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ABSTRACT 

Linear Discriminant Analysis (LDA) is a well-known scheme for feature extraction and dimension. It has been used 
widely in many applications involving high-dimensional data, such as face recognition, image retrieval, etc. An intrinsic 
limitation of classical LDA is the so-called singularity problem, that is, it fails when all scatter matrices are singular. A 
well-known approach to deal with the singularity problem is to apply an intermediate dimension reduction stage using 
Principal Component Analysis (PCA) before LDA. The algorithm, called PCA + LDA, is used widely in face recogni- 
tion. However, PCA + LDA have high costs in time and space, due to the need for an eigen-decomposition involving 
the scatter matrices. Also, Two Dimensional Linear Discriminant Analysis (2DLDA) implicitly overcomes the singular- 
ity problem, while achieving efficiency. The difference between 2DLDA and classical LDA lies in the model for data 
representation. Classical LDA works with vectorized representation of data, while the 2DLDA algorithm works with 
data in matrix representation. To deal with the singularity problem we propose a new technique coined as the Weighted 
Scatter-Difference-Based Two Dimensional Discriminant Analysis (WSD2DDA). The algorithm is applied on face rec-
ognition and compared with PCA + LDA and 2DLDA. Experiments show that WSD2DDA achieve competitive rec- 
ognition accuracy, while being much more efficient. 
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1. Introduction 

Linear Discriminant Analysis [1-5] is a well-known method 
which projects the data onto a lower-dimensional vector 
space such that the ratio of between-class distance to the 
within-class distance is maximized, thus achieving maxi- 
mum discrimination. All scatter matrices in question can 
be singular since the data is drawn from a very high-di- 
mensional space, and in general, the dimension exceeds 
the number of data points. This is known as the under 
sampled or singularity problem [6]. 

In recent years, many approaches have been brought to 
bear on such high-dimensionality under sampled prob- 
lems, including pseudo-inverse LDA, PCA + LDA, and 
regularized LDA. More details can be found in [6]. 
Among these LDA extensions is PCA + LDA which has 
received a lot of attention, especially for face recognition 
[3]. In this two-stage algorithm, an intermediate dimen- 
sion reduction stage using PCA is applied before LDA. 
The common aspect of previous LDA extension is the 
computation of eigen-decomposition of certain large ma- 
trices, which is not only degrades the efficiency but also 
makes it hard to scale them into large datasets. 

The objective of LDA is to find the optimal projection 

so that the ratio of the determinants of the between-class 
and within-class scatter matrix of the projected samples 
reaches its maximum. However, concatenating 2D ma- 
trices into a 1D vector leads to a very high-dimensional 
image vector, where it is difficult to evaluate the accu- 
rately of scatter matrices due to their large size and the 
relatively small number of training samples. Furthermore, 
the within-class scatter matrix is always singular, making 
the direct implementation of the LDA algorithm an in- 
tractable task. To overcome these problems, a new tech- 
nique called 2-dimensional LDA (2DLDA) was recently 
proposed. This method directly computes the eigenvec- 
tors of the scatter matrices without conversion a matrix 
into a vector. Thus, PCA and LDA were developed into 
the 2-dimensional space these methods which are known 
as 2DPCA and 2DLDA [7-12]. 

The scatter matrices in 2DLDA are quite small com- 
pared to the scatter matrices in LDA. The size of a 
2DLDA matrix is proportional to the width of the image. 
2DLDA evaluates the scatter matrices more accurately 
and computes the corresponding eigenvectors more effi- 
ciently than LDA or PCA. However, the main drawback 
of 2DLDA is that, it needs more coefficients for image  
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representation that the conventional PCA and LDA-based 
schemes. Tang et al. [13] have introduced a weighting 
scheme to estimate the within-class scatter matrix using a 
so called relevance weights. This technique was used in 
face recognition by Chougdali and all [14]. 

2. Subspace LDA Method 

The first method in this study is the Subspace LDA 
method [15-18]. Projecting the data to the eigenface 
space generalizes the data, whereas implementing LDA 
by projecting the data to the classification space discrimi- 
nates the data. Thus, Subspace LDA approach indeed is a 
complementary approach to the eigenface method. Now 
we described the following steps which summarize the 
PCA process: 

1) Let a face image I be a two dimensional ( ,x y ) 
matrix, pixels is converted to the image vector 

N N
  of 

size ( ) where P is of size (1P x y ), by adding each 
column one after the other we obtain the training set as: 

N N

1 2, , ,
tM    



            (1) 

of image vectors and its size is (P × Mt) where Mt is the 
number of training images. 

2) Calculate the mean face,  as the arithmetic av- 
erage of the training image vector at each pixel point: 

1

1 tM

i
itM 

 

   

              (2) 

3) Find the mean subtracted image which is the dif- 
ference of the training image from the mean image  

 and we obtain the difference matrix: 

 1 2, , , Mt  A            (3) 

which is the matrix of all the mean subtracted training 
image vectors and its size is (P × Mt). 

4) Calculate the covariance matrix to represent the 
scatter degree of all feature vectors related to the average 
vector. The covariance matrix X of the training image 
vectors of size (P × P) is defined by: 

1

1 t
T T

i i
i

M

tM 

  

,

A A X         (4) 

An important property of the eigenface method is its 
feasibility to obtain the eigenvectors of the covariance 
matrix. For a face image of size ( x yN N

( )

) pixels, the 
covariance matrix is of size (P × P). This covariance ma- 
trix is very hard to work with due to its huge dimension 
causing computational complexity. On the other hand, 
the eigenface method calculates the eigenvectors of the 

t tM M  matrix, with Mt being the number of face 
images, and we can obtains (P × P) matrix using the ei- 
genvectors of the (Mt × Mt) matrix. 

Initially with matrix Y defined as: 

1

1 t
T T

i
i

M

t

A A
M 

   Y

YV V

i          (5) 

we compute the eigenvectors and corresponding eigen- 
values by: 

               (6)  

using (SVD) function, where V is the set of eigenvectors 
associates with its eigenvalue  . 

Also it can be easily observed that most of generaliza- 
tion power is contained in the first few eigenvectors. For 
example, 40% of the total eigenvectors share 85% - 90% 
of the total generalization power. 

After this we find the eigenface by projection of ma- 
trix A into new eigenvector and normalized the eigen- 
face. 

5) Each mean subtracted image project into eigenspace 
using: 

 T T
k k kV V              (7) 

 . where k = 1, 2, , M
Finally, we obtain weight Matrix: 

 1 2, , ,
T

M             (8) 

By performing all these calculations, the training im- 
ages are projected into the eigenface space, that is a 
transformation from P-dimensional space into M   di- 
mensional space. This PCA step, also referred as a fea- 
ture extraction step is performed to reduce the dimension 
of the data. From this step on, each image is an ( ,1M  ) 
dimensional vector in the eigenface space. After the PCA, 
we describe the LDA process. 

With the projected data in hand, a new transformation 
is performed; the classification space projection by LDA. 
Instead of using the pixel values of the images (as done 
in pure LDA), the eigenface projections are used in Sub- 
space LDA method. 

Again, as in the case of pure LDA, a discriminatory 
power is defined as: 

 
T

b

T
w

W W
J W

W W

 






S

S
            (9) 

where bS  is the between-class and wS  is the within- 
class scatter matrix. 

For c individuals having qi training images in the da- 
tabase, the within-class scatter matrix is computed as: 

  
1

c
T

w i i
i

m m


   S       (10) 

The size of wS  depends on the size of the eigenface 
space. If M   of the eigenface were used, then the size 
of  S M Mw  is (  ). 

The means of eigenface space class are defined as: 
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1

1 iq

i k
ki

m
q 

 

m

1

            (11) 

where i  are the arithmetic average of the eigenface 
projected training image vector corresponding to the 
same individual, i = 1,2, ,c with size ( M  ). 

Moreover, the mean face is calculated from the arith- 
metic average of the entire projected training image vec- 
tor by: 

0
1

1 tM

k
ktM 

 

  0 0

T

im m m

im 0m

m             (12) 

And the between-class scatter matrix is computed as: 

0

c

b i
i

 S m        (13) 

which represents the scatter of each projection classes 
mean  around the overall mean vector  and its 
size is ( M M  ). 

The objective is to maximize J(W), to find an optimal 
projection W which maximizes between-class scatter and 
minimizes within-class scatter: 

  arg max maxTW J W 
T

b

T
w

W W

W W

 

 

S

S

b w wW W

  (14) 

Then, W can be obtained by solving the generalized 
eigenvalue problem: 

S S

  T
i ig W  

T
T k TV  

ω


            (15) 

Next, the eigenface projections of the training image 
vectors are projected to the classification space by the dot 
product of optimum projection of W and weight vector: 

           (16) 

In the testing phase each test image should be mean 
centered, and projected into the same eigenspace as de- 
fined by: 

            (17) 

where T  is the projection of a training image on each 
of the eigenvectors, k = 1, 2, , M  . Then we obtain the 
weight matrix as: 

 1 2, , ,T M   


1

         (18) 

where T  is the representation of the test image in the 
eigenface space and its size is ( M 

  T
TTg W 

Tid

   Ti iTd g g

). 
After this, the eigenface projection of the test image 

vector (i.e. the weight matrix) is projected to the classifi- 
cation space in the same manner as: 

          (19) 

which is of size ((c – 1) × 1). 
Finally, we compute the Euclidean distance  be- 

tween the training and test classification space projection 
by: 

          (20) 

which is scalar and calculated for i = 1, 2, , tM  and 
returned the index, which refers to the smallest values of 
distance measure. 

3. Two Dimensional Linear Discriminant 
Analysis (2DLDA) 

Suppose there are c known pattern classes  

c  and N training samples 
1 2, , ,w w 

w i
jx    , I = 1, 2, , cX I , 

j = 1, 2, , c is a set of samples with (m × n) dimension. 
jI  is the number of training samples of class j and satis-  

1

c

j
i

I N


fies  . The following steps summarize the pro-  

cess of 2DLDA: 
1) Calculate the average matrix X of the N training 

image using:  

1 1

1 jIc
i
j

j i

x
N  

 x              (21) 

2) Compute the mean iA  of the i  class by: th

1

1 jI
i

i j
j i

x x
I 

 
  
 




             (22) 

where i = 1, 2, , I j . 
3) Calculate the image between-class scatter matrix 

by: 

  
1

1 c T

jb j
j

x x x x
N 

 S         (23) 

4) Calculate the image within-class scatter matrix by: 

1 1

1 jIc T
i i

w j j j j
j i

x x x x
N  

        S

 

    (24) 

5) Find the optimal projection W so that the total scat- 
ter of the projected samples of the training images is 
maximized. The objective function of 2DLDA is now 
defined by: 

T
b

T
w

W W
J W

W W


S

S

   1

          (25) 

It can be proven that the eigenvector corresponding to 
the maximum eigenvalue of w bS S

, ,w w
, w

   1

 is the optimal 
projection vectors which maximizes J(W). Generally, as 
it is not enough to have only one optimal projection vec- 
tor, we usually look for d projection axes, say ( 1 2  

d ), which are the eigenvectors corresponding to the 
first largest eigenvalues of w bS S

i

. In 2DLDA, 
once these projection vectors are computed, each training 
image jx  is then projected onto W to obtain the feature 
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matrix i
jY i (m × d) of the training image jx

i
. So, during 

training, for each training image jx

TA V

i

 a corresponding 
feature matrix of size m × d is constructed and sorted for 
matching at the time of recognition. 

6) For test image we project the test matrix onto the 
eigenvectors matrix to find the new matrix of dimension 
(m × k): 

jB                (26) 

7) Calculate the face distance between two arbitrary 
feature matrix B  and jB  defined by: 

 
2

1

k

, j i
n n

n

Y Y


j iB B

,

d

in d

      (27) 

If i j i , md B   B B B  and j kB , where 

k  identify the class and B is a test sample, then the 
resulting decision is kB  . 

4. Weighted Scatter Tow Dimension  
Difference Discriminant Analysis 

The maximum scatter difference (MSD) discriminant 
criterion attracts a lot of research with regard to the com- 
ponents of this ratio. Recently, for the emphasis on the 
within-class scatter matrix, WMSD include the studies of 
[7,19]. Furthermore, these studies have demonstrated that 
MSD classifiers based on the discriminant criterion have 
been quite effective on face-recognition tasks. Since, the 
MSD utilizes the generalized scatter difference rather 
than the generalized Rayleigh quotient as a class separa- 
bility measure; it also avoids the singularity problem 
when addressing the small-sample size problem that trou- 
bles the Fisher discriminant criterion. We introduce the 
weighted scatter matrices and thus define a weighted 
scatter-difference-based discriminant analysis criterion as 
follows: 

    b wW M WS S

   Ti ji j m m

P

tMJ W  race

( )b iw d

t

j P m

      (28) 

where, 
1

1 1

C C

i j
i j i

P m


  
 S   (29) 

with i  and jP  dw are the class priors and ij  is the 
Euclidean distance between the means of class i and class 
j. The weighting function  ijdw  is generally a mono- 
tonically decreasing function: 

  2

i jd m m


(0 )i  

 

ijw

1,r

          (30) 

where ri’s i  are the relevance based 
weights defined by  

1

j i ijdw

 ir             (31) 

which are based on the reciprocals of the smallest 

weights given by dw

 ijdw

( )i ij
i j

r w d


 

ij .To obtain an alternative set of 
based weights that assume to capture extra classes, we 
propose to pick the first largest  values so that 
Equation (31) is complement  

             (32) 

The proposed weight given by (32) relatively per- 
formed better than those given by (31) in this study. The 
weights proposed by (32) could be considered as an ex- 
tension to the concept of weights to estimate a within- 
class scatter matrix. Thus by introducing a so-called 
relevance weights, a weighted within-class scatter matrix 

wS  can be defined by replacing the conventional within- 
class scatter matrix with: 

  
1 1

inC
T

ij i ij iw i i
i j

x m x mPr
 

   S    (33) 

To obtain a better result we use the best eigenvector 
corresponding to the maximum eigenvalue given by: 

1

1

n

ii
n

i







                (34) 

 

Using the weighted scatter matrices bS  and wS  and 
consequently the criterion in (28) the resulting algorithm 
is referred to as Weighted Scatter difference 2DDA 
(WSD-2DDA). Thus, the criterion is: 

 
 

trace

trace
b

w

M 
S

          (35) 
S

5. Experiment and Result 

5.1. The Experiments on the ORL Face Base 

For showing the effect of WSD2DDA, we use ORL da- 
tabase [20]. This base contains images from 40 individu- 
als, each providing 40 different images. For some sub- 
jects, the images were taken at different times. The facial 
expressions (open or closed eyes, smiling or none smil- 
ing) and facial details (glasses or no glasses) also vary. 
The images were taken with a tolerance for some titling 
and rotation of the face of up to 20 degrees. Moreover, 
there is also some variation in the scale of up to about 10 
percent. All images are grayscale and normalized to a 
resolution of 112 × 92 pixels. Examples of images are 
shown in (Figure 1). 

Here we use between 3 to 9 images sample per class 
for training, and the remaining images for the test and we 
take three cases with different input and find the mean of 
this three cases. Table 1 show the comparisons result on 
recognition accuracy. We can see from this table that the 
result of testing WSD2DDA is better than the results of 
other methods. 
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Figure 1. Examples of ORL database. 
 

Table 1. Comparison result of recognition accuracy on ORL database. 

k 

Algorithm 
3 4 5 6 7 8 9 

PCA + LDA 91.66 94.36 96 97.5 98.87 99.17 99.17 

2DPCA 90.57 94.65 96.15 97.71 98.87 99.17 99.17 

2DLDA 92.1 96.89 97.33 98.75 99.16 99.17 100 

WSD2DDA 93.31 97.73 98.67 98.9 99.2 99.37 100 

 
be able to train and test algorithms on known and un- 
known faces. People in the database wear glasses or not 
and have various skin color. Background is willingly 
neutral and uncluttered in order to focus on face opera- 
tions. All images have been taken using the FAME Plat- 
form of the PRIMA Team in INRIA Rhone-Alpes. To 
obtain different poses, we have put markers in the whole 
room. Each marker corresponds to a 2D pose (pan, tilt). 
Post-it is used as markers. The whole set of post-it covers 
a half-sphere in front of the person see Table 4. Each 
image is manually cropped and resized 92 × 112 pixel in 
this experiment. We use a number of training images 
between 10 to 100 and the different 88 images for test. 
From the experimental results listed in Table 5, we can 
see that the recognition rate of WSD2DDA is superior to 
other methods. Face positions on each image are labeled 
in an individual text file. In Figure 3 a small sample of 
this database. 

For the comparison of cup time(s) for feature extrac- 
tion of ORL databases, it can be seen from Table 2, 
2DLDA, 2DPCA and WSD2DDA takes little time than 
PCA + LDA, because the size of the covariance matrix in 
2DLDA is ( x y ) and the size of covariance matrix 
in PCA + LDA is (P × P) where P is size (

N N
x yN N ). So, 

the covariance matrix in 2DLDA and 2DPCA is smallest 
and the computational cost is low. 

5.2. Experiment on the Yale B Database 

The next experiment is performed using the Yale face 
database [21], which contains 165 images of 15 indi- 
viduals (each person has 11 different images) under 
various facial expressions and lighting conditions. Each 
image is manually cropped and resized 92 × 112 pixel in 
this experiment. We use a number of training images 
between 3 to 10 and the remaining images for test and we 
take three cases with different input and find the mean of 
these three cases. From the experimental results listed in 
Table 3, we can see that the recognition rate of WSD- 
2DDA is superior to other methods. Example of images 
is shown in (Figure 2). 

6. Conclusions 

A novel feature extraction method, weighted scatter dif- 
ference (WSD2DDA) is proposed in this paper. This 
method gives an alternative better solution of the singu- 
larity problem and reduces the cost in the complexity of 
the LDA algorithm. 

5.3. Experiment on the Headpose Database 

The head pose database [22,23] is a benchmark of 2790 
monocular face images of 15 persons with variations of 
pan and tilt angles from –90 to +90 degrees. For every 
person, 2 series of 93 images (93 different poses) are 
available. The purpose of having 2 series per person is to  

Specifically, the propose method has the following 
advantages: the recognition rate of WSD2DDA is better 
than other existing methods; the execution time of WSD- 
2DDA, 2DLDA and 2DPCA is less than PCA + LDA. 
Finally we have shown that though the cup time depends 
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on the size of the face images and the number of classes, 
the method is very effective in face recognition. The 
faces used during experimentation are ORL, Yale B and 
Head Pose face databases respectively on which we 
demonstrate that the proposed method gives a good per- 
formance of face recognition rate. 

 

 

Figure 2. Examples of Yale B database. 
 

 

 

Figure 3. A small sample of head pose database. 
 

Table 2. Recognition time on ORL database per second. 

k 

Algorithm 
3 4 5 6 7 8 9 

PCA + LDA 7.67 8.46 10.69 9.72 9.92 9.47 7 

2DPCA 7 7.4 7 7.6 7 5.5 4 

2DLDA 4 4.5 5 5 4.59 4.22 3.98 

WSD2DDA 5.41 5.75 5.45 5.42 4.73 4.33 4 

 
Table 3. Comparison result of recognition accuracy on Yale B database. 

k 

Algorithm 
3 4 5 6 7 8 9 10 

PCA + LDA 83.22 89.26 95.86 92.89 95 98.51 97.78 97.78 

2DPCA 83.38 89.89 96.24 96 95.56 98.51 97.78 97.78 

2DLDA 90.5 90.51 95.51 94.67 96.11 99.24 97.78 100 

WSD2DDA 93.45 92.51 98.13 98.22 98.33 99.24 98.89 100 

 
Table 4. Chow pan and tilt angles of head pose database. 

 Negative values Positive values 

Pan angel Bottom Top 

Tilt angel Left Right 

Pan (Vertical angle) {–90, –75, –60, –45, –30, –15, 0, +15, +30, +45, +60, +75, +90} 

Tilt (Horizontal angle) {–90, –60, –30, –15, 0, +15, +30, +60, +90} 

 
Table 5. Comparison result of recognition accuracy on head pose database. 

k 

Algorithm 
10 40 50 60 70 80 90 100 

PCA + LDA 87.8 96.2 96.7 97.5 98.1 99.4 99.4 99.4 

2DPCA 88.5 91.06 93.1 96 98 99.4 99.4 99.4 

2DLDA 87.9 96.4 97.1 97.8 98.5 99.4 99.4 99.4 

WSD2DDA 88.2 96.5 97.53 97.93 98.5 99.3 99.6 99.6 
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7. Future Work 

In the future work we plan to apply Kernel Relevance 
Weighted (2DLDA) and Kernel Weighted Scatter-Dif- 
ference Based Two Dimensional Discriminant Analysis 
for Face Recognition. 
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