comprehensively ex- 
ceeds the scope of the present paper. In such a compre- 
hensive treatment, it is necessary to take one’s departure 
from the equation representing the total probability of all 
possible outcomes, whose individual probabilities add up 
to 1 or 100%. It is hoped that it will be possible to pre- 
sent a survey of the respective probabilities of all possi- 
ble outcomes in a future paper.  

Presently, just 1 desired outcome will be selected. The 
aim is to select an outcome that concords with the spirit 
of the original Monty Hall problem. In the original prob- 
lem, the person picking a door wants a car. Accordingly, 
when more than 1 door is picked, the desired outcome 
that most closely reflects the spirit of the original Monty 
Hall problem is getting at least 1 car. It would be awk- 
ward to deny the person any car at all if more than 1 car 
is picked.   

The probability P that one will get at least 1 car by 
switching doors is a fraction whose numerator is N and 
whose denominator is D. N and D are defined below. 
Most the rest of §4 is devoted to a description of how the 
equation below is obtained. A more explicit version of 
the numerator appears in §4.17 below.   

The precise relation between the following expression 
and the common probabilistic conceptualization known 
as hypergeometric distribution will be described in a fu- 
ture paper.  

N
P

D
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!

1 !g o p p q q q
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In the following maximally compacted version of the 
numerator, the coefficient terms have been reduced from 
5 to 4 and much of the transparency has been lost.  
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4.2. Point of Departure: An Example 

It will be convenient to begin the description of how the 
Equation in §4.1 is obtained with a specific example. 
Once it is seen how the probability of getting at least 1 

Copyright © 2012 SciRes.                                                                                 APM 



L. DEPUYDT, R. D. GILL 249

car by switching doors after doors hiding goats have been 
opened is obtained in 1 case, the result can be general-
ized to all cases. In the example that will be used here, 

 

ors Hiding Cars or Goats  

It bability that a number of dif- 
fe with its own de- 
gr and, all possible 
sc  of doors that hide 
ei  picks of doors (p = 

rs (q 
 (o = 

2).  

r); 4) cccgg; 5) ccgcc; 6) ccgcg; 7) ccggc; 8) 
cgcgg; 13) 
cggcc; 18) 

nu

 
the example at hand, the chance of picking a car is c/d, 

, that 
is, 7/

her words, the probability of a later 
pick of either a goat or a car is dependent on what hap- 

 
prob earlier events 

 

the numbers of the variables are as follows: 
cars (c) = 5;  
goats (g) = 7;  
doors (d = c + g) = 12;  
doors picked initially (p) = 3;  
doors subsequently opened (o) = 2; 
doors picked by switching (q) = 2. 

4.3. All Possible Scenarios as Sequences of 5 
Picks of Do

lies in the nature of pro
rent scenarios can be expected, each 
ee of probability. In the example at h
enarios consist of 5 successive picks
ther cars or goats. There are 3 initial

3) and 2 additional picks of doors by switching doo
= 2) after 2 doors revealing goats have been opened

 

4.4. The 32 Possible Sequences of Picks 

To be determined first are all the possible sequences of 5 
picks in which either cars (c) or goats (g) are picked. 
There are 32 possible sequences, as follows: 1) ccccc 
(picking a car at every pick); 2) ccccg (picking 4 cars and 
then 1 goat); 3) cccgc (picking 3 cars, then 1 goat, and 
finally 1 ca
ccggg; 9) cgccc; 10) cgccg; 11) cgcgc; 12) 
gcccc; 14) gcccg; 15) gccgc; 16) gccgg; 17) 
cggcg; 19) cgggc; 20) cgggg; 21) gcgcc; 22) gcgcg; 23) 
gcggc; 24) gcggg; 25) ggccc; 26) ggccg; 27) ggcgc; 28) 
ggcgg; 29) gggcc; 30) gggcg; 31) ggggc; and 32) ggggg.  

More generally speaking, the number 32 is obtained as 
follows according to the theory of permutations. At 1st 
pick, there are only 2 possible scenarios: one picks either 
a car or a goat. In the 1st and 2nd picks combined, there 
are 4 possible scenarios: after picking a car in the 1st 
pick, one can pick either a car or a goat in the 2nd pick; 
likewise, after picking a goat in the 1st pick, one can pick 
either a car or goat in the 2nd pick. In other words, the 

mber of possible scenarios has doubled from the 1st 
pick to the 2nd pick from 2 or 21 to 4 or 22. It is easily 
seen that the number of possible scenarios will likewise 
double at every successive pick. Accordingly, the num- 
ber of possible scenarios after 5 picks will be 25 or 32.  

4.5. All Possible Scenarios as Sequences of 5 
Picks of Doors Hiding Cars or Goats  

The probability of each single pick is a fraction whose 
numerator is either the number of available cars or the 

number of available goats and whose denominator is the 
number of available doors. At 1st pick, all the cars, goats, 
and doors are still available for picking. Accordingly, in

that is, 5/12, and the chance of picking a goat is g/d
12. 

After each pick, the denominator or the number of 
doors decreases by 1, from d to d − 1, and so on. The 
number of available doors decreases additionally when 
doors are opened to reveal goats. In the example at hand, 
the number of available doors first decreases from 12 to 
9 as 3 doors are picked. The number then further de- 
creases to 7 when 2 doors are opened to reveal goats. 
Finally, the number decreases to 5 as 2 more doors are 
picked by switching doors.  

The number of available cars does not decrease when a 
goat is picked. Nor does the number of available goats 
when a car is picked. By contrast, the number of doors 
decreases at every pick. It follows that the probability of 
picking a car or a goat changes at every successive pick 
because at least the number of available doors, which 
constitutes the denominator of the probability of each 
pick, changes.    

4.6. Conditional Probability as a Property of All 
Picks Preceded by Other Picks  

Each pick decreases the number of the available doors as 
well as either the number of available cars or the number 
of available goats. In that regard, each pick of either a car 
or a goat changes the probability of later picks of either a 
car or a goat. In ot

pens in an earlier pick or earlier picks. An event whose
ability is affected by what happens in 

is called a dependent event. Events on which other events 
are dependent may be called lead events. In the Monty 
Hall problem and its extensions, only the very 1st car 
picks and the 1st goat picks of sequences of picks are not 
dependent. An event is usually called dependent in the 
context of the combined probability of 2 or more events 
in which some events are dependent and others are not. 
Thus, the combined probability of picking two cars in a 
row is    1 1c d c d   . The 1st pick is the lead pick. 
The 2nd pick is the dependent pick.  

Earlier picks serve as conditions of the probability of 
later picks. Accordingly, the general phenomenon in 
which the probability of a later event is changed by an 
earlier event from what its probability would have been 
without that earlier event taking place is called condi- 
tional probability.  

For examp e, th roba ility of picking a car when all 
cars and all doors are still available is c/d. But once 1 car 
is picked, the number of cars and doo

l e p b

rs both decrease by 
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1, the assumption being that one cannot pick the same 
door twice. The probability of picking a car therefore 
changes to    1 1c d  . When a goat is picked in- 
stead of a car, the probability of picking a car changes 
instead to  1c d  . At the same time, the probability of 
picking a goat chang    es to 1 1g d  .  

The degree to which a prior event changes the prob- 
ability of an event from what it would have been without 
that prior event can be quantified. In the example at hand, 
the change in probability from c/d to    1 1c d   that 
results from the pick of a car corresponds to a diminution 
in probability bout 5.3%, from 5/12 to 4/11. 
By contrast, the change from c/d to  

 of 7/132, or a
1c d   that re- 

sults from of a goat corresponds to an increase 
in probability of 5/132, or om 5

the pick 
about 3.8%, fr /12 to 5/11. 

In sum, conditional probability is best measured or quan- 
tified as the degree of change between a 1st event and a 
2nd event whose probability depends on the 1st event. 

4.7. The General Denominator of the Equation in 
§4.1 

It has been noted in §4.4 that there are 32 possible se- 
quences of 5 picks in the example at hand. Each se- 
quence of 5 picks comes with its own probability. The 
specific denominator of all 32 probabilities is the same, 
namely      1 2 3 4d d d d o d o       , or in the 
example at hand,  

     12 12 1 12 2 12 2 3 12 2 4       , or 12 × 11 × 
10 × 7 × 6. In other words, 12 × 11 × 10 × 7 × 6 is the 

mon dcom enominator of all 32 probabilities. The sign × 

r of 12 factorial, or also of  12 × 11 
× 3 × 2 × 1, and that 7 × 6 is the 1st 

portion of 7!, or of 7 factorial, or also of 7

ppears that 
12

separates the picks of doors before doors are opened 
from the picks of doors after doors are opened.  

What is the general form of the denominator? It ap- 
pears that the expression 12 × 11 × 10 is the 1st portion 
of 12!, o × 10 × 9 × 
8 × 7 × 6 × 5 × 4 

 × 6 × 5 × 4 × 3 
× 2 × 1. In fact, the two components of the denominator 
will always be portions of factorials. The need therefore 
arises to represent the two components of the denomina- 
tor in general forms as portions of factorials.  

In that regard, 12 × 11 × 10 is nothing but 12! divided 
by 9!, or 12 × 11 × 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 
divided by  9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1. The 
elimination of the common factor 9 × 8 × 7 × 6 × 5 × 4 × 
3 × 2 × 1 yields the desired 12 × 11 × 10. Likewise, 7 × 6 
is the same as 7! divided by 5!, or 7 × 6 × 5 × 4 × 3 × 2 × 
1 divided by 5 × 4 × 3 × 2 × 1. The elimination of the 
common factor 5 × 4 × 3 × 2 × 1 yields the desired 7 × 6.  

In converting 12!/9! into a general form, it a
 is the number of doors (d) and 9 is the number of the 

doors (d) minus the number of doors picked before doors 
are opened (p), that is, d − p. Consequently, the general 

equivalent of specific 12!/9! is d!/(d − p)!. In converting 
7!/5! into a general form, it appears that 7 is the number 
of doors (d) minus the number of doors picked before 
doors are opened (p) minus the number of opened doors 
(o), that is, d p o  , and that 5 is the number of doors 
(d) minus the number of doors picked before doors are 
opened (p) minus the number of opened doors (o) minus 
the number of doors picked after doors are opened, that is, 
d p o q   . Consequently, the general equivalent of 
specific 7!/5! is    d p o d p o q     !.  

It may be concluded that the general form of the de- 
nominator of the fraction that expresses the probability 
that one will get at least 1 car by switching doors for any 
number of d, , or q is as follows:  

 

c, g, p, o

 
 

!!

! !

d p od

d p d p o q

 


   
. 

4.8. The Specific Numerators of the Probabilities 

nd. Each se- 
quence of 5 picks comes with its own probability. Each 
of these 5 probabilities is expressed by its own fraction 
and each fraction has its own numerator. The numerators 

befo  
door d.  

of the 32 Sequences of Picks in the Example 
at Hand 

It has been noted in §4.4 that there are 32 possible se- 
quences of 5 picks in the example at ha

of the 5 individual probabilities of all the 32 scenarios 
are as follows, with × again separating the picks of doors 

re doors are opened from the picks of doors after
s are opene

1) ccc × cc:      1 2 3 4c c c c c      

2) ccc × cg:      1 2 3c c c c g o      

3) ccc × gc:      1 2 3c c c g o c      

4) ccc × gg:      1 2 1c c c g o g o       

5) ccg × cc:     1 2 3c c g c c     

6) ccg × cg:     1 2 1c c g c g o      

    1 1 2c c g g o c7) ccg × gc:      

   1 1c c g g o g o 28) ccg × gg:       

    1 2 3cg c c c9) cgc × cc:     

    1 2 1cg c c g o10) cgc × cg:      

    1 1 2cg c g o c11) cgc × gc:     

    1 1 2cg c g o g o12) cgc × gg:      

    1 2 3gc c c c13) gcc × cc:     

    14) gcc × cg: 1 2 1gc c c g o     

    1 1 2gc c g o c15) gcc × gc:      

16) gcc × gg: 



    1 1 2gc c g o g o      
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17) cgg × cc:  cg g    1 1 2c c   

 1 1 2g o  

 1 2 1o c    

 1 2 3g o  

  1 1 2c c   

 1 1 2g o  

 1 2 1o c    

 1 2 3g o   

18) cgg × cg:    cg g c 

19) cgg × gc:   cg g g 

20) cgg × gg:    cg g g o   

21) gcg × cc:  gc g  

22) gcg × cg:    gc g c 

23) gcg × gc:   gc g g 

24) gcg × gg:   gc g g o  

25) ggc × cc:     1 1 2c c   g g c 

26) ggc × cg:     1 1 2g o  

 2 1o c    

g g c c   

27) ggc × gc:   1g g c g 

28) ggc × gg:     1 2 3g o   

  1 2 1c c   

  3c g o     

  3

g g c g o   

29) ggg × cc:  g g g 

30) ggg × cg:  1 2g g g 

31) ggg × gc:  1 2g g g  g o c     

 4g o   

how each single f n the 
pr ned. The principles of condi  prob- 
ab  explicated above. Suffice it to note that 
th e cars available for picking decreases by 
1 r gets picked. And so do s the number 
of e a goat gets picked. In dition, 
th he goats decreases by the number of 
op

at the 32 sequences of picks are all 
eq . For example, picking 5 cars in a ro  
(n

 car by switching doors, only those 
se

2, 16, 

quen rs 
with eorder- 

32) ggg × gg: 3   1 2g g g g o   

I refrain from detailing actor i
oducts is obtai tional
ility have been
e number of th
every time a ca e
 the goats every tim  ad
e number of t
ened doors. 
It is not the case th
ually probable w
o. 1) is naturally less probable than picking 5 goats in a 

row (no. 32) because there are fewer cars to pick.  

4.9. The Specific Numerators of the Probabilities 
of the 24 Sequences of Picks That Yield at 
Least 1 Car in the Example at Hand  

In order to obtain the numerator of the probability that 
one will get at least 1

quences of picks in which either or both of the 2 picks 
made after doors have been opened yield at least 1 car 
can be considered. Or, the 8 sequences that yield no car 
need to be eliminated. They are sequences 4, 8, 1
20, 24, 28, and 32. In the list below, the 8 sequences in 
question have been removed. What is more, the se- 

ces have been reordered and so have the facto
in the sequences to assimilate like to like. R

ing the factors is obviously possible because multiplica- 
tion is commutative. But no factors have been moved 
across the symbol × because the factors at both sides of × 
belong to different picks as events. Also, the order of c 

and g has not been changed in the expressions of the type 
ccc × cc. The result of this reordering is the following 8 
groups of sequences, numbered i-viii.  

Group i 

1) ccc × cc:      1 2 3 4c c c c c      

Group ii 
2) ccc × cg:      1 2 3c c c c g o      

3) ccc × gc:      1 2 3c c c c g o      

Group iii 
5) ccg × cc:     1 2 3c c g c c     

9) cgc × cc:     1 2 3c c g c c     

13) gcc × cc:    1 2 3c c g c c      
 Group iv

     6) ccg × cg: 1 2 1c c g c g o      

:     1 2 1c c g c g o7) ccg × gc      

    1 2 1c c g c g o10) cgc × cg:      

    1 2 1c c g c g o11) cgc × gc:      

    1 2 1c c g c g o14) gcc × cg:     

    1 2 1c c g c g o15) gcc × gc:     

Group v 
cc:     1 1 2cg g c c17) cgg ×     

    1 1 2cg g c c    21) gcg × cc: 

    1 1 2cg g c c    25) ggc × cc: 

Group vi  

    1 1 2cg g c g o18) cgg × cg:      

    1 1 2cg g c g o19) cgg × gc:      

    1 1 2cg g c g o22) gcg × cg:     

 gc: 

 

    1 1 2cg g c g o23) gcg ×      

    1 1 2cg g c g o26) ggc × cg:     

    1 1 2cg g c g o27) ggc × gc:      

c: 



Group vii  

    1 2 1g g g c c    29) ggg × c 

Group viii 

   1 2 3g g g c g o 30) ggg × cg:      

   1 2 3g g g c g o 31) ggg × gc:       

what follows is to construct he general 
ex e probability that one will ge e car by 
sw mber of d, c, g, p, o, or q rom the 24 
pr tors listed above. In doing , I am de-
lib  explicit than might otherwise be the case 
in s journal in order to be more accessible 
an ulterior design of the present effort lies 
af d mathematics. It is the description of the 
structure of human intelligence.  

The design of  t
pression for th t th
itching for any nu  f

oducts of 5 fac so
erately more

 a mathematic
d inviting. The 
ter all beyon
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In turning the raexample at hand into a gene l expres- 
si ons need to be performed: 1) the addi- 
tio ences of coefficients, one relating to p 
an

on, two operati
n of two sequ
d the other to q, and 2) the addition of factorials. Once 

these two operations have been performed, it can be de- 
termined whether any simplifications are possible. The 
addition of factorials has already been discussed above. 
For example, a product such as   1 2c c c  , that is, 5 
× 4 × 3 in the example at hand, can first be converted 
into  ! 3 !c c  , that is, 5!/(5 − 3)! or 5 × 4 × 3 × 2 × 1/2 
× 1 in the example at hand. It can then be generalized to 

 ! !c c p . It will therefore be useful to turn first to the 
co

 which like ha

sting of 1

On clos

2nd group consisting of nos. 2 and 
 

permu

 of the 2 doors picked, 

8 groups of sequences listed in 
§4

efficients, which involve “the most famous of all 
number patterns” [7]. 

4.10. The Coefficients of the Probabilities of the 
24 Sequences of Picks That Yield at Least 1 
Car in the Example at Hand 

In the list of products in §4.9, in s been as-
similated to like, there are 8 groups of sequences of picks 
consi , 2, 3, 6, 3, 6, 1, and 2 sequences respec-
tively. How can these numbers be accounted for?  

er inspection, it appears that they have every- 
thing to do with how many permutations of c and g there 
are in the 2 components before and after ×.  

For example, in the 
3, the initial product is either ccc × cg or ccc × gc. Before
×, there is 1 permutation, namely ccc. After ×, there are 2 

tations, namely cg and gc. Accordingly, there are 1 
× 2 or 2 members in the group.  

In the 3rd group, there are 3 permutations before ×, 
namely ccg, cgc, and gcc, and 2 permutations after ×, 
namely cg and gc. Accordingly, there are 3 × 2 or 6 
members in the group.  

Furthermore, the reason that there are 3 permutations 
before the symbol × in the 3rd group is that there are 3 
picks of doors (p) before doors are opened and each of 
the 3 picked doors, either the 1st, the 2nd, or the 3rd, can 
hide the 1 goat (g) that is picked in each of the 3 se- 
quences in question. Also, the reason that there are 2 
permutations after the symbol × is that there are 2 picks 
after doors are opened and each
either the 1st or the 2nd, can hide the 1 pick of a goat (g) 
that is part of the sequences in question. The product 3 × 
2 is therefore nothing but p × q.  

The members of the 
.7 all share the same sequence of picks once the factors 

have been reordered. In other words, there are only 8 
different sequences among the 24 sequences listed in 
§4.7. They are as follows.  

Sequence i  

     1 2 3 4c c c c c      

Sequence ii  

     1 2 3c c c c g o      

Sequence iii  

    1 2 3c c g c c     

Sequence iv  

    1 2 1c c g c g o      

Sequence v  

    1 1 2cg g c c    

Sequence vi  

    1 1 2cg g c g o     

Sequence vii  

   1 2 1g g g c c     

Sequence viii 

   1 2 3g g g c g o     

f times that each of the 8 sequences is 
represented, namely 1, 2, 3, 6, 3, 6 1, and 2 times re- 
spectively, m y be called the coefficient of the 8 se- 
qu n noted above that the numbers of 
times in question are determined by bot p and q. It ap- 
pears, therefore, that each sequence is characterized by 
tw one derived from p and the other de- 
rived from q. It is the product of the two coefficients that 
constitutes the compound coefficient of each sequence.  

nd coefficients in question can now be 
determined in terms of p and q by counting permutations 
of c and g before and after the symbol × in each of the 8 
gr

 

The number o
, 

a
ences. It has bee

h 

o coefficients, 

The 8 compou

oups of sequences. The factors  1 1 2p p    and 
 1 1 1 2p p p q        found in coefficients v-viii is 

discussed in §4.14 when the example at hand is general- 
ized to yield an expression that applies to all possible 
cases. 

Coefficient i 

1 × 1 = 1 (also 1 × 1 in general)  

Coefficient ii 

1 × 2 = 2 or 1 × q 

Coefficient iii 

3 × 1 = 3 or p × 1 

Coefficient iv  

3 × 2 = 6 or p × q 

Coefficient v  

3 × 1 = 3 or 
 1

1
p p 

  
1 2
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Coefficient vi  

3 × 2 = 6 or 
 1p p 


1 2

q


 

Coefficient 

 
vii  

1 × 1 = 1 or 
1 1

1 1 1
 

     

 

1 2

p p

p 

Coefficient viii 

1 × 2
 

 = 2 or 
1 1

2

p p
q q

p

 
  


 

 pertaining to p exhibit the sequence 
1, , ,1p p . This 1st sequence returns to 1. The coefficients 
pertaining  equence 1, q . This 2nd se-
quence is characterized by 2 properties. First, the 2nd 
se , and expands, each single 
coefficient of the 1st se ce. The combined sequence 

   1, ,1 1q  . Second, 
to 1. The reason for the 

2n  that the 8 sequences of picks that 
result i outcome of not picking a car when 
switching een removed (see §4.9   

By uniting the coefficients i-viii with sequences i-viii, 
on
pr

1
1

The coefficients

 to q exhibit the s

nated to
quen
 1,p
t re

quence is subordi

is therefo ,q p
the 2nd sequence does no turn 

re  1 1, , ,q q

d characteristic is
n the undesired 

 doors have b ).

e obtains 8 products whose sum is the numerator of the 
obability that one will get at least 1 car by switching 

doors in the example at hand. The factor 1 × is explicitly 
expressed for transparency.  

Numerator part i: Sequence i with coefficient i 

      1 1 1 2 3 4c c c c c        

Numerator part ii: Sequence ii with coefficient ii 

     1 1 2 3q c c c c g o        

Numerator part iii: Sequence iii with coefficient iii 

    1 1 2 3p c c g c c       

Numerator part iv: Sequence iv with coefficient iv  

    1 2 1p q c c g c g o        

Numerator part v: Sequence v with coefficient v 

   1
1 1   1

p p
cg g c c


       

Numerator part vi: Sequence vi with coefficient vi  

2
1 2

      1 1 2
1 2

q cg g c g o      


 
1p p 

Numerator part vii: Sequence vii with coefficient vii  

      
1 1

      1 1
1 2 3

p p
q g g g c g o

 
1 2 p

      
 

 

It appears that, of the 8 numerator parts listed above, i 
an vi, 
and  
members of each of the 4 pairs of numerator p re 
extracted and what remains is added up, one ob s 4 
co
tor 1  

d ii share common factors, as do iii and iv, v and 
vii and viii. When the common factors of the 2

arts a
tain

mpound numerator parts. In the following list, the fac-
 × is again retained for transparency. Furthermore,

 

1 1
1 2 p 

Numerator part viii: Sequence viii with coefficient viii  

2 1
p p

g g g c c
 

       

1 1 1 2p p p     is the same as 1.  
Compound numerator part i + ii  

  1 1 2c c c  

     1 3 4 3c c q c g o         

Compound numerator part iii + iv  

 

 
     

1

1 2 3 2 1

p c c g

c c q c g o

 

          
 

Compound numerator part v + vi  

   

   

1
1

1 2

2 1

p p
cg g

c q c g


 


     1 1 2c o     

ii  

  



Compound numerator part vii + vi

    1 1
1 2

1 2

p p
g g g

p

 
  

 

   1 1 3c c q c g o        

 

The sum of these 4 partial compound numerato  con-
stitutes the numerator of the probability that one will get 
at least 1 car by he 4 compound nu-
m  more compactly as 
follows, among others because  

rs

 switching doors. T
erators in question can be presented

1 1 1 2p p p     is 
the same as 1.  

i + ii:  

  


1 2c c c 

    3 4 3c c q c g o       
  

iii + iv:  

 
      

1

2 3 2 1

pc c g

c c q c g o



        
v + vi: 

 

 
     

1

1 2 1 2

pcg g

c c q c g o



        
 

vii + viii:  

  
   

1 2

1 3

g g

c c qc g o

 

    

g

  
 

Before deriving a general expression applying to all 
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ca he specific example at hand, it will be useful 
to complete the example by computing the probability 
that it involves of getting at least 1 car by switching 
doors. 

4.11. The Probability That One Will Get at Least 
1 Car by Switching in the Example at Hand 

Replacing the letters in the 4 partial compound numera- 
to at the end of §4.10 by the pertinent num- 
bers and resolving the subtractions and the divisions 
yields the following partial numerators.  

ses from t

rs obtained 

i + ii:  5 4 3 2 1 2 2 5        

iii + iv:  3 5 4 7 3 2 2 3 4        

v + vi:  3 5 7 6 4 3 2 4 3        

vii + viii:  7 6 5 5 4 2 5 2       

The sum of these 4 sequences is, as it happens, exactly 
45,000. This is the numerator of the probability that one 

et at least 1 car by switching doors in the example will g

 is, the prob- 
ability of getting at least 1 car in the 3 initial picks (p)? 
The probability of getting at least 1 car is the same as the 
probability of not picking a goat 3 tim s in a row in the 3 
initial picks. The numerator of the probability of picking 
a 

at hand. The denominator is 12 × 11 × 10 × 7 × 6 (see 
§4.7) or 55,440. Consequently, the probability itself is 
45,000/55,440 or about 81.2%.  

How does this probability compare with the probabil- 
ity he car before switching, that of getting t

e

goat 3 times in a row is   1 2g g    and the de- g
nominator is   1 2d d d  .  

The probability in question is therefore 7 × 6 × 5/12 × 
11 × 10, or 7/24, or also about 29.2%. The probability of 
not picking a goat 3 times in a row, or also of picking at 
least 1 car, is therefore about 70.8%.  

In other words, one does somewhat increase one’s 
chances of picking at least 1 car when switching doors, 
from about 70.8% to about 81.2%, by a little over 10%.  

4.12. A Key Difference between Monty Hall 1.0 
and 2.0 and Monty Hall 3.0 and Higher  

What makes Monty Hall 3.0 much more interesting than 
Monty Hall 1.0 and 2.0 is t  Monty Hall 
1.0 and 2.0, o

he following. In
ne always increases one’s chances of get- 

tin

g may ei- 
th

some titillating variants of the expanded Monty Hall 

4.13.

g 1 car by switching doors when doors are opened to 
reveal goats [8]. But in Monty Hall 3.0 and higher, de- 
pending on the conditions and what the desired aim is, 
one’s chances of being successful by switchin

er decrease or increase. A full study of these conditions 
exceeds the scope of the present paper. A complete un- 
derstanding of them should make the construction of 

problem possible. Some reflections follow in §6.  

 First Generalization of the Numerator in 
the Example at Hand by Introducing 
Factorials  

So far, what has been obtained in regard to the example 
at hand is 4 compound products, the following (§4.10).  

i + ii:  

  
     

1 2

3 4 3

c c c

c c q c g o

 

       
 

iii + iv: 

 
     

1

2 3 2 1

pc c g

c c q c g o



       
 



v + vi: 

 1pcg g 

     1 2 1 2c c q c g o        

ii: 

 

vii + vi

  
   

1 2

1 3

g g g

c c qc g o

 

      
 

 of these four compound products constitutes 
th tor of the probability that one will get at least 
1 car by switching doors in the example at hand of the 
extended Monty Hall problem. How to pr  from 
here?  

ctive thinking, there is no need for many ex- 
amples or many experiments to obtain the truth about a 
matter as there is in inductive thinking. The truth can be 
seen in, and generalized from, a single example. In de- 
riving the general truth about the probability at hand 
fr mple at hand, the following observation can 
serve as a point of departure.   

The number of cars or goats decreases by 1 with each 
successive pick of 1 car or 1 goat. Accordingly, the se-
qu

The sum
e numera

oceed

In dedu

om the exa

ences of products of factors listed above can be inter-
preted as incomplete or partial factorials or snippets of 
factorials. For example, the sequence of factors in the 
product   1 2c c c  , in this case 5 × 4 × 3, is part of 
the factorial c!, in this case 5 × 4 × 3 × 2 × 1, or 5!. In 
cases in which there are fewer cars or goats than there are 
picks, a factor will reduce to zero and the probability of 
the sequence of picks of events in question will be 0.  

In a next step, the partial factorial 5 × 4 × 3 can be ob- 
tained by dividing the complete factorial 5 × 4 × 3 × 2 × 
1 by the rest of the factorial, namely 2 × 1, or 2!. In this 
case,   1 2c c c   equals c! divided by 2!. However, 
if c were 6 and not 5,   1 2c c c   would equal c! 
divided by 3!. It is therefore desirable to generalize the 
expression of the division of a complete factorial by a 
partial factorial to any c. 
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In that regard, it appears that the relation between the 
number of the complete factorial c! and the number of 
the parti always the same. The number of 
the partial factorial is always 3c   because the number 
of the picks is always 3, however many cars there are. 
The divisions of complete factorials by partial factorials 
can therefore be generalized by expressing the number 

al factorial is 

of 
th

et

e partial factorial in its relation to the number of the 
complete factorial. In the case at hand, the partial factor 
can be expressed as  3 !c   and the division of the 
compl  the partial factorial as e factorial by  3 !c c  . 
By this same procedure, umerators listed 
above can be converted into the following equivalents.  

i + ii: 

the 4 partial n

 
 
 

 
 

 
 

3 ! 3 ! !!

3 ! 5 ! 4 ! 1 !

c c g oc
q

c c c g o

   
        

  

iii + iv: 

   
 
 

 
 

 
 

! !

2 ! 1 !

2 ! 2 ! 1 !

4 ! 3 ! 2 !

c g
p

c g

c c g o
q

c c g o


 

    
       

  

v + vi: 

   
! !

1 ! 2 !

c g
p

c g


 

 
 

 
 

 
 

1 ! 1 ! 2 !

3 ! 2 ! 3 !

c c g o
q

c c g o

    
       

  

vii + viii: 

     
 
 

3 !!

4 !

g o

g o

 
   

 

 

! !

3 ! 2 ! 1 !

g c c
q

g c c


   

By being converted into ! 3 !c c  , a xpression 
c c been generalized to a certain 

in that it only applies when 
p all the terms in the equivalents listed above 
on  when p is 3 and q is 2. The need is for con- 
verting the terms into expressions that apply to any p and 
any c.  

But before proceeding to the generalization to any p 
and any c, it is necessary to detail the general structure of 
coefficients. The coefficients relate to how many times 
ea nces of picks are taken. They 
ha  been discussed provisionally in §4.10. The 
need at this point is for a general treatment.  

4.14. The Structure of Coefficients  

ficients of t

d in Pascal’s Arithmetical Triangle. How these 
nu

 many co- 
efficients there are) of a compound quantity consisting of 

er n, that is, 

 how o

o

y can b

n e
such as 
degree. Bu

  1 2c   has 
t it is still specific 

is 3. In fact, 
ly apply

ch of the possible seque
ve already

The coef he Equation pertaining to the ex- 
tended Monty Hall problem exhibit the same structure as 
the coefficients of the power of a compound quantity that 

consists of two members, that is,  n
a b . The basic 

facts about this structure have been well-known for more 
than four centuries. They involve the numbers that are 
also foun

mbers are obtained may be briefly reviewed below to 
make the present account fully self-sufficient. A particu- 
larly lucid and at the same time delightfully parsimoni- 
ous presentation of the matter at hand is Euler’s in his 
“Elements of Algebra” [9]. 

The number of the coefficients (that is, how

2 members a and b raised to the pow
n a b , equals the number of the power of the com- 

pound quantity, that is, n, augmented by 1, or n + 1. The 
number n + 1 is also the number of ways in which the 2 
members can be arranged in regard to ften they are 
taken. Thus,  5

a b  yields 6 coefficients, that is, the 
power 5 plus 1. Accordingly, there are 6 arrangements 
when it comes to how often the 2 members a and b of the 
compound quantity can be taken. One can take 5 times a 
and 0 times b, 4 times a and 1 time b, 3 times a and 2 
times b, 2 times a and 3 times b, 1 time a and 4 times b, 
and 0 times a and 5 times b. If the items are multiplied, 
the 6 arrangements are as follows: aaaaa, aaaab, aaabb, 
aabbb, abbbb, and bbbbb, which can also be written as a5, 
a4b, a3b2, a2b3, a1b4, and b5. The 6 arrangements are the 6 
main terms of the compound quantity. Each main term 
has its wn coefficient.  

The coefficient numbers (that is, what the numbers of 
each individual coefficient are) are determined by the 
number of the ways in which the 2 members of the com- 
pound quantit e ordered in each of the arrange- 
ments that relate to how often they are taken. The ele- 
ments can be ordered in only 1 way in aaaaa. Accord- 
ingly, the coefficient of a5 is 1. There are 5 ways of or- 
dering the elements in aaaab, namely aaaab, aaaba, aa- 
baa, abaaa, and baaaa. Accordingly, the coefficient of 
a4b is 5. Along these same lines, the coefficients of a3b2, 
a2b3, a1b4, and b5 can be determined to be 10, 10, 5, and 1 
respectively.  

In sum,  5
a b  equals a5 + 5a4b + 10a3b2 + 10a2b3 + 

5a1b4 + b5.  
Coefficient numbers can also be obtained as follows 

without having to count ways of ordering elements. If all 
the letters are different, as in abcde, the number of ways 
in which the letters can be ordered is the factorial of the 
number of letters, in this case 5! If 2 letters are the same, 
as in abcdd, 5! needs to be divided by 2! Therefore, in 
aaabb, 5! needs to be divided by both 3! and 2! The re-
sult is 10. Furthermore, 5!/(3!2!), or (5 × 4 × 3 × 2 × 1)/ 
(3 × 2 × 1× 2 × 1), equals (5 × 4 × 3)/(1 × 2 × 3). The 6 
coefficients 1, 5, 10, 10, 5, and 1 therefore equal 1, 5/1, 
(5 × 4)/(1 × 2), (5 × 4 × 3)/(1 × 2 × 3), (5 × 4 × 3 × 2)/(1 
× 2 × 3 × 4), and (5 × 4 × 3 × 2 × 1)/(1 × 2 × 3 × 4 × 5) 
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respectively.  
The progression of the coefficients from 1st term to 

la n be gest term ca neralized as follows for any power n.  

     

     
 

    

1 1 2
1, , , , ,

1 1 2 1 2 3

1 2 2
,

1 2 3 1

1 2 1
1

1 2 3

n n n n nn

n n n n n

n

n n n n n

n

  
  

       
    

        
   









 

The last 2 coefficients can also be written as  

  
 

  1 2 2 1 2 1
and

1 2 3 1 1 2 3

n n n n n n

n n

       
        

 
 

.  

The 1st coefficient is always 1 because there is only 1 
way of ordering the 1st term. The last term also equals 1 
for the same reason.  

The coefficients involved in the extended Monty Hall 
problem are likewise obtained as the ways in which 2 
elements can be ordered in each of the arrangements that 
relate to how often the 2 elements are taken. In this case, 
the coefficients do not equal the number of a power plus 
1, but rather the number of picks of doors plus 1. The 
symbol a of the compound quantity corresponds to pick-
ing a car; the symbol b, to not picking a car or to picking 
a goat.  

d above 
has only 1 coefficient. By contrast, each term of the 
probability sought in the extended Monty Hall problem 
has 2 coefficients if there are 2 events of picking more 
th

 1st event of picking doors, that is, 
p.

Each term of the compound quantity discusse

an 1 door and therefore 1 event of switching doors. The 
1st coefficient of these 2 coefficients is derived from the 
number of picks in the

 The 2nd coefficient is derived from the number of 
picks in the 2nd event of picking doors, that is, q. The 
progression of the 1st coefficient is obtained by replacing 
n by p in the progression listed above. The progression of 
the 2nd coefficient is obtained by replacing n by q in the 
progression listed above and leaving out the last term. 
The penultimate term of the progression of the coeffi- 
cient q therefore becomes the last. It is as follows.  

  
  

1 2 3 2

1 2 3 2 1

q q q

q q

    
     




 

Or also as follows.  

      
  

1 2 3 2

1 2 3 2 1

q q q q q q q

q q

             
     




  

The reason for the removal of the last term along with 
its coefficient is the removal of the undesired scenarios in 
which 0 cars are picked in the 2nd event of picking 
doors.  

The number of the coefficients that each term has in-
creases with, and is the same as, the number of events of 
picking more than 1 door. It also increases with, but is 1 
less than, the number of events of switching doors.  

4.15. The Relation between the Probability of a 
Sum of Partial Sequences of Picks, Either 
Anterior or Posterior, to the Probability of 

Full Sequence of Picks  

The quest involved in the Monty Hall problem and its 
extensions is first to establish both the probability of 
achieving an end by picking doors before doors are 
op

on- 
s 

the Sum of the 

ened and the probability of achieving that same end by 
picking doors after doors have been opened and then to 
compare the two in order to determine whether, after 
picking doors, one improves one’s chances by switching 
to other doors after doors have been opened.  

In the example at hand, there are 32 different se- 
quences of picking 5 doors that lead to getting at least 1 
car by switching doors (§4.10) and hence 32 different 
numerators of the probabilities of the sequences c
ceived as single events. An example of a numerator i

( 1)( 2) ( 3)( 4)c c c c c     . It pertains to the sequenc
ich all picks are car picks. The denominator is the
or all 32 sequences, namely  

e 
in wh  
same f

     1 2 3 4d d d d o c o       . 

The probability of an individual car or goat pick con- 
ceived as a single event is expressed as a ratio of a num- 
ber of available cars or goats to a number of available 
doors. But a sequence of picks can also be conceived as a 
single event. Its probability is the product of the prob- 
abilities that all individual picks belonging to the se- 
quence would have if each were conceived as a single 
ev

probability would have bee

cks, its probability, 
namely g/d, is independent. But when a goat p  is the 
2nd goat pick of a sequence, the numerator of prob- 
ab

ent.  
Many of the probabilities of individual picks in the 

example at hand are conditional or dependent. A prob- 
ability of an event is dependent if it is in part determined 
by what happens in a prior event. In other words, the 

n different if the earlier event 
had not taken place. For example, when a goat pick is the 
1st goat pick of a sequence of pi

ick
 its 

ility will be 1g  , one less goat being available be- 
cause of what happened in the 1st goat pick. The de- 
nominator will be 1d   if the 2nd goat pick immedi- 
ately follows the first.  

Each of the 32 sequences of 5 picks in the example at 
hand consists of an anterior sequence of 3 picks before 
doors are opened and a posterior sequence of 2 picks 
after doors have been opened. The probability of either 
an anterior or a posterior sequence is the product of the 
probabilities that all individual picks belonging to the 
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anterior or posterior sequence would have if each were 
conceived as a single event.  

The 32 sequences of 5 picks constitute all possible 
cases. Furthermore, the 32 sequences are exclusive 
events. No 2 sequences can happen at the same time. Or, 
one or the other of the sequences must be the case. The 
sum of their probabilities is therefore 1 or 100%.  

The 32 sequ s can be collectively evaluated in 
search of certain properties. In the example at hand, the 
first 3 picks are ev ed in order to single out those 
sequences in which on

ence

aluat
e gets at least 1 car in those 3 

pi

ences of 5 picks in which 
th

ut the 
pr

e multiplication by 1 does not 
c

cks. Each sequence is an event with its own probability. 
Moreover, the sequences are exclusive events. The prob- 
ability of all the sequences in which one gets at least 1 
car in the first 3 picks is the sum of the probabilities of 
getting at least 1 car in each sequence. The 4th and 5th 
picks are next evaluated in order to single out those se- 
quences in which one gets at least 1 car in those 2 picks. 
The probability of all the sequ

is condition is met is the sum of the probabilities of the 
individual sequences.  

But what about the probability of what happens in the 
4th and 5th picks in all those sequences in which one gets 
at least 1 car in the first 3 picks? And what abo

obability of what happens in the first 3 picks in all 
those sequences in which one gets at least 1 car in the 4th 
or 5th picks? It appears that all possible cases are consid- 
ered in those other picks. The probability of each case 
will vary depending on what happens in the remaining 
picks of the full sequence. But the total probability of all 
possible cases is 1 or 100%. It follows that, to obtain the 
probability of the sum of the full sequences of 5 picks 
that have been selected on the basis of what happens ei- 
ther in the anterior or in the posterior sequence of picks, 
one multiplies the sum of the probabilities of the anterior 
or the posterior sequences of picks with the total prob- 
ability of either the posterior or the anterior sequences of 
picks, which is 1. Sinc
hange a number, the probability of the sum of all the full 

sequences of 5 picks that have been selected is the same 
as the probability of what happens either in the anterior 
or the posterior sequences alone.  

Consider the example at hand, in which the aim is to 
get at least 1 car. Once the sequences in which one gets 
at least 1 car in the posterior sequences have been se- 
lected from among the 32 sequences listed in §4.8, it is 
possible to evaluate the total probability of all that hap- 
pens in the 1st, 2nd, and 3rd picks preceding each of the 
selected sequences. This total probability is the sum of 
all the probabilities of each of the ways in which the first 
3 doors can be picked. The denominator shared by all 
these probabilities is also the denominator of the total 
probability, namely   1 2d d d  . The numerator of 
the total probability is the sum of the numerators of the 

probabilities of all 8 possible sequences of car picks and 
goat picks, as follows:   1 2c c c  ,  1c c g , 

 1cg c  ,  1gc c  ,  1cg g  ,  1gc g  ,  1g g c , 
and   1 2g g g  . These 8 sequences can be brought 
out in front as common factors in the selected sequences 
of 5 picks. Thus, as the picking of doors proceeds from 
the 1st pick to the 2nd pick and then on to the 3rd pick, the 
numerator of the probability of what happens in the first 
3 picks is the sum of the 8 combinations of 3 picks just 
listed and the denominator is   1 2d d d  . In nu- 
merical terms, the sought denominator is  

  12 12 1 12 2  , or 12 × 11 × 10, that is, 1320. The 
numerator is  

        
     

5 5 1 5 2 5 5 1 7 5 7 5 1 7 5 5 1

5 7 7 1 7 5 5 7 7 1 7 2 ,

         

       
 

or  

5 4 3 5 4 7

5 7 6

  7 1 7 7 1  

5 7 4 7 5 4

7 6 5 6 7 5 7 6 5,

         
          

 


that is 1320. The total probability is hence 1320/1320 or 
1, or also 100%.  

If instead the full sequences in which one gets at least 
1 car in the anterior sequences are selected from among 
the 32 sequences listed in §4.8, the numerators of the 
probabilities of the anterior sequences of the full se- 
quences that are being selected will be the following 7:  

  1 2c c c  ,  1c c g ,  1cg c  ,  1gc c  , 

 1cg g  , and  1gc g  .  

In other words,   1 2g g g   is not selected. The 
denominator of the same probabilities will always be the 

, namely   1 2d d dsame    
 compute the probability in question, a shortcut is 

possible (§4.11 end). The probability can be obtained by 
computing the probability of getting 3 goats in a row, 

 
the anterior sequ ces and then on the  
happens in the posterior ces and t o resulting 
probabilities are compared. e anterior sequences will 
di elections. And 

 of the Monty Hall problem and its exten- 
si

To

which is the only scenario in which one does not get at 
least 1 car, and subtracting that probability from 1 or 
100%. The probability in question is about 70.8% (§4.11 
end). The total probability of the posterior sequences will 
be 1 because all possibilities of what can happen in the 
posterior picks are being considered.  

In the Monty Hall problem, sums of full sequences of 
picks are selected first on the basis of what happens in

en  basis of what
sequen he tw

Th
ffer in the two s so will the posterior 

sequences.  
The purpose

ons is to compare the probability of sums of anterior 
sequences with the probability of sums of posterior se- 
quences. Naturally, only picks belonging to anterior se- 
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quences can be considered in computing the total prob- 
ability of sums of anterior sequences and the same ap- 
plies in the case of posterior sequences. It is therefore not 
permissible, when generalizing the probabilities of the 
example at hand through the addition of factorials to 
unite into a single product probabilities of anterior car 
picks and probabilities of posterior car picks. Consider, 
for example, sequence iv in §4.10: 
    1 2 1c c g c g o     . It is possible to rearrange 

this sequence as     1 2 1c c c g g o     , bringing 
goat picks and car picks together. The temptation might 
arise to generalize   1 2c c c   as  ! 3 !c c   in an 
attempt to obta
ab

in a more general expression of the prob- 
ility that is sought, namely of getting at least 1 car 

when switching doors. But the expression  ! 3 !c c   
cannot be part of the expression of either an anterior 
probability or a posterior probability because it mixes 
elements of both.  

4.16. Second Generalization in Terms of p and q 
of the Integers of the Example at Hand’s 
Factorialized Numerator  

The next step is to generalize the integers in the expres- 
sions at the end of §4.13 in terms of p and q. The expres- 
sions r e are repeated here fo ase of reference, as follows.  

i + ii: 

 
 
 

 
 

 
 

3 ! 3 ! !!

3 ! 4 !

c c g oc

c c

   
   

  
 

iii + iv: 

 

5 ! 1 !
q

c g o   

 
 
 

 
 

 
 

! !

2 ! 1 !

2 !

c g
p

c g

c


 

 
 

 
2 ! 1 !

4 ! 3 ! 2 !

c g o
q

c c g o

  
     

v + vi: 

   
 
 

 
 

 
 

! !c g
p 

1 ! 2 !

1 ! 1 ! 2 !

3 ! 2 ! 3 !

c g

c c g o
q

c c g o

 

    
   

   

  

 

vii + viii: 

     
 
 

3 !!

4 !

g o

c c g o

  
   

     
 

The sum of these expressions is the probability that 
one will pick at least 1 car by switching doors after doors 
have been opened. It will be observed that, as one moves 
from sequence i to sequence viii, the integers pertaining 
to car picks decrease whereas the integers pertaining to 
goat picks increase. What is happening here and how 

does it relate to p and q?  
At the outset of the sequences, in sequence i, the picks 

are all car picks. But by the end, in sequence viii, the 
picks are all goat picks. In each anterior or posterior se- 
quence, there is a certain potential to pick cars or goats. 
But there is a limit to this potential. One cannot pick 
more cars or goats than there are picks. The maximum 
potential is therefore p in anterior sequences of picks, q 
in posterior sequences if picks, and p + q in an anterior 
and a posterior sequence combined. 

At the outset of the sequences, in sequence i, the po- 
te

! !

3 ! 2 ! 1 !

g c c
q

g

ntial to pick cars is fully exploited. In other words, 
nothing is taken or subtracted from the potential. By 
contrast, everything is taken from the potential to pick 
goats. However, by the end, in sequence viii, it is the 
potential to pick goats that is fully exploited. Or nothing 
is taken from that potential.  

It has already been noted that the numerators and de- 
nominators of the probabilities of sequences of car or 
goat picks can be considered partial factorials. These 
partial factorials can be presented in general fashion by 
dividing the full factorial by the factorial whose number 
is the number that follows the last number of the partial 
factorial. For example, in the partial factorial  
  1 2c c c  , the last number is 2c  . The number 

following 2c   is 3c  . The partial factorial  
  1 2c c c   can therefore be presented as the full 

factorial c! divided by the full factorial  3 !c    
At the same time, it is seen that the integer 3 is in fact 

p. After p car picks, the number of available cars has 
decreased by p and the numerator of the probability of 
picking a car in the next, 4th, pick is therefore 3c  , or 
generally c p , because that is how many cars are still 
available. But this number is also the number of the full 
factorial by which the full factorial c! must be divided to 
represent the sequence   1 2c c c   in terms of c! 
The sequence   1 2c c c   can therefore be repre- 
sented as  ! 3 !c c   By sequence viii, everything or 
full p is taken away from the potential p of picking cars. 
Accordingly, the numerator of the probability of picking 
cars may be presented as  ! !c c p p    , or as 

 ! 0 !c c  , or
s, the shes be- 

cause no cars a

 also as c!/c!, which is the same as 1. In 
other word  probability of picking cars vani

re picked. 
In the expression  ! 2 !c c   in seq ii, tuence i he in- 

teger 2 is only valid when p = 3. In generalizing the ex- 
pressions for all p, it appears that 2 1p  . Accordingly, 
the expression can be generalized as  ! 1 !c c p     

In the expression  ! 1 !c c   in sequence v, nte- 
ger is valid for all p, but only because sequence v is the 
penultimate sequence in its progression from beginning 
to end. As the expression 1c   follows  0c p   and 

the i

 1c p   and precedes t can likewise be  c p p  , i
styled in terms of what is subtracted from p as  
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 1c p p    
In the f presentation, the integers in the se- 

quences found at the end of §4.13 are interpreted in terms 
of p and q. The expressions are presented as explicitly as 
possible for maximum tra are also

e their sum consists of the numerators of the 
probability of getting at least 1 car when switching doors. 

.  
ollowing 

nsparency. They  added 
up becaus

 

 
    

 
    

!c !g



i ii  1

0 ! 0 !c p g p p
 

        
 

 
   

0 !
1

0 0

c p

c p q

     
    

 
!  

 
    

0 !

0 1 !
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q

c p q q

    
      

 

 
    

 0 !p 

0 1 !

g o p

g o p q q

     
          p  

 

      
! !

iii iv
0 ! 1 !

c g
p

c p g p p
   

         
 

 
   

1 !
1

1 0 !

c p

c p q

     
      

 

 
    

1 !c p   
1 1 !

q
c p q q

 
      

 

  
   

1 !

1 1 !q q

   
       

 

  

g o p p

g o p p

   


     

  !

1 !

c

c p p    

  

v vi p    

!

1 !p   
 

  
    

g

g p p


 

1 !

1 0 !

p

q

  
    

 

  
  

1
c p

c p p

  
 
  

 
1 !

1 1 !

p

q q

  
      

 

 

c p
q

c p p

 
 

    

 
    

1 !

1 1 !q

  g o p p p

g o p p p q

    

            

 

 
  !

0 !

c

c p


   
 

  

vii viii  1 

!

1 !p   
 

 
   

g

g p p


 

!

0 !

c p p

p q

   
   

 1
c p


 

 

!

1 !

c p p
q

c p p q q

    
    

 
  

   
    

!

1 !

g o p p p

g o p p p q q

     
            

Some expressions are simplified in the following 
equivalent. The expressions remain unambiguous while 
becoming somewhat less transparent.  

 

 

 
 

 
  

! !!

! ! 1 !

c p c pc
q

c p c p q c p q q
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1 !

g o

g o q q



      

 

    
! !

1 ! 1 !

c g
p

c p g p p
 

         
 

 
 

 
    

1 ! 1 !

1 ! 1 1 !

c p c
q

c p q c p q q

           
            

 

 

p

 
    

1 !g o p p       
1 1 !g o p p q q             

 

     
! !

1 !

c g
p

c p p g p p
 

        
 

1 !p  

  
  

1 !

1 !

c p p

c p p q

     
      

 

   
    

1 !

1 1 !

c p p
q

c p p q q

    
          

 

 


 
    

1 !

1 1 !

g o p p p

g o p p p q q

       
              

 

    
! !

! 1 !

c g

c p p g p p p
 

          
 

 
 

!

!

c p p

c p p q

     
     

 

 
    

!

1 !

c p p
q

c p p q q

   
     

 

 


 
    

!

1 !

g o p p p

g o p p p q q

     
      



       
 

This expression still reflects the values p = 3 and q = 2. 
There is a progression of 4 terms outside of the square 
brackets, 1 more than the value of p. Inside the square 
brackets, there is a progression of, not 3 terms or 1 more 
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than q, but just 2 because the 3rd term is omitted as it 
concerns picking no cars in the posterior sequence of 
picks.  

4.17. Generalization of the Numerator to Any p 
or q 

In the generalization of the numerator to any p or q, there 
d be 1p   different coefficients in regard to the 

coefficient p and q different coefficients in regard to the 
coefficient , that is, 1q   minus 1 omitted coefficient, 
namely the last coefficient, which concerns picking no 
cars in the posterior sequence.  

In the following generalized formula, there are 5 coef- 
ficients in terms of p, the first 4 and the las ef- 
ficients in terms of q, the first 4 and the penultimate one. 
Th

shoul

q

t, and 5 co

e sums are infinitely expandable at every instance of 
the expression + ··· +. A more reduced form, still unam- 
biguous but a little less transparent, has been anticipated 
in section §4.1. In case either p or q is equal to 3 or less, 
there will be fewer than 5 coefficients for either p or q.  
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5. General Observations on Other Desired 
Outcomes in Monty Hall 3.0 

In the special case of Monty Hall 3.0 escribed in §4, the 
desired outcome is getting at least 1 car. But countless 
other outcomes may be desired. Among them are getting 
exactly 1 car, getting at least 2 cars, and getting exactly 2 
cars, all both before and after doors are opened, as well 
as getting 2 cars before doors are opened and just 1 car 
after doors are opened. Not only the numbe but also the 
order of the picks can be specified. For example, the de- 

 d

r 
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sired outcome might be to get at least 1 car in the last 
door pick, and that both before and  doors are 
opened. I hope to treat Monty Hall 3.0 more comprehen- 
sively elsewhere and establish the relation to the com- 
mon modern probability concept of hypergeometric dis- 
tribution. What follows are some general observations 
anticipating a more detailed treatment.  

The main observation is as is no gen- 
eral formula, even though certain abbreviations are pos- 
sible. The basic procedure is the same for all desired 
outcomes in Monty Hall 3.0. First, the equation in §4.1 is 
expanded from just the cases in which one gets at least 1 
car to all possible cases, which have a probability of 1 or 

nt 
of 

all of car picks and 

after

follows: There 

100%. The different desired outcomes are then differe
selections from the equation describing the probability 

 possible cases. For fixed sequences 
goat picks, coefficients need to be dropped [10].  

Suppose that the desired outcome is getting cars with 
every pick of a door. This is just one case of many. It is 
in fact a very specific case of Monty Hall 3.1. The equa- 
tion in §4.1 will shrink maximally. The probability of 
achieving the aim at hand in the anterior picks is as fol- 
lows.   
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The probability of achieving the aim in the posterior 
picks is as follows. 
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And therefore also as follows.  
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The factor by which one increases or decreases one’s 
chances is then the following.  
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6. Monty Hall 3.1: Some Reflections on 
Evaluating Whether Chances of Success 
Increase or Decrease in Monty Hall 3.0 

Th

nge. The challenge becomes some- 
what uninteresting in the expansion styled as Monty Hall 
2.0 as soon as one realizes that one’s chances always 
increase if doors hiding goats are o ened. Nothing 
piques human attention more than the ho  of doing bet- 
ter or winning or the fear of doing worse or losing, let 
alone the combination of the two when one is not really 
ce e.  

The quintessential uncertainty returns with Monty Hall 
3.0, in which switching doors can result in either a de- 
crease or an increase of one’s chances. It is still a fact 
that, as in Monty Hall 1.0 and 2.0, the opening of doors 
always increases one’s chances. Nor will one’s chances 
decrease under those conditions if q is at the same time 
ei

aller than p. The key 
question then is whether the increase caused by opening 
doors is greater or smaller than the decrease caused by 
diminishing the number of picks from p to q. The sys- 
tematic study of the mathematical conditions that deter- 

y Hall 
3.0

 in 

th

c p

c p q


 

e original Monty Hall problem, Monty Hall 1.0, was 

designed as a challe

p
pe

rtain whether one will win or los

ther the same as, or larger than, p. However, one’s 
chances decrease when q is sm

mine whether one or the other is the case in Mont
 may be styled provisionally as Monty Hall 3.1.  
Let it suffice to present in this section examples

which the combined opening of doors and diminution of 
picks yields either an increase or a decrease in chances of 
getting a car. Let there be 6 doors and 1 car. Furthermore, 
let the number of picks decrease from p to q in that p = 2 
and q = 1.   

One’s chances of getting the car in the 2 initial picks 
(p) are 11/36. That is because the chance of not picking a 
car in the 2 initial picks twice in succession is 5/6 × 5/6 
or 25/36 and 1 – 25/36 is 11/36 or about 30.6%. The 
chance that the car is hiding behind one of the 4 remain- 
ing doors is 25/36.  

If 3 of the 4 remaining doors are opened to reveal a 
goat, the probability of 25/36 of getting the car is com- 
pressed into the sole door that has neither been initially 
picked nor opened to reveal goats. One will therefore 
more than double one’s chances of getting the car by 
switching doors even though one’s picks are reduced 
from 2 to 1.  

If 2 of the 4 remaining doors are opened to reveal a 
goat, the probability of 25/36 of getting the car is com- 
pressed into 2 doors that have neither been initially 
picked nor opened to reveal goats. The probability of 
25/36 is distributed over those 2 doors, the chance that 
either door hides the car being 25/(36 × 2) or 25/72 or 
about 34.7%. One therefore still gains a small advantage 
of about 4% by switching doors.  

If 1 of the 4 remaining doors is opened to reveal a goat, 
the probability of 25/36 of getting the car is compressed 
into 3 doors. The probability is therefore distributed over 
those 3 doors. The chance that either door hides the car is 

erefore 25/(36 × 3) or 25/108 or about 23.1%. In this 
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r of Switches of Doors (s) 

hance of 5/6 is com- 
pressed into the 3 unopened doors of those 5 other doors. 

re

 the door 
ori

 does not 
sw

kind have in fact been done in connection with related 
problems.  

What happens if the door that one originally picked is 
opened? There are 2 possibilities. The 1st possibility is 
that the car is hiding behind that door. At this point, 
every consideration of probability instantly comes to 
naught because it is now 100% certain which door is 
hiding the car. There is no longer any probability prob- 
lem because there is no longer probability but rather cer- 
tainty. The 2nd possibility is that a goat is hiding behind 
that door. At this juncture, the situation completely 
changes. The door in question so far had a chance of 1/6 
of hiding the car. It is now certain that it does not hide 
the car. The probability that it hides the car therefore 
drops to 0. Accordingly, the 5 other doors had so far a 
chance of 5/6 of hiding the car. Now it appears that these 
5 doors have a chance of 100% of hiding the car. In addi- 
tion, 2 doors have been opened in the 1st round of open- 
ing doors revealing goats. Consequently, the probability 
that the 3 other doors hide is 100%. Each of the 3 other 
doors therefore has a probability of 1/3 of hiding the car. 
At this point, we are back at the original Monty Hall 
problem (Monty Hall 1.0).  

Now back to the generalized expression (a) below. 
How is it obtained? It can be obtained by generalizing 
the case of 2 switches of doors (s = 2) to any number of 
switches of doors. When there are 2 switches, there are 8 
possible sequences of car picks and goat picks, as fol- 
lows: 1) ccc, 2) ccg, 3) cgc, 4) gcc, 5) cgg, 6) gcg, 7) ggc,  

case, one’s chances of getting the car by switching de- 
crease by between 11% and 12%.  

7. Monty Hall 4.0: Additional Generalization 
to Any Numbe

The generalization of the Monty Hall problem to any 
number of switches of doors (s) is styled here as Monty 
Hall 4.0. The following description of this generalization 
is limited to cases in which only 1 door is picked, as in 
the original Monty Hall problem (Monty Hall 1.0).  

The probability of getting 1 car when switching doors 
any number of times is as follows, with s being the num- 
ber of times that one switches doors, o1 being the number 
of doors opened to reveal goats at the 1st opening of 
doors, o2 the number of additional doors opened at the 
2nd opening of doors, and so on (expression (a)). 

But before describing how this expression is obtained, 
it may be useful to look at the generalization at hand in a 
more intuitive way by means of an example.   

An example is as follows. Let there be 1 car and 6 
doors and therefore 5 goats. An intuitive analysis is as 
follows. Making a diagram may be useful in following 
this analysis. If one picks a door, there is a chance of 1/6 
of getting the car and a chance of 5/6 that the 5 other 
doors are hiding the car. If 2 of those 5 other doors are 
then opened to reveal 2 goats, the c

That means that each of the 3 other doors has a chance of 
5/(6 × 3) or 5/18 of hiding the car. If one switches to 1 of 
those 3 doors, one increases one’s chances of getting the 
car from 1/6 to 5/18. This also means that there is a 
chance of 10/18 or 5/18 + 5/18 that the other 2 of the 3 
doors to which one could have switched hide the car. If 1 
of those 2 other doors is now opened to reveal a goat in a 
2nd round of opening doors, then the probability of 10/18 
is compressed in the 1 remaining door that has been nei- 
ther picked nor opened. Therefore, if one switches a 2nd 
time, now to that 1 remaining door, one doubles one’s 
chances of getting the car from 5/18 to 10/18.  

But what happens when, switching a 2nd time, one 
switches back to the door that was picked first? This door 

tains its probability of 1/6 or 3/18. In other words, after 
the 2 rounds of opening doors, first 2 doors and then 1 
door, there are 3 doors still to be considered: 1)

ginally picked; 2) the door picked by switching; 3) the 
door to which one could switch by switching a 2nd time. 
The probabilities that these three doors hide the car are 1) 
3/18 or 1/6, 2) 5/18, and 3) 10/18 respectively. This fact 
again illustrates the counterintuitive character of the  

Monty Hall problem and its extensions.  
For let there be 1,000,000 doors and 1 car. At 1st pick, 

one has a chance of 1/1,000,000 of getting the car. There 
is a chance of 999,999/1,000,000 that the car is hiding 
behind 1 of the other doors. If 999,996 doors are now 
opened to reveal goats, there are 3 doors left to which 
one could switch. They share the probability of 999,999/ 
1,000,000 of hiding the car and each therefore has a 
probability of 999,999/3,000,000. Let us assume that one 
switches to 1 of these 3 doors. The chances that the car is 
hiding behind 1 of the other 2 doors to which one

 

  

itch are therefore 2 × 999,999/3,000,000 or 1,999,998/ 
3,000,000. If 1 of these 3 doors is now opened to reveal 1 
goat, the 1 remaining door has a chance of 1,999,998/ 
3,000,000 of hiding the car. Thus, it may strain the 
imagination, but it is also undeniably true, that the 3 re- 
maining unopened doors hold the following probabilities 
of hiding the car: 1) 3/3,000,000; 2) 999,999/3,000,000; 
3) 1,999,998/3,000,000. Actual tests involving millions if 
not billions of trials, real or computer-simulated, would 
without any doubt confirm this fact. Similar tests of this 
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and 8) ggg. The corresponding probabilities of the 8 se- 
quences are as follows:   

1) 
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The desired outcome, getting a car after two switches 

   

n sequences 1), 3), 4), and 7). The 
probability of getting a car after two switches of doors is 
therefore the sum of the 4 probabilities 1), 3), 4), and 7).  

The common denominator of this probability is as fol- 

1 22d o o             (b) 

 sam s s and 1 therefore 

of doors, is achieved i

lows.  

 11d d o 

And e a considering that 2 is the
the same as 1s  , this expression can be rewritten as 
follows.  

   1 11 s s sd d s o d o o               (c) 

), o e can derive the fol- 
number of switches 

(s).  
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great loss of transparency, and it has 
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This sum can be rewritten as follows.  
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And therefore also in successive steps as follows.  
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And considering that 2 is the same as s and 1 therefore 
the same as 1s  , expression (f) can be rewritten as fol- 
lows.  
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By extending (f) and (g), one can derive the following 
expression of the numerato
switches (s).  

r applying to any number of 
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Expression (h) can be abbreviated as (i), without too 
great loss of transparency, and it has been so abbreviated 
in expression (a) anticipated above.  

   1 1 2
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       (i) 

In the specific

 
 case of the above example featuri

car, 6 doors, and 2 switches of doors, the gene
si

ng 1 
ral expres- 

on assumes the following form.   

  
  

11 2c d d o  
 

1 1 21 2d d o d o o    

Entering the relevant integers, one obtains the prob- 
ability already given above.  

  
  

1 6 1 6 2 2 10  
  

’s chances of get- 
ting a car after s switches is therefore as follows.  

6 6 1 2 6 2 2 1 18    

The chances of getting a car at the first door pick is c/d. 
The factor by which one increases one
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Finally, in Monty Hall 3.0, when more than 1 door is 
pi re are 2 
ru o q. Doors are 
switched only 1 time (s = 1). If more than 1 d or is 
picked at each pick and doors are switched more than 1 
tim
fr

8. Back to Boole. By Richard D. Gill 

8.1. Summary  

I comment on Leo Depuydt’s recent work on applying 
Boole’s work in probability theory to the Monty Hall 
problem. In particular, I compare Boole’s notation and 
conventional modern probability notation, discuss mod- 
ern computational tools, and make some comments on 
Boole’s position that probability theory belongs to the 
laws of thought.  

oole’s work on probability theory stands on an 
equal intellectual level to his work on l
tended by him to be seen as an integral p
has largely been forgotten. Now that three half centuries 
have gone by and probability theory has flourished, fol- 
lowing different routes, his work is harder than ever to 
re
find his way into Boole’s way of thinking. 

In this paper and its predecessor Leo tackles a number 
of variants of the Monty Hall problem, showing how 

oole’s approach leads to solutions despite ever increase- 

ists. I emphasize 

ilists con- 
one could better say, ill posed. 

laim, influential writers of the early 

as

dependence should 
be assumed. In modern day terms, Boole fitted judiciously 
chosen log linear models to the data, judicious
higher order interactions about which there was no in- 
fo

are represented by 
graphs and the same graphs used as f dation for 
graph-theoretic based computations.  

However, I do not know if Depuydt is also going to 
“a

Boole indeed saw probability theory as part of the laws 
of thought. His probabilities are subjective degrees of 
belief, their numerical values follow logically from con- 
si

of in- 
difference, but using indifference not just to specify 
probabilities but also to specify probability structures.  

However, so far, we are considering here problems 
where all probabilities are completely specified and 
where a frequentist (objectivist) and a Bayesian (subject- 

force unique values of probabilities from “equally likely, 
by symmetry” arguments. 

rn day notation by means of a simple 
(mathematical) example. Consider four events which can 

 sequence. For instance, the results 

d o d o o    

cked both before and after doors are opened, the
ns of coefficients, 1 for p and 1 f r 

o

e, there will be more than 2 coefficients. I refrain 
om entering into detail at this time.   

8.2. Introduction  

George B
ogic, and was in- 
art thereof, yet it 

ad. It is impressive that Leo Depuydt has been able to 
tivist) approach will give the same probability values, 
since in either approach the symmetries of the problem 

B
ing complexity. From the point of view of a present day 
professional mathematician, my first questions were: are 
the answers correct? Is Boole’s probability different from 
present day probability?  

The answers so far are yes: the answers are correct, and 
no, Boole (and with him Depuydt) is using the same 
probability rules as present day probabil
so far because Boole also claimed to be able to solve 
probability problems which modern day probab
sider insoluble, or perhaps 
Because of this c
twentieth century such as Keynes dismissed Boole’s work 
completely, and that hastened its progress into limbo. As 
Miller (2009) points out [9], however, Boole’s solution 
was meaningful and complete, and based on adding an 

8.3. Notation  

It is easiest to explain the difference between Boole’s 
notation and mode

sumption that in absence of further information, and in 
particular, with no logical dependencies, an appropriate 
higher level of conditional statistical in

ly dropping 

rmation anyway. This connects to modern develop- 
ments in graphical models (also known as Bayes nets), 
another development which Boole would have appreci- 
ated, in which probability models 

oun

uthorize” this particular, more controversial part, of 
Boole’s thinking.  

deration of information (known and unknown). He stood 
here full square in the nineteenth century tradition of 
Laplace, deriving probabilities from the principle 

occur, or not occur, in
of a first pick of a door, a second pick, and so on. Let me 
denote the events as A, B, C, D (capital letters early in the 
alphabet, according to present day conventions). The 
modern view of probability theory is that we may consider 
these events equally well as subsets of a set   “ele- 
mentary outcomes.” The event A is identified with the set 
of all elementary outcomes   for which A does 
indeed happen. Probabilities are assigned to subsets of  , 
and set theoretic operations turn out to correspond to 

g events. For example, the logical constructions involvin
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event that both A and B occur corresponds to the outcome 
of the probability experiment,  , being both a 
member of the subset A and the subset B. Thus the prob- 
ability of A and B happening is identified with  P A B , 
where  P   is a mapping from subsets of   to numbers 
between zero and one.  

Subsets A, B, etc., are often called “compound events.” 
Provided however we are careful with language, the 
words “elementary” and “compound” in the two contexts 
“elementary outcomes  ” and “compound events 
A ,” are superfluous. But it also does no harm to add 

them. The elementary outcomes correspond to the most 
fine-grained, most detailed, description of what actually 
happened. Compound events correspond to coarse- 
grained descriptions, by which many alternative “micro- 
scopic” ways according to which the same “macroscopic” 
phenomenon can come about are all grouped together.   

Whatever probabilities are supposed to mean (whether 
relative frequencies in the long run of many repetitions, or 
whether degrees of belief as measured by fair betting 
odds), everyone agrees that if two events can never hap- 
pen together, the probability that either occurs is equal to 
the sum of their probabilities; that certainty corresponds 
with probability one; and that all probabilities are greater 
than or equal to zero. Converting these minimal properties 
into the language of set theory, we obtain the now familiar 
axioms:   1P   ,   0P A   for all A ,  
A B   implies      P A B P A P B   . Finally 

we add as a definition of conditional probability of A 
given B, as long as   0P B  :  

     P A B P A B P B  . 

From these minimal properties one can derive the fol- 
lowing chain rule: 

 
       

and and and

and and and .

P A B C D

P A P B A P C A B P D A B C
 (1) 

However, the alert reader will have noticed that I am 
mixing the language of logic and the language of ele- 
mentary set theory in this equation, and I do that deliber- 
ately, in order to point out an important ambiguity in the 
translation from logic to set theory.  

The interpretation of the left hand side is obvious: I 
could have written (should have written!), of course, 
 P A B C D   . The right hand side certainly makes 

sense, and indeed the statement is true, if I do the corre- 
on that side; for instance, the last sponding substitutions 

term should be  A C . However there is an 

Let me explain. Suppose start with a probability 

P D B 

I 

alternative substitution, more clumsily expressed in set 
theoretic language, but equally meaningful from the point 
of view of natural language. The correctness of this al- 
ternative interpretation is actually a theorem. 

measure P. Next I pick some event B with positive prob- 
ability, and compute new probabilities    BP A P A B  
for every event A. 

Theorem 1: the conditional probability measure AP  
also satisfies the axioms of probability theory;  

Theorem 2 (principle of repeated conditioning):  

 BA A BP P  .  

This is not just empty formalism, it tells us something 
very important: conditioning in turn on any number of 
events gives end results which do not depend on the order 
in which we take them, and is not changed by 
grouping them into a smaller number of events by using 
the rule P(A|B and C) = 

also 

 P A B C . It shows u e 
transition between the language of logic and the language 
of sets is very smooth indeed

s that th

.   

 For B
does fi

Boole has no use for the language of sets. It was not 
even yet invented: his supporter and contemporary John 
Venn was one of those who pioneered its use; indeed, its 
use in probability theory. oole, the language of logic 

ne both for events and for probabilities of events. 
Defining the event E as “A and B and C and D,” Boole 
writes the definition of the event E as  

 logical relatione abcd ,             (2) 

and then rewrites Equation (1), a relation between prob- 
abilities and conditional probabilities, with the very same 
sequence of symbols: 

 numerical relation between probabilitiese abcd , (3) 

Even though Equation (3) is to be interpreted numeri- 
cally as a relation between probabilities, the rules of al- 
gebra have to be handled with very great care. The exact 
sequence of probabilities abcd corresponds to a specified 
sequence of events A, B, C, D and there is a logic to this 
sequence: typically this will be their temporal ordering. 
The valu d to merical v e c, f

n front of 
events a and b. Event D might be certain in some context, 
impossible in other. T ced

e assigne  the nu ariabl or in- 
stance, depends on the context, on the presence i

he pre ing events A, B and C 
could switch the probability d to 1, or to 0. This is what 
Depuydt calls the digital nature of probabilities.  

One of the fruits of the digital revolution has been statis- 
tical computing and computer algebra. Looking at
huge tables of probabilities in sections 4.1 and 4.17, 
reader may worry that perhaps some typesetting error has 
co

nother opportunity 
fo

8.4. Computations  

 the 
the 

rrupted one of the formulae. If the reader actually 
wanted to use those formulae to do numerical computa- 
tions, he or she might want a computer do those compu- 
tations. But then the typeset symbols have to be translated 
into lines of computer code, which is a

r errors to creep in.  
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I have verified that it is in principle possible to repro- 
sing computer algebra. Let the com- 

puter do the painstaking, repetitive task of applying sim- 
ple rules of transformations of formulas! Let the computer 
typeset the page  let the computer also 
generate computer code for implementation to specific 
cases! Then the reader need only check the programs or 
scripts: do they implement Boole’s logic of probability? 
There are two levels involved here. The prob

duce these tables u

s in the journal,

lem should 
be

ich the computer
ows. Anyone who understands the 

la m
must be 

ch  day 
for a myriad asks also provide external consistency 
checks whene  answer can be got by different 
m

 Sage (http:

 publicly available, and 
an

orithms which it 
uses are public; the scientist can check th
them by new algorithms of their own.  

of a particular generalized Monty 
Hall problem, count outcomes of different kinds, in o
to statistically estimate the probabilities which can in 
pri

as cer- 
a short time Sage has become 

 flexible. Like natural languages, 

e of ball-picking in phase one.  

culture, and like mathematics itself, these systems evolve 
through highly effective “crowd-sourcing.”  

8.5. Alternative Approach  

Depuydt goes back to first principles and determines the 
probabilities of all possible elementary outcomes of his 
Monty Hall games: any particular sequence of picks of 
doors. Now, it is possible to group some of the picks to- 
gether, producing a coarser level of description, but one in 
w

 described in a high level formal language which 
translates line by line Depuydt’s verbal descriptions of 
what he is doing into a language wh  
algebra system kn

hich (a) the components of the coarser description cor- 
respond to familiar probability models, and (b) the coarser 
description is fine enough to still allow specification of the 
compound events of interest.  

In Monty Hall 3.0, such a coarser description is possible 
at the level of phases. Recall that in this game, c doors 
hide cars, g doors hide goats, d = c + g is the total number 
of doors. The player first picks p doors. The host then 
opens q doors, revealing goats. The player may now 
switch to another r doors.   

The hosts’ possibilities are delimited by how many cars 
are hidden by the player’s first p picks. Call this number x. 
We can now write down the joint probability of x cars 
being behind the player’s first p picks, and y cars being 
behind the player’s second r picks, as follows. Both 
phases correspond to a traditional “sampling without 
replacement” situation, picking balls from vases, where 
the composition of the vase at phase two is determined by 
the outcom

nguage can verify that it is “the same thing.” The i - 
plementation of the computer algebra system 

ecked by specialists, though users who use it day by
of t
ver the

eans.  
I would like especially to draw the reader’s attention to 

two powerful tools, both of them completely free (both in 
the sense of “free beer” and in the sense of “free speech”): 
the statistical language R (http://R-project.org) and the 
computer algebra system //sagemath.org). The 
freedom as in free speech is the fact that the computer 
code of both R and Sage itself are

yone is allowed not only to look at it but also to modify 
it, repackage it, and even to sell it, as long as their modi- 
fications preserve the same freedoms.  

Sage allows one to instruct the computer to perform 
algebraic formula manipulations according to specified 
rules. Boole would have appreciated that. Unlike com- 
mercial tools like Mathematica, the alg

Suppose a vase contains R red balls and B blue balls, let 
N = R + B be the total number of balls in the vase. Sup- 
pose n balls are picked at random from vase, without 
replacement, and completely at random. Define the bi- 
nomial coefficient  ! ! !n

xC n x n x  , the number of 
ways to choose x objects from a collection of n. In spoken 
mathematics, one says “n choose x” instead of “C super- 
script n subscript x.” Let r be the number of red balls in the 
sample of n, and define b n r   to be the number of 
blue balls. It turns out that the probabilit

em, even replace 

R is a statistical computing tool. One thing which is 
extremely easy with R is to run a computer simulation of 
millions of repetitions 

y to find exactly r 
re

rder 
d balls is h(r; n, R, N) = R B N

r b nC C C . The fact that these 
so-called hypergeometric probabilities must add up to one 
as one adds over all possible values of r is called the 
Chu-Vandermonde identity in combinatorics, going back 
to Chu Shi-Chieh, 1303, and Alexandre-Théophile Van- 
dermonde, 1772. One can say that Depu

nciple be computed algebraically.  
Both these systems are widely used in academia, in 

teaching, in industry; they have huge followings and be- 
cause of their open nature, additions have been written 
by users from all kinds of application fields which any- 
one else can also freely use. The user communities with 
their internet fora and mailing lists and so on, allow both 
the new user and the expert to get advice from fellow 
users all over the world, often extremely rapidly and ef- 
fectively. R can even be used from Sage—one of the 
design philosophies of Sage is to use existing tools, so as 
not to waste time re-engineering wheels. This h

ydt has derived a 
“two-level” generalization of this identity from first prin- 
ciples, following Boole’s methodology.  

Now if among the first p doors chosen by the player 
exactly x doors hide cars, then at the second stage, when 
there are d p q   doors left from which the player may 
choose r doors, a further q  doors already having been 
op

tainly paid off, since in 
extremely powerful and

ened revealing goats, exactly c x  of those doors hide 
cars, and  g p x q   hide goats. This tells us that the 
probability that the player’s first p picks hide x cars and 
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his second r picks hide y cars is  
   ; , , ; , ,h x p c d h y r c x d p q   . 
This gives an alternative way to check the results of 

this paper.  

9. Empirical Definition of Mathematics, in 
Boole’s Footsteps, as a Cognitive Event on 
the Deepest Level 

9.1. Where Is Mathematics? 

The question that is at the center of the present section is 
as follows: What is mathematics? The answer to this 

iderable interest. No endeavor of the 
cessful. Evidently, the 

een basically two diametric- 

 mathematics 

e may interpre

inside t

ught to co

 said about that 
ca

rally, number

 when it comes to em- 
pirical observation, numbers can ly be observed and 
th

ing to the brain. Mathematics is something 
that the brain does.  

9.2

Th is to pursue a line of inquiry 
a half ago but fairly 

question is of cons

ca

ca

ca

human intellect has been more suc
question has occupied many, many minds over the centu- 
ries. The literature on the subject is massive. But even 
the most cursory review of what has been done readily 
reveals that the question can hardly be considered an- 
swered. There has been no lack of attempts to provide an 
answer. However, the proposed answers seem often ir- 
reconcilable and can even be diametrically opposed.  

In order to define mathematics, one needs to be able to 
observe it. A second question therefore presents itself, as 
follows: Where is mathematics? In other words, where 

n one find mathematics so that one can take a look at it 
and analyze it in order to determine what it really is?   

It appears that the answer to the seemingly simple 
question as to where mathematics is has perhaps been the 
greatest point of controversy in the discussion of what 
mathematics is. There have b

lly opposed answers to the question where mathemat- 
ics is. Some believe that mathematics is something inside 
the head. Others believe that it is something outside the 
head. Whereas many believe with Kurt Gödel that num- 
bers exist independently of the human mind, many others 
like L.E.J. Brouwer are convinced that numbers are a 
creation of the human mind. Could both be right at the 
same time?  

The position that I will adhere to is that
n only be empirically observed as something that is 

inside the head. This position in no way involves a denial 
of the notion that mathematics is something outside the 
head. Clearly, when applied to reality outside the head, 
mathematics works. Som t this as proof that 
mathematics is also something outside the head. Then 
again, the totality of human experience of reality outside 
the head is how the brain perceives and processes this 
reality through the senses he head. This percep- 
tion is itself 100% brain activity. Therefore, the analysis 
of the human experience o nsist in the final re- 
sort, on the deepest level, of the analysis of brain activity. 
And one component of the brain activity that constitutes 
the human experience is mathematics. In that regard, the 
question as to whether mathematics is also something 

outside the brain is to some extent moot because mathe- 
matics cannot be empirically observed in that capacity 
anyhow, so there is hardly anything to be

pacity. 
To some extent, Gödel’s position and Brouwer’s posi-

tion are not in opposition. There is nothing that contra- 
dicts the notion that numbers are something that is both 
something outside the head and something inside the 
head. Natu s would inhabit different medi- 
ums inside the head and outside the head, physical reality 
and brain mass respectively. But

on
erefore also analyzed as an activity of the brain or an 

event happen

. Resuming an Abandoned Line of Inquiry 

e aim of what follows 
that was initiated about a century and 
soon completely abandoned and ever since entirely dis- 
regarded. This line of inquiry is, I believe, worthy of be- 
ing resumed. It appears to me that it can lead to a final 
definition of mathematics and its foundations. The ini- 
tiator of the line of inquiry in question was George Boole, 
first in his The Mathematical Analysis of Logic (1847) 
[13-16], but then above all in his An Investigation of the 
Laws of Thought (1854), which may be regarded as the 
Magna Charta of the digital age [17,18]. The principal 
follower of Boole was John Venn in his Symbolic Logic 
(second edition, 1894) [19]. Whitehead notes that Venn 
gave “thorough consistency to Boole’s ideas and notation, 
with the slightest possible change” [20] and, more re-
cently, Styazkhin observed that Venn “revealed the es-
sence of the secret of success of Boole’s procedures” 
[21].  

The Digital Age owes an extraordinary debt to Boole 
and to the digital mathematics that he created. Digital 
mathematics is a type of mathematics that is distinct from 
the more familiar type of mathematics, quantitative 
mathematics (to which Boole also made significant con- 
tributions, for example by his work on differential Equa- 
tions). But digital mathematics is in the end just as 
mathematical as quantitative mathematics. Clearly, a line 
of inquiry initiated by Boole has proved to be successful. 
Little did Boole know to which uses his digital mathe- 
matics would be put when he wrote in 1847, “It would be 
premature to speak of the value which this method may 
possess as an instrument of scientific investigation” [22].  

9.3. Probability Theory as an Ulterior Aim of 
Said Line of Inquiry 

It is not clear to which extent Boole, when initiating the 
line of inquiry that ultimately spawned the Digital Age, 
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had something like computer science in mind as an ulte- 
rior aim. In fact, in his Laws of Thought, digital mathe- 
matics is clearly subordinated to an ulterior aim of an 
entirely different kind, namely making classical prob- 
ability theory complete.  

It is not entirely certain whether Boole had this rela- 
tion of subordination to probability theory in mind as 
soon as he began working on digital mathematics. There 
is no mention of probability theory in his The Mathe- 
matical Analysis of Logic of 1847, in which he first es- 
tablished his digital mathematics. But in Laws of Thought, 
digital mathematics is clearly styled as serving the aims 
of probability theory, as appears from the second part of 
the book’s long title, (An Investigation of the Laws of 
Th

ght and Language as an 
Ulterior Aim of Said Line of Inquiry  

 of 

Boole’s Work on Logic and Probability 

Boole of giving his 1854 book the wrong title. He be- 
 

deal ght,” because “the question 

reflec- 
g 

the p

cates with another through thought and 
la

 same 

ought), on Which Are Founded the Mathematical 
Theories of Logic and Probabilities.   

A great irony relating to Boole’s legacy is that his 
work on probability theory has been, with one or two 
exceptions [23], completely disregarded, almost entirely 
bypassed by the field. In the planned article mentioned at 
the end of §1, I intend to confirm that Boole’s probability 
theory does what it claims to do, make classical probabil- 
ity theory complete, and how it does so.  

9.4. Rational Thou

But there seems to be more to the ulterior aims
Boole’s digital mathematics than statements about prob- 
ability theory. Boole’s Laws of Thought and many of his 
other works on logic and probability, both published and 
unpublished, are replete with references to the nature of 
human thought in as far as thought is rational. The ques- 
tion as to whether he aimed to determine what is going 
on in one’s head when one thinks rationally is investi- 
gated below.  

In any event, like Boole’s ideas on probability theory, 
this component too of his line of inquiry appears to have 
fallen by the wayside. Whereas the forthcoming article 
mentioned at the end of §1 is an attempt to validate 
Boole’s line of inquiry in relation to probability theory, 
what follows is an attempt to resume and extend this 
same line of inquiry as it relates to the deepest founda- 
tions of rational human thought and mathematics.  

9.5. Is 
Mathematical or Cognitive in Nature? 

9.5.1. Modern Perception of Boole’s Work on Logic as 
Strictly Mathematical 

When one reads Boole’s writings on logic and probabil- 
ity, the following question easily arises: Is Boole doing 
mathematics or is he trying to determine how people 
think rationally? In other words, is he describing the 
mathematical structure of reality or is he trying to tell us 

what is going on in people’s heads when they think ra-
tionally? Boole’s contributions, to the extent that they 
have proved lasting, are now universally perceived as 
belonging to the realm of mathematics. Boolean algebra 
is after all ubiquitous. Bertrand Russell even accused 

lieved that Boole was “mistaken in supposing that he was
ing with the laws of thou

how people actually think was quite irrelevant to him” 
[24-26]. Taking into consideration how people think 
while practicing mathematics is sometimes called psy-
chologism, which some seem to regard as a bad word.  

9.5.2. Statements to the Contrary in Boole’s Writings 
There are abundant indications in Boole’s work that 
leave no doubt that how people think, at least as far as 
rational thought and language is concerned, was very 
much on his mind. In the Preface to the earlier Mathe- 
matical Analysis of Logic (1847), he states that he is not 
concerned with “quantity,” but with “facts of another 
order which have their abode in the constitution of the 
Mind” [27]. In the first statement following the Preface 
to the later Laws of Thought (1854), he announces [28]:   

“The design of the following treatise is to investigate 
the fundamental laws of those operations of the mind by 
which reasoning is performed.”  

How can such statements, when taken at face value, 
not pertain to what is going on inside the heads of people 
—notwithstanding attempts to soften their impact, per- 
haps to protect Boole from the charge of psychologism? 
[29].  

Two possible reasons for resisting the notion that 
Boole could have been aiming to establish how the brain 
works are as follows.   

First, mixing Boole’s mathematical results with 
tions on the nature of thought might be seen as affectin

urity and objectivity of the former.  
Second, at the present time, it remains still basically 

unknown—let alone that it was in Boole’s time—how 
the brain produces rational thought and language in bio- 
chemical terms, that is, which activities of neurons and 
synapses are responsible. So how could anyone have 
anything to say about how the biological brain reasons?  

The first objection is addressed below. In regard to the 
second objection, I have noted elsewhere that, as one 
brain communi

nguage, all communications need to travel by air from 
the mouth of a speaker to the ear of a hearer or by light 
from the written page to a reader’s eyes. There can be no 
doubt that everything that is essential to the structure of 
rational thought and language must be conveyed in sound 
waves or light beams that travel from mouth to ear or 
from page to eye. In that sense, the structure of rational 
thought and language is empirically accessible. The
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structure ought to be present inside the brain, even if 
ting a different medium.   

in- 
habi

 

 

sa

 is a good illustration of 
this definition. It seems otherwise quite tempting to in- 

a 
prope e the brain. As it happens, that 

 the Brain 

d in the end avoid 
de

ite of this assumption is that there is something 
more to reality than what is perceived through the senses. 

uld be. 
Relig ut that something 

9.5.3. Boole’s Own Perception of His Work on Logic 
as Mathematical 

While there can be no doubt that how the brain thinks is 
somehow a prominent concern in Boole’s writings, there 
are also plenty of statements in his writings that leave no 
doubt that he is firmly convinced that what he is doing 
when he is studying logic and probability is mathematics. 
He states, for example, that “the ultimate laws of Logic 
are mathematical in their form” [30].  

As one tries to assess what exactly it is that Boole is 
trying to do, the impression gradually imposes itself and 
becomes inescapable that he is writing both about how 
the mind thinks and about mathematics. There are just 
too many categorical statements in his work that posi- 
tively point to both. At this juncture, there is the possibil- 
ity of assuming that there is something deeply confusing 
and contradictory in Boole’s work. One might seek to 
resolve the possible contradiction by discarding either the
cognitive facet or the mathematical facet of Boole’s work 
as invalid. In choosing to reject either of the two, the
easier choice would seem to be the cognitive facet. The 
mathematical facet has more than proved itself by appli- 
cations in modern computer science.  

Then again, it is difficult to overlook the many pas- 
sages that concern how the mind thinks. Consider his 
analysis of the syllogism, which does not supplant Aris- 
totle’s analysis but rather completes it. It seems easy for 
all to agree that we must think according to the rules of 
the syllogism if we are to reason correctly. And more 
generally, it is easy to convince oneself that what Boole 
says about how the mind thinks rings true. There just 
seems to be more to Boole’s writings than just mathe- 
matics.  

9.5.4. Could Boole’s Work on Logic Be Both  
Mathematical and Cognitive?  

The question arises: Could Boole have been doing both 
at the same time, producing mathematics and describing 
mental faculties? The following statement by Boole 
clearly indicates that his approach is at the same time 
mathematical and cognitive. What he sets out to discover 
is the mathematical structure of rational cognition [31]:  

“The laws we have to examine are the laws of one of 
the most important of our mental faculties. The mathe- 
matics we have to construct are the mathematics of the 
human intellect.” 

The present discussion has reached a critical juncture. 
It needs to be decided whether the cognitive facet of 
Boole’s line of inquiry should be pursued or dropped 
altogether. The validity of Boole’s digital mathematics 

ys something about the overall soundness of his think- 

ing. It can serve as an argument in favor of resuming the 
cognitive facet of the same general line of inquiry.  

In resuming the cognitive facet, the concept described 
by Boole as the “mathematics of the human intellect” 
cited above will serve as a point of departure. What can 
possibly be meant by this concept? It would seem that it 
places mathematics somehow inside the human intellect. 
The way in which the concept will be interpreted in what 
follows is that mathematics is in essence a property and 
an activity of the brain. Mathematics is best defined as 
something that the brain does. In a planned article, I hope 
to show that probability theory

terpret mathematics as exactly the opposite, namely as 
rty of reality outsid

very notion will also be assigned a place in the definition 
of mathematics as something that the brain does. Mean- 
while, the principal consideration that leads to the defini- 
tion of mathematics as an activity of the brain is pre- 
sented in the next section.  

9.6. Mathematics as an Activity of

The brain is evidently the most complex structure in the 
universe. It consists of billions of neurons and trillions of 
synapses. Still, it seems just as evident that the brain is a 
biological mass that is limited in size. There is only so 
much of it and no more. The following working hypothe- 
sis therefore seems to impose itself. The time will come 
when it will be possible to record everything that the 
brain does as it happens, presumably with the aid of su- 
percomputers or the like. The opposite of this hypothesis 
is that a certain part of the brain will be forever inacces- 
sible. But what could such an inaccessible part consist of? 
If everything in the brain is atoms and molecules and the 
like, then no activity in the brain shoul

tection, one would think.  
Another basic assumption is that the totality of human 

existence as we know it consists of how the brain per- 
ceives reality outside itself through the senses. There are 
many more senses than the classic five, including sensing 
the effects of the instincts with which the brain comes 
equipped at birth. In addition, perceptions received 
through the senses can be recombined in certain ways 
inside the brain. Dreams are one type of recombination. 
The oppos

It is difficult to see what that something more co
ion makes certain assumptions abo

more. But then, it is impossible to make everyone agree 
on what that something more is and the assumptions of 
religion are beyond scientific verification anyhow.  

Once it is possible to record everything the brain does 
in its entirety, part of what is recorded will be the brain’s 
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knowledge and practice of mathematics. It should be 
po

rded brain activity?  

r understanding. The brain 
edge 
form 

g mathematics. It is an im- 
po

rva- 
tio

 itself subject, 
without its being also given to it to understand their 

- 
gree r fitness for their end, as com- 

ssible to observe exactly what the brain does when it 
engages in mathematics and how it starts up mathematic- 
cal knowledge. The key question arises: Is there more to 
mathematics than reco

9.7. The Brain as the Final Frontier: Towards a 
New Empiricism 

If the totality of the human experience consists of how 
the brain engages what is outside itself, then nothing that 
does not have some kind of imprint in the brain can mean 
anything to the brain. In assessing what is outside itself, 
the brain only has itself, as it were, to sort things out. 
And by itself is meant a complex and very large but ul- 
timately limited and fully definable amount of activity of 
neurons and synapses and the like.  

At first sight, it would seem as if mathematics is a 
property of reality in which the brain occasionally par- 
ticipates. Mathematics seems like a sacred code inscribed 
in the book of nature. But all that the brain can ultimately 
know about this code is the details of its own participa- 
tion. And the details of this participation consist one 
hundred percent of brain activity. Therefore, if one truly 
wants to understand what mathematics is, then all one 
has as an object of study is the participation itself as 
brain activity. It is understandable that there may be a 
desire for more than just that. But the brain can hardly 
step outside itself, as it were. It is fully limited to its own 
activity and powers, and to the study of this activity and 
these powers in a search fo
activity does not only include mathematical knowl
and reasoning, but also the act of perception in the 
of signals reaching the brain from outside through the 
senses. Needless to say, once it is possible to observe all 
this brain activity, it will also be possible for this very act 
of observing brain activity to be itself observed, include- 
ing by the person whose brain activity is being observed. 
It is a bit like a snake biting its own tail.   

But what about the ever attractive notion that mathe- 
matics is a property of nature outside the brain? Nothing 
is more tempting than to subscribe to this assumption. In 
fact, I believe that there is nothing wrong with assuming 
that reality exhibits a structure that may be called 
mathematical and that this structure is somehow the ori- 
gin of a certain type of brain activity that may be de- 
scribed as knowing and doin

ssible to avoid assumption under which everyone ef- 
fectively operates. One way of looking at the matter is as 
follows. It is not because there is no final verification of 
this assumption that the assumption should be rejected. 
The assumption receives abundant support from the fact 
that mathematics works. When mathematical knowledge 
is acquired and this knowledge is then returned to reality 

outside the brain by being applied correctly, as in build- 
ing a bridge, the application will typically work, that is, 
the bridge will not collapse. But ultimately, mathematics 
can only be observed to the extent that it can be seen at 
work in the brain. Reality is experienced entirely in terms 
of how the brain engages what is outside itself through 
the senses. The scientific observation and analysis of this 
experience therefore ultimately needs to be the obse

n of the brain. And that also applies to mathematics as 
one type of reality. Anything else is beyond human 
knowledge. It is not possible to look behind the curtain, 
as it were, to establish why the brain is the way it is. 
Along these lines, Boole’s writes in somewhat Latinate 
English, “It may, perhaps, be permitted to the mind to 
attain a knowledge of the laws to which it is

ground and origin, or even, except in a very limited de
, to comprehend thei

pared with other and conceivable systems of law” [32].  
Because the assumption that the structure of reality 

outside the brain is mathematical is just an assumption, it 
is not possible to probe the deeper roots of this presumed 
structure. There is of course nothing that prevents anyone 
from engaging in speculation to any degree. It is likewise 
possible to speculate without restrictions about other 
possible types of realities in which other possible types 
of mathematics apply.  

Knowledge is ultimately a process of assimilation in 
which the brain assimilates to reality outside itself. For 
example, to find one’s way through the streets of a city 
without consulting a street map, the brain needs to ac- 
quire something of the structure of the layout of the 
city’s streets and in that sense become a little like that 
layout. But it is reasonable to assume that, in the process 
of assimilation, there needs to be something to assimilate 
to. Therefore, if part of the assimilation is mathematical, 
there is presumably something mathematical in reality 
outside the brain to which the brain assimilates.  

The fact that the knowledge of mathematics is stored 
in the books of a mathematics library may also seem to 
suggest that mathematics is something outside the head 
and hence first and foremost a property of nature, with its 
reflection inside the head being somehow secondary. 
However, the books in question are nothing more than 
paper and ink until an active brain reads and studies them. 
In that sense, a tree does not fall in the forest if there is 
no one there to hear it. The mathematics in a book is not 
mathematics if it is not actively engaged by a thinking 
brain.   

9.8. Conclusion 

It is possible to reconcile as complimentary the view ad- 
hered to by someone like Brouwer that mathematics is 
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something inside the head and the view adhered to by 
someone like Gödel that mathematics is something out- 
side the head. In other words, the two views do not con- 
tradict one another. However, that mathematics is some- 
thing outside the head is only an assumption. But it is an 
assumption that is hard to deny. So to some degree 
Gödel’s view can be recognized. Still, it is only as some- 
thing inside the head that mathematics can be truly ob- 
served and therefore become the subject of empirical 
inquiry once the secrets of the brain are unlocked. In that 
regard, the cognitive approach is the only one that offers 
a systematic path of scientific investigation. I hope to 
apply the cognitive approach in planned papers, begin-
ning with the branch of mathematics called probability 
theory. It will be useful to formulate the foundations of 
probability theory fully in cognitive fashion.  
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